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Effects of dietary carotenoids on mouse lung genomic profiles
and their modulatory effects on short-term cigarette smoke
exposures
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Abstract Male C57BL/6 mice were fed diets supple-

mented with either b-carotene (BC) or lycopene (LY) that

were formulated for human consumption. Four weeks of

dietary supplementations results in plasma and lung

carotenoid (CAR) concentrations that approximated the

levels detected in humans. Bioactivity of the CARs was

determined by assaying their effects on the activity of the

lung transcriptome (*8,500 mRNAs). Both CARs acti-

vated the cytochrome P450 1A1 gene but only BC induced

the retinol dehydrogenase gene. The contrasting effects of

the two CARs on the lung transcriptome were further

uncovered in mice exposed to cigarette smoke (CS) for

3 days; only LY activated *50 genes detected in the lungs

of CS-exposed mice. These genes encoded inflammatory-

immune proteins. Our data suggest that mice offer a viable

in vivo model for studying bioactivities of dietary CARs

and their modulatory effects on lung genomic expression in

both health and after exposure to CS toxicants.
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Introduction

Many epidemiologic studies have suggested an ameliorat-

ing role for carotenoids (CARs) and other dietary

antioxidant micronutrients in cigarette smoke (CS)-induced

diseases including lung cancer [46]. A recent study of

1,194 French subjects suggested that b-carotene (BC)

protects against the decline in forced expiration volume

(FEV1) over an 8-year period in the general population and

that BC and vitamin E are protective against lung function

loss in heavy smokers [19]. Paradoxically, results from the

a-tocopherol, BC cancer prevention (ATBC) study, and the

BC and retinol efficacy trial (CARET), two large investi-

gations that focused on disease chemoprevention with

nutritional supplements, suggested that smokers should

avoid high-dose BC supplements because of an increased

risk of lung cancer (e.g., 18 and 28% more lung cancers,

respectively) [54].

These paradoxical and unexpected data have stimulated

a number of in vivo studies to seek better understanding
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of the lung cellular and molecular pathways in which

CARs could influence CS-induced lung pathobiology [18,

32, 35, 37, 38, 40, 41, 51, 56, 57, 61, 73, 75]. High doses

of BC were shown to increase the activities of cytochrome

P450s (CYPs) in rat lungs [57]. In the A/J mouse model

of CS-induced lung tumorogenesis, dietary BC supple-

mentation augmented lung BC concentrations but had no

effect on lung tumors induced by either whole CS [51] or

gas-phase of CS [75]. In a similar model, BC supple-

mentation had no effect on CS carcinogen 4-(N-methyl-N-

nitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tu-

morogenesis [18].

Studies in ferrets have made important contributions in

deciphering the in vivo effects of CARs, CS and their

biological interactions [61]. In ferrets exposed to CS,

accelerated levels of lung cell proliferation and squamous

metaplasia were found in animals fed high doses of BC.

This study suggested that diminished retinoid signaling

pathways could represent a contributing mechanism related

to the increased tumor incidence seen in human smokers

[41]. Importantly, these investigators have also presented

evidence that the beneficial and/or detrimental effects of

BC supplementation could be related to the doses of BC

administered [40, 41]. They have also shown that both low-

and high-dose lycopene (LY) supplementations substan-

tially inhibited CS-induced lung tissue squamous

metaplasia and proliferating cellular nuclear antigen

(PCNA) expression in ferrets [37], extending earlier

observations that LY administration appears to decrease

some markers of CS-induced lung bimolecular damages

[1].

In a recent study A/J mice fed varying concentrations of

BC were exposed to CS [32]. These investigators docu-

mented CS-induced effects on lung pathways related to

drug metabolism, oxidative stress, inflammation, matrix

degradation and apoptosis and demonstrated that BC itself

had minimal changes in lung gene expression, but it

decreased CS-related induction of inflammatory pathways.

These investigators concluded that BC effects on CS-

induced lung genomic profiles were negligible.

In the present study, we have explored CAR effects on

the lung transcriptome of C57BL/6 mice and compared

these effects with those in CAR (BC or LY) fed mice

exposed to CS using a somewhat similar CAR adminis-

tration and CS exposure strategy that was used previously

in A/J mice [51, 76]. Although C57BL/6 mice have been

less frequently used to study CS-related lung tumorogen-

esis [47, 76] and mice present a complex and somewhat

different in vivo CAR digestion, absorption and metabo-

lism profiles compared to humans [33], a rich array of

genetically engineered mice on C57BL6 genetic back-

ground are available for the study of nutrient-

environmental interactions in this mouse strain.

Methods

Protocols for humane treatment and utilization of mice

described in this study were approved by the Institutional

Animal Care and Use Committee of the University of

California, Davis.

Diets and mice

The basal diet was the AIN-93G rodent diet which is opti-

mized for rodent growth and health, and lacks added BC or

LY [36]. The AIN-93G diet was supplemented with gelatin

beadlets without CAR or gelatin beadlets with a crystalline

form of synthetic CAR. The beadlets themselves consist of

a starch-coated matrix of gelatin and sucrose stabilized with

small amounts of tocopherol, sodium ascorbate and ascor-

byl palmitate with tricalcium phosphate (BASF website).

Gelatin beadlets contained either 100 g BC or 100 g LY

(*77% all trans- and 23% total cis isomers) or no added

CAR/kg gelatin beadlets provided by BASF (Ballerup,

Denmark) and were developed for human consumption

[83]. The final pelleted diets were prepared by DYETS,

Bethleham, PA. These diets contained 5 g of beadlets/kg

diet. The two CAR containing diets thus contained 0.5 g of

CAR/kg diet, a supplementation several-fold higher than

that used in human studies [54] but necessitated because of

the poor systemic deliveries of ingested CARs in rodents

[33]. It is likely that the pelleting process itself along with

the chamber CS exposures affected the stability of the

added BC and LY, causing some isomerization and oxida-

tion of at least a portion of the two CARs.

Preliminary studies of dose ranging protocol

for CAR administration

Male C57BL/6 mice (6 week old, 20–25 g) were obtained

from Charles River Laboratories (Wilmington, MA).

Twenty-four mice (6 groups of 4 mice per group) received

the basal AIN-93 G rodent unsupplemented diet. They were

housed in groups of 4 in polycarbonate cages with free

access to tap water and diet. All mice received the basal diet

for 2 weeks, reaching baseline low CAR concentrations in

plasma and tissues. After 2 weeks of this acclimatization

period, mice were subsequently fed with diets containing

either 0.5 g BC/kg diet or 0.5 g LY/kg diet or the unsup-

plemented basal diet for 1, 2, and 4 weeks. At 1, 2, or

4 weeks mice were sacrificed and plasma and lung tissue

were collected for analysis utilizing previously described

HPLC methodologies [51, 52]. As depicted in Fig. 1,

plasma and lung tissue BC peaked at 1 week, whereas LY

levels remained more stable but were higher than BC levels

at 4 weeks. The noted discrepancy in plasma and lung CAR

levels with constant oral intakes is most likely secondary to

24 Genes Nutr (2009) 4:23–39

123



differences in BC/LY cleavages by 150, 150 and 90, 100

monooxygenases, different BC/LY substrate and/or

metabolite inductions of these metabolizing enzymes, and/

or other less clarified biotransformations of the two CARs

[24]. We empirically selected the 4-week feeding regimens

for all the subsequent experiments designed to characterize

CAR effects on global lung genomic responses at two

widely divergent lung CAR concentrations, albeit with the

realization that plasma CAR levels only reached low human

levels for the two CARs [29, 63].

Experimental protocol

Twenty-four mice were randomly assigned to one of three

groups of eight mice. Each group was allowed to feed on

either a basal diet or the BC or LY-supplemented diets as in

the preliminary studies after receiving the basal diet for

2 weeks to allow mice to acclimatize to the diet containing

the gelatin beadlets without added CARs. After 2 weeks

the diets were changed to either the BC-supplemented diet

(0.5 g BC/kg diet), the LY-supplemented diet (0.5 g LY/kg

diet) or the basal diet lacking added CARs for four addi-

tional weeks. While continuing on the three assigned diets,

four mice in each dietary group were then exposed to either

CS or filtered air for three additional days. Body weight

was measured before and after exposure to filtered air or

CS. Mice had unrestricted access to water and their

assigned diets during the filtered air or CS exposures.

CS exposure system

Mice were exposed to CS for 6 h/day for 3 days (8 am–

2 pm) in chambers as previously described [51]. The

chamber atmosphere was controlled with relative humidity

of 41 ± 7% and temperature 21 ± 1�C. The nicotine con-

tent in the chamber during the CS exposure was

5.1 ± 0.4 mg/m3, carbon monoxide level 14 ± 1.0 ppm,

and total suspended particulate concentration 60 ± 2.5 mg/

m3. This level of CS exposure could be expected to result in

carboxyhemoglobin (HbCO) levels, of approximately 5%

[23]. Immediately after the last CS or filtered air exposure,

all of the mice were euthanized by injection of beuthanasia

(120 mg/kg body weight, i.p.). Lung parenchymal tissue

was dissected away from extra-parenchymal airways and

blood vessels and stored at -80�C until RNA extraction

(within 4 weeks).

GeneChip analysis

A total of 24 mouse genome 430A 2.0 arrays, GeneChips,

(Affymetrix, Santa Clara, CA), 4 GeneChips/group of 4

mice were utilized to obtain mRNA expression data. An

aliquot of total RNA extracted from half-a-lung from each

of the 24 mice was processed for GeneChip analysis as

previously described using Affymetrix protocols [15].

RNA extraction and synthesis of biotin-labeled RNA

Lung tissue (*100 mg) from each mouse was homoge-

nized in 1 mL of Trizol Reagent (Invitrogen, Carlsbad,

CA) and total RNA was extracted and quantified as

described by the manufacturer. An aliquot (20 lg/8 lL of

water) of total RNA from each mouse lung from each of

the three dietary groups exposed to either CS or filtered air

was used for cDNA synthesis (first-strand and second-

strand cDNA synthesis) followed by cleanup of double-

stranded cDNA and synthesis of biotin-labeled cRNA. The

biotin-labeled cRNA (40 lg) from each lung was used for

fragmentation and hybridization to GeneChips.

The scanned images of hybridized signals were analyzed

with the Affymetrix GeneChip Operating Software (GCOS
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Fig. 1 Plasma and lung CARs levels in air breathing mice fed BC

(0.5 g/kg diet) or LY (0.5 g/kg diet) supplemented diet after 1, 2 and

4 weeks. a Plasma levels of BC and LY increased after 1 week. BC

levels decreased after 2 and 4 weeks but LY levels were maintained

for 4 weeks (n = 4 mice per group). b Lung BC levels (nmol/kg lung

tissue) increased after 1 week and decreased after 2 and 4 weeks and

appear to track the plasma BC levels. Lung LY levels increased after

1 week, and its levels slightly increased after 4 weeks (n = 4 mice

per group) (N.D not detected)
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1.0). When the P value for detection signal was B0.049

(range of P value 0.0002–0.049), the expression of the

mRNA was classified as ‘‘present’’ (P). All mRNAs with the

P value for detection C0.05 were considered ‘‘absent’’ (A).

The signal intensities for transcripts classified as present

ranged from 5 to 7,000 U. The .cel files from each scan were

imported into dChip analyzer, a web based software pack-

age (http://www.dchip.org/) implementing model-based

expression analysis of oligonucleotide arrays [34]. The

dChip analyzer was used for obtaining statistically signifi-

cant differences (P B 0.05, fold change C2.0, and the

difference in signal intensity C100) in the mRNA expression

between the different treatment groups and for generating

qualitative ‘‘heat-maps’’ of selected functionally related

gene clusters. CAR and CS sensitive genes were further

classified into functional clusters based on their annotations

and descriptions of their functions in the literature.

Validation of GeneChip data

Many reports [16, 44, 66] have shown that the changes in

the expression of mRNAs selected by the analysis of

hybridization data as described above could be confirmed

by independent analysis such as Northern, qualitative

reverse transcriptase (RT) PCR, quantitative real-time RT-

PCR (qRT-PCR), and in some cases by immunoblot anal-

ysis of the encoded proteins [22, 28]. In this study, selected

differentially expressed genes that were relevant to the

major new findings reported here were subjected to con-

firmation analysis by real-time PCR.

Quantitative real-time PCR (qRT-PCR)

An aliquot equivalent to 5 lg of total RNA extracted for

GeneChip analysis was reverse-transcribed to obtain cDNA

in a final volume of 20 lL reaction buffer consisting of

oligo dT primer, DTT, dNTPs and Superscript II reverse

transcriptase (Invitrogen, Carlsbad, CA). qRT-PCR method

with SYBR green as fluorescent reporter was used to

quantify the expression of selected genes identified by

GeneChip assay. All the gene specific primers (Table 1)

were designed with Primer Express 1.0 software (Applied

Biosystems) using gene specific template obtained from

Affymetrix probe set IDs. The reaction was carried out in

96-well optical well plate containing 6.25 ng RNA in each

well. The applied RNA quantity was further normalized by

amplifying cDNA samples simultaneously with glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH) specific

primers. The transcript levels were measured by real-time

RT-PCR using ABI PRISM 7700 Sequence detection sys-

tem (PE Applied Biosystems, Foster City, CA). PCR

amplification parameters were: initial denaturation step at

95�C for 10 min followed by 40 cycles, each at 95�C for

15 s (melting), 60�C for 1 min (annealing and extension).

The 2-DDCT method [43] was used to calculate relative

changes in gene expression determined from real-time

quantitative PCR experiments (Applied Biosystems User

Bulletin No.2 (P/N4303859). The threshold cycle, Ct,

which correlates inversely with the target mRNA levels,

was measured as the cycle number at which the SYBR

Green emission increases above a threshold level. Specific

mRNA transcripts were expressed as fold difference in the

expression of specific genes in RNA samples from lungs of

mice fed basal diet compared to CAR fed diets or between

CS-exposed and air-exposed lungs fed the assigned diets.

Statistical analysis

Statistical evaluation of the CAR concentrations, qRT-PCR

data, and the effects of CS exposure in the three dietary

groups were done by Student’s t test using the statistical

software GraphPad Prism 4.0. In all comparisons differ-

ences with P B 0.05 were considered as significant.

Results are expressed as mean ± SEM, the number of

mice/group (n) and the P value.

Results

Effects of CARs and CS on body weight

After the 2-week diet acclimation period, mice were fed on

their assigned diets for 4 weeks. There were no significant

differences in body weight between the groups of mice

Table 1 Primer sequences for real-time RT-PCR

Gene Primer sequence (50–30)

GAPDH Sense-GCAACAGGGTGGTG

Antisense-GGATAGGGCCTCTC

CYP1A1 Sense-CAGATGATAAGGTCATCACGA

Antisense-TTGGGGATATAGAAGCCATTC

S100A8

(calgranulin A)

Sense-GCATCTCACAAAGACAGCCACA

Antisense-AGCCCTAGGCCAGAAGCTCT

S100A9

(calgranlin B)

Sense-GATGGCCAACAAAGCACCTT

Antisense-ATGATGGTGGTTATGCTGCG

Slfn4 Sense-ACAAGTGATGCCTGGAAAGG

Antisense-GACTGCCCTGGGAAATATGA

IL1-beta Sense-CCAAAAGATGAAGGGCTGCT

Antisense-TCATCTGGACAGCCCAGGTC

CBR-3 Sense-TACTTGGCTCTCCTGCCTCC

Antisense-GACTAGCTGGCCGTGAGGTT

The oligonucleotide sequence for each primer was obtained by Primer

Express software using gene specific sequence from Affymetrix probe

set data base. The primers were custom prepared and used as

described in Sect. ‘‘Methods’’

26 Genes Nutr (2009) 4:23–39
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before CS exposure (Fig. 2). Half of the mice were then

exposed to CS (6 h/day for 3 days) and the remaining half

to filtered air. Air breathing mice on basal or LY-supple-

mented diets gained a small but significant amount of

weight after 3 days. All CS-exposed mice showed a small

decrease in body weight which was only statistically sig-

nificant (P B 0.05) in BC fed mice.

CAR concentration

Plasma and lung concentrations of BC and LY in mice fed

the three assigned diets for 4 weeks are shown in Table 2.

Neither of the two CARs were detectable in plasma or

lungs of mice fed the basal AIN-93G diet supplemented

with gelatin beadlets (the carriers of synthetic crystalline

CARs). After 4 weeks of feeding CAR supplemented diets,

large and significant (P B 0.001) increases in the plasma

and lung CARs were detected. BC and LY concentrations

in plasma were 50.3 ± 13.7 and 179.8 ± 16.2 nM,

respectively. BC and LY concentrations in lungs were

139.6 ± 11.6 and 308.0 ± 62.4 nmol/kg wet weight of

lung tissue, respectively. The data suggest that the lung

tissue bioavailability of LY may exceed that of BC under

similar basal diet composition and feeding conditions.

However, as an unspecified amount of BC was probably

converted to vitamin A in gut and/or liver tissue [29] or

metabolized [24, 82], direct comparisons of overall

absorption kinetics of the two CARs cannot be ascertained.

The concentrations of lung CARs are within the range of

those described for humans [63], the plasma LY concen-

trations being similar to those of 866 men [27].

Bioactivity of CARs: CAR sensitive genes in mice

breathing air

The bioactivity of the two CARs was assessed by evalua-

tion of their effects on the lung transcriptome. High density

oligonucleotide arrays containing 22,600 probe sets (mouse

genome 430 A 2.0) that represent a large fraction of the

mouse expressed genome were used. The total number of

mRNAs detected in the lungs from the air and CS breathing

mice fed the three assigned diets were *15,000 and they

were not significantly different from each other in the

various groups of mice. The coefficient of variation of the

total number of expressed genes detected in each group of

3–4 mice was \5%. Differential analysis of gene expres-

sion data showed that the elevated concentrations of CARs

significantly affected the expression of a small number of

genes (Table 3) which were a very small fraction (0.09 and

0.02%, respectively), of the *15,000 lung genes that were

reliably detected.

Global gene expression analysis identified qualitative

and quantitative differences in the lungs response to diet

induced CAR augmentations. Although the lung concen-

tration of BC was lower than that of LY in air breathing

mice, more genes were affected by BC than by LY when

compared to the expression of genes in lungs of mice fed

the basal diet (Tables 3, 4). The expression of cytochrome

P450 1a1 (cyp1a1) was induced by *twofold in the lungs

of the CAR fed mice (Table 4; Fig. 3). The induction of

cyp1a1 by BC and LY in air breathing lungs was also

independently confirmed by qRT-PCR (Fig. 3b). The

GeneChip data also suggest that another transcriptionally

regulated gene that encodes D site albumin binding protein
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Fig. 2 Effects of CARs on body weight in mice breathing air or after

3 days of CS exposure. Air breathing mice on basal or LY-

supplemented diet gained small but significant weight. In the CS

breathing groups of mice, only BC fed mice lost small but significant

weight after CS exposure. Air air breathing for 3 days, CS 60 mg/m3

of total suspended particles for 6 h/day for 3 days, n = 4, * P \ 0.05

Table 2 Mice were fed either the basal diet or diets containing

500 mg/kg of either BC or LY for 4 weeks

Control diet b-carotene diet Lycopene diet

Plasma (nM)

b-carotene \3.7 50.3 ± 13.7a \3.7

Lycopene \3.7 \3.7 179.9 ± 16.2a

Lung (nmol/kg)

b-carotene \60 139.6 ± 11.6a \60

Lycopene \60 \60 308.1 ± 62.5a

Concentration of BC and LY were measured in plasma (nM) or lung

(nmol/kg) at time of sacrifice
a All data are given as mean ± SEM, n = 4. BC and LY were below

the limit of detection in plasma and lung of mice fed the basal diet.

Four weeks of dietary supplementation resulted in a large and sig-

nificant (P \ 0.001) increase in plasma and lung concentrations of the

two CARs
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(Dbp) also responds like the cyp1a1 gene in the presence of

BC or LY (Table 4).

Several genes were modulated by BC but not LY

(Table 4). These data suggest that the GeneChip assay can

discriminate between the in vivo actions of the two CARs.

The most noteworthy difference was the induction of the

gene encoding lecithin-retinol acyltransferase (Lrat), which

is a retinol esterifying enzyme. Fig. 4 shows GeneChip

data for the expression of Lrat and a related acyltransferase

to illustrate the specific induction of Lrat in the lungs of

mice fed only the BC diet. Additional genes whose

induction was similar to that of Lrat included genes

encoding transcription factors such as period 2 (Per2) and

hepatic leukemia factor (Hlf). BC diet supplementation

also up-regulated the expression of aquaporin-3 (Aqp3) and

down-regulated that of sodium channel (Scn8a) genes. Two

genes of unknown functions were repressed by LY but

unaffected by BC.

Cigarette smoke-related effects on lung gene expression

and modification by CARs

A large number of genes were modulated in the lungs of

mice breathing CS compared to those breathing filtered air.

The analysis detected a higher number of CS sensitive

genes in the lungs of mice fed both CAR supplemented

diets compared to those of mice fed the CAR deficient,

basal diet. The total number of genes affected was 40, 73,

and 65 in the lungs of mice fed the basal, BC- or LY-

supplemented diets, respectively (Table 3). Many of these

CAR-modulated genes in CS-exposed lungs relate to genes

involved in inflammatory-immune functions.

A robust activation of Phase I and Phase II response

detected by the GeneChip assay in the lungs of CS-exposed

mice was expected [14, 50] and further validated the 3-day

(6 h/day) acute CS exposure paradigm and GeneChip

analysis. Fig. 5 illustrates the qualitative relative expres-

sion of a cluster of eight co-regulated genes in the lungs of

mice that were on the three assigned diets and were

allowed to breathe either air or CS. Table 5 shows a robust

expression of Phase I and II response genes as a result of

3 days of CS breathing in the mice fed the three diets. The

CAR diets did not affect CS-induced responses of this

cluster of genes. The induction of this family of genes in

mouse lungs has previously been described [58] and further

validates our GeneChip analysis. A number of genes

encoding transcription factors which were induced by the

BC-supplemented diet in air breathing mice were further

increased after CS exposure. These genes included Dbp,

Per2, Per3, Cry1 and Hlf (Fig. 4; Table 5).

The major novel discovery of this in vivo genome-wide

screen is the identification of a large cluster of inflamma-

tory-immune genes that are induced by dietary LY but not

BC in the lungs of CS-exposed mice (Fig. 6). Three dis-

tinct clusters of genes could be identified in this group of

inflammatory-immune genes. Cluster I (2 genes) showed

low expression in the lungs of all mice except those that

Table 3 Summary of genome-wide responses of lungs to diets in air

and cigarette smoke (CS) exposed mice

Diet/

treatment

Total number

of genes

affected

% of total

number of

genes affected

Up-r

egulated

Down-

regulated

BC/AIR 13 0.09 11 2

LY/AIR 3 0.02 1 2

Basal/CS 40 0.27 27 13

BC/CS 73 0.49 17 56

LY/CS 65 0.43 54 11

Effects of dietary b-carotene (BC) or lycopene (LY) on gene

expression in the lungs of air breathing mice were obtained by

comparing the entire list of genes from mice fed either BC- or LY-

supplemented diet with that obtained from the lungs of air breathing

mice fed the basal diet. The number differentially expressed, carot-

enoid sensitive genes (column 2) is also shown as the % of the total

number of genes detected in the lungs from either BC- or LY-fed

mice (column 3). CS sensitive genes in each dietary group were

obtained by comparing the entire list of genes detected in the lungs of

CS breathing mice with that expressed in air breathing mice. The total

number of differentially expressed, CS sensitive genes (column 2) is

shown also shown as % of the total genes detected (column 3) in the

lungs of CS breathing mice

Table 4 b-carotene (BC) or lycopene (LY) sensitive genes in lungs

of mice

Diet Name of gene Up-/down-

regulated

BC Cytochrome P450, 1a1; Cyp1a1 Up

D site albumin promoter binding protein, Dbp Up

Period homolog 2 (Drosophila), Per2 Up

Fibroblast growth factor 3, Fgf3 Up

Hepatic leukemia factor, Hlf Up

Immunoglobulin joining chain, Igj Down

Lecithin-retinol acyltransferase, Lrat Up

Aquaporin 3, Aqp3 Up

Sodium channel, voltage-gated, type VIII,

alpha polypeptide, Scn8a
Down

RIKEN cDNA A930004D23 gene Up

Expressed sequence AL033314 Up

RIO kinase 3 (yeast) Up

Unknown gene Up

Unknown gene Up

LY Cytochrome P450, 1a1; Cyp1a1 Up

D site albumin promoter binding protein, Dbp Up

RIKEN cDNA 5730454B08 gene Down

RIKEN cDNA 2210401K01 gene Down

Gene symbols are shown in bold figures
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were fed LY-supplemented diet and exposed to CS; these

two genes are frequently used as markers of neutrophils [8,

70]. A large sub-group of 24 genes, cluster II, Fig. 6, was

moderately expressed in the lungs of mice fed the basal diet

or the BC-supplemented diet. The lungs of BC-supple-

mented mice breathing air showed higher expression of this

cluster of genes when compared to that in the lungs of other

groups of mice breathing air. Their expressions were sup-

pressed by exposure to CS. In contrast to the suppressing

effects of CS on these cluster II genes in mice fed the basal

or the BC diet, the LY fed mice showed obvious aug-

mentation of their expression. Inductions of Cal A, Cal B,

Slfn4, IL1b, and carbonyl reductase 3 (Cbr3) genes in CS

breathing lungs of mice fed LY-supplemented diet and

suppression of these genes in the CS breathing lungs of

mice fed BC-supplemented diet were independently con-

firmed by qRT- PCR (Fig. 7a–c). Genes in cluster III

behave like those in cluster II except that they were highly

expressed in the lungs of air breathing mice fed the basal or

the BC diets.

Discussion

Concentrations of CARS in mouse plasma and lungs

b-carotene and LY supplementations were approximately

equivalent to 125 mg/kg body weight/per day for a human.

A large amount of dietary CARs are necessary in rodents to

obtain increases in tissue CAR concentrations comparable

to levels seen in humans, explained in part by active CAR

cleavage enzyme(s) in the rodent intestine [33]. These high

CAR supplementations were well tolerated by mice as

suggested by the lack of a significant decrease in whole

body weights in air breathing CAR supplemented mice

(Fig. 2). Plasma BC concentrations in this study were

*50% of those reported previously in A/J mice fed similar

CAR concentrations [51] and may reflect strain specific

differences in absorption and metabolism of BC or differ-

ences in dietary constituents. In addition, the lipid content

of the rodent diet also appears to be an important con-

tributor to the bioavailability of CARs. This is suggested by

the detection of higher serum BC levels in A/J mice whose

BC-supplemented diets included corn oil (5%) and sodium

cholate (0.25%) [32]. Such modified rodent diets contain-

ing bile salts and increased vegetable oils have not

systematically been compared with the well characterized

AIN-93G diet optimized for rodent growth and develop-

ment [36]. Plasma and lung concentrations of BC (50 nM

and 140 nmol/kg, lung wet weight, respectively) approxi-

mated levels described for human plasma and lung tissue,

respectively [29, 63].
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Fig. 3 Induction of cytochrome P450 1a1 (cyp1a1) in lungs of mice

fed BC or LY-supplemented diet. a Induction of cyp1a1 detected by

GeneChip analysis, (n = 3–4, * P \ 0.05 as compared to control);

b induction of cyp1a1 detected by real-time quantitative RT-PCR

(n = 3–4, * P \ 0.05)

Fig. 4 Selective induction of lecithin-retinol acyl transferase only in

mice fed the BC-supplemented diet. The data obtained from

GeneChip expression analysis show signal intensity for the two acyl

transferases in the lungs of air breathing mice fed the 3 assigned diets
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The plasma concentrations of LY detected in this study

were lower than those reported in rat serum [66, 81]. The

latter observations suggest significant difference between

C57BL/6 mice and F334 rats in the digestion, uptake and/

or metabolism of LY since the basal diets, without added

CARs used in this study were very similar to those that

were used in F344 rats [81]. As for the above-mentioned

case for BC, the lipid composition of the LY-supplemented

diet is likely to affect the serum LY concentration, as

evidenced by the finding of a higher LY concentration in

the serum of Copenhagen rats compared to F344 rats fed

the AIN-93G diet; the diets of Copenhagen rats were

supplemented with coconut fat (6%w/w) [66].

Bioreactivity of CARs in lungs of air breathing mice

In spite of the somewhat lower concentrations of the two

CARs in mouse lungs compared to those in human and rat

lungs, the two CARs showed significant bioactivity, as

determined by the GeneChip assay.

Previous studies have shown the induction of cypla1 by

CARs [30]. The present study also detected the induction

of cypla1 (Fig. 3). A twofold increase in the activity of

cyp1a1 gene in mouse lungs by CAR concentrations that

were lower than those described in previous studies in mice

or in human lungs suggests that the mouse lung genome is

sensitive to dietary CARs and further validates that the

C57BL/6 mouse offers a useful in vivo model to study

CAR metabolism [30]. The cyp1a1 gene encodes a trans-

criptionally regulated enzyme important in the metabolism

of carcinogens [31]. It is driven by the aromatic hydro-

carbon receptor (AhR), a ligand activated transcription

factor of the nuclear receptor superfamily [74]. The role of

AhR in normal physiology remains unclear, but appears to

relate to both environmental pollutants and numerous host

responses including inflammation [11, 68, 69]. Dietary

factors appear to activate cyp1a1 by AhR pathways [10],

although the role of other members of ligand activated

nuclear receptors such as RARs cannot be excluded [9].

The induction of cyp1a1 activity by dietary BC has

previously been reported in rats [57] and in ferrets [39] and

has been implicated in the carcinogenic effects of BC [21],

although it cannot be assumed that cyplal itself is neces-

sarily procarcinogenic [26, 45].

The expression of Lrat was induced in the lungs of BC

fed mice (Fig 4). Lrat is transcriptionally regulated by

retinol [84] which can be generated from BC but not LY.

Lrat plays a major role in the metabolism and storage of

vitamin A in different cell types including epithelial cells.

BC is a precursor of vitamin A which is oxidized to retinoic

acid, a known diet derived factor for the regulation of lung

growth and development [79], and regulation of surfactant

proteins in lung type II cell [3, 80]. The basal expression of

Lrat in mouse lungs is similar to that in the liver [42]. Our

GeneChip data suggest that the Lrat gene is further acti-

vated by diet induced augmentation of lung BC.

The gene encoding Dbp (D site albumin promoter

binding protein), a transcription factor implicated in the

regulation of circadian rhythm [53] was seen to be induced

by CARs. Dbp is the founding member of the PAR family

of basic leucine zipper (bZip) transcription factors [48] and

the gene encoding Hlf (hepatic leukemia factor), another

member of the same family [25], was also seen to be up-

regulated by CAR supplementation. Dbp and Hlf were

reported to be sensitive to xenobiotics and stimulate tran-

scription of genes against xenobiotics and oxidative stress

and hence might play a role in modulating the toxicity of

such compounds [13]. Modulation of members of ion- and

water-channel genes by dietary BC and not LY is another

novel finding in this study and warrants further character-

ization. BC fed mice showed increased expression of Aqp3

gene encoding, a water channel which has been shown to

be regulated by growth factors, inflammation, and osmotic

stress [4].

GeneChip data from this in vivo study, focused on

lungs, are also noteworthy for the lack of induction of

Phase II genes by CARs in air breathing mice which may in

part be due to lower CAR levels in lung tissues compared

to levels used in in vitro studies or the dramatic difference

in extracellular milieu between the in vivo and in vitro

Fig. 5 ‘‘Heat-map’’ of cyp1a1-

like cluster of 8 genes. Each

column represents a mouse.

Each row represents a gene.

Lighter color shows low

expression and darker color
shows high expression of the

gene. The expression of the 8

genes was low in the lungs of air

breathing mice but was high in

the lungs of CS breathing mice

30 Genes Nutr (2009) 4:23–39
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experimental conditions [2]. CAR-dependent induction of

Phase II response has been shown in various cell lines of

liver and intestinal origins [64], and absence of this

response in lungs in vivo may be attributed to differences

in cellular origins and assay conditions including intracel-

lular concentrations of the CARs and their metabolites.

Some of the Phase II response genes are driven by the

redox sensitive transcription factor Nrf2 which binds to

antioxidant response elements (ARE) and up-regulates

protective detoxifying enzymes related to oxidative stress

[49]. BC and LY are singlet oxygen scavengers; therefore,

lack of any modulation of ‘‘classical’’ antioxidant response

genes such as heme-oxygenase 1 (HO-1), superoxide dis-

mutases (Sod) and glutamate-cysteine ligase (Gclc) is also

Fig. 6 ‘‘Heat-map’’

inflammation-immune related

genes in the lungs of mice fed

the 3 assigned diets. Each
column represents a mouse and

each row a gene. Three distinct

patterns of expression could be

identified. Cluster I shows high

expression only in the CS-

exposed lungs of LY fed mice.

Cluster II shows medium-

expression of genes in air

breathing, BC fed mice and the

expression was suppressed by

CS. The expression of the same

cluster of genes was low in air

breathing mice fed LY but was

induced when the mice were

exposed to CS. Cluster III

shows similar expression in

mice fed the basal or the BC-

supplemented diet but the

expression is reversed in the

mice fed the LY-supplemented

diet
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noted. We also noted a lack of induction in the expression

of HO-1, Sod and Gclc in the lungs of mice with severe a-

tocopherol deficiency imposed either by dietary depletion

or by the deletion of the a-tocopherol transfer protein gene

[17, 55].

Modulation of CS-induced transcriptomes by CARs

A large induction of cyp1a1 gene identified by the Gene-

Chip assay in the CS-exposed lungs has previously been

demonstrated [14, 39, 71]. As discussed above, the

induction of Cyp1a1 is driven by AhR and the encoded

protein is expressed in airway epithelia and lung paren-

chyma [77]. In the present experiments both CARs induced

cyp1a1 in the lungs of air breathing mice; however, neither

of them affected CS-caused induction of cyp1a1.

The genes of Phase II response encode detoxification

and antioxidant enzymes which are induced by CS and

their expression was unaffected by dietary CARs. The

redox sensitive transcription factor, Nrf2, plays an impor-

tant role in the expression of these genes [4, 58]. The co-

ordinated induction of all but Hlf in this cluster of genes is

noteworthy, because they are all associated with the reg-

ulation of circadian rhythm and are expressed in lung cells

[5, 12, 59, 62]. Dbp, Per2 and Hlf are the members of the

proline and acidic amino acid-rich basic leucine zipper

(PAR bZIP) transcription factor family. The suggestion

that this cluster of genes may regulate the cell cycle and

cell proliferation [6] raises the possibility that dietary

CARs and CS interactions may affect cellular homeostasis

through their actions on major regulators of the circadian

rhythm. In contrast to the effects of CS on the ‘‘clock-

genes’’, the expressions of several immune-response genes

such as Spon2, Eln, Igh-6 and Igh-j558 were down-regu-

lated in the CS-exposed lungs of mice fed the BC-

supplemented diet. The functional implications of the

reciprocal relationship between the ‘‘clock-genes’’ that

may affect cell cycle, and immune related genes in

response to dietary CARs and CS remains to be explored.

Carotenoid modulate immune-inflammation related

genes in CS-exposed lungs

The major novel discovery of this in vivo genome-wide

screen is the identification of a large cluster of inflamma-

tory-immune genes that are induced by dietary LY but not

by BC in the lungs of CS-exposed mice (Fig. 6). Review of

the literature suggests that some of the immune-inflam-

matory genes, for example, calgranulins A and B, also

designated calprotectins or S100 A8 and A9, and matrix

metalloproteinase 8 and 9 are co-expressed in granulocytes

(derived from myeloid cells). Hence, it is possible that

dietary CARs affect homeostasis of lung specific

granulocyte population in mice challenged with CS. A

large induction of calgranulins by CS in LY fed mice is

suggestive of an increased recruitment of circulatory

phagocytes to the lung, possible via activation of AhR [68],

although discordant data exist [69]. Cal B is suggested to

be a chemotactic factor for leukocytes [20] and increased

expression of these genes in lung tissues may further

recruit circulating leukocytes to respiratory epithelium,

propagating a cycle of granulocyte transmigration to the

lung. In addition, members of calgranulin family may also

be ligands for receptor for advanced glycation end products

(RAGE) [67]. RAGE is abundantly expressed in mouse

lungs [15] and its activation by ligands such as calgranulins

is suspected to activate molecular signaling pathways that

culminate in mitogenesis, growth inhibition, and apoptosis

[67]. The expression of MMP 8 and MMP 9 which are

produced by macrophages, were also increased in lungs of

LY fed mice exposed to CS. Macrophage proliferation and

activation are implicated in various types of pulmonary

pathology. One important process associated with pul-

monary fibrosis is injury to basement membranes by MMPs

[72]. Expression of MMPs induced by CS exposure may

play a role in the pathogenesis of COPD [78].

A recent study has addressed the effects of BC supple-

mentation and 2-week CS exposure on transcriptomic

responses of lungs in A/J mice [32]. The A/J mouse strain,

in contrast to C57BL/6 used in our study, is susceptible to

spontaneous age-related lung tumors. Furthermore, the

tumor multiplicity of these mice is augmented during the

recovery-phase after chronic ([6 month) exposure to CS

[76]. Although there appears to be a robust Nrf2 driven

response to CS in both the strains of mice, BC-supple-

mentations appear to suggest different transcriptomic

responses in the two strains of mice. We suggest that these

differences are primarily attributed to the differences in the

lung transcriptomes due to distinct genetic backgrounds of

these two strains of mice. Our preliminary data suggest that

*2,000 genes are differentially expressed between the A/J

and C57BL/6 mice, and many of the differentially

expressed genes belong to inflammatory gene class.

Additional variables such as the mode of CS exposure

whole-body (our study) versus nose only [32], the exposure

chamber concentration of CS of 60 mg/m3 (in our study) vs

141.2 mg/m3 [32] and the duration of exposure, 6 h/day for

3 days (our study) versus 4 h/day, 5 days/week for the first

week and 7 days/week the second week [32] are likely to

contribute differences in the BC-induced changes in CS-

related lung gene expressions.

Pathobiologic implications and limitations

How relevant are these findings for humans? The studies

described here are acute studies and thus represents only a

36 Genes Nutr (2009) 4:23–39
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‘‘snap-shot’’ of genomic responses of lungs to dietary

CAR supplements and their interactions with genomic

responses of lungs to short-term CS exposure. A single

dose of CAR and a single time interval of CS exposure

were used to obtain the present data. The CAR intake and

CS exposures were based on previous studies in mice [51,

75]. The study supports the concept that CAR supplements

are capable of modulating lung gene expression and even

more interestingly, modulate the effects of CS, and might

be expected to modulate lung responses to other inhaled

environmental toxicants. Although C57BL/6 mice are not

the optimal strain for the study of CS-induced lung car-

cinogenesis [76], they offer the advantage of genetic

manipulation to insert or delete genes implicated in human

lung disease related to environmental toxins and dietary

factors formulated to design and test chemopreventive

strategies. The present studies were not designed to spe-

cifically focus on CAR modulations of CS-related lung

carcinogenic processes.

Some limitations have to be considered; the effects of

CARs and CS on lung specific cellular constituencies were

not addressed. There is considerable heterogeneity in the

cellular composition and response of different compart-

ments of respiratory tract tissues to environmental

pollutants, as exemplified by cell AhR system responses

[11]. The CAR formulations used in the present study were

similar to those described in a recently published human

study [83]. It should be recognized that considerable dif-

ferential susceptibilities to oxidant stimuli (such as that

posed by CS) exist between different mouse strains [7, 76].

Lastly, it is highly possible that some of the observed

changes in gene profiles are produced by the actions of

non-enzymatic and enzymatically generated metabolites of

the ingested CARs, including their metabolic and oxidative

products. These CAR metabolic species were not measured

in the present study, but are known to possess significant

bioactivities [24, 65] and need to be addressed in future

studies.

We conclude that C57BL/6 mice offer a viable in vivo

model to study bioavailability and bioactivity of synthetic

and natural CARs and their possible role in modulating

environmentally induced lung pathobiologies. As there is

substantial evidence that dietary supplementations are

capable of modifying biologic responses to air pollutants

[60], and as the C57BL/6 mouse has been genetically

engineered to manipulate multiple pathways related to both

air pollution and diet-related transcriptionally-related

pathways, this mouse model should prove useful for the

interrogation of key pathways of environment-nutrient

interactions in lung tissues.
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