
Kaput et al. Genes & Nutrition  (2017) 12:3 
DOI 10.1186/s12263-016-0549-8
EDITORIAL Open Access
Propelling the paradigm shift from
reductionism to systems nutrition

Jim Kaput1*, Giuditta Perozzi2, Marijana Radonjic3 and Fabio Virgili2
Abstract

The complex physiology of living organisms represents a challenge for mechanistic understanding of the action of
dietary bioactives in the human body and of their possible role in health and disease. Animal, cell, and microbial
models have been extensively used to address questions that could not be pursued experimentally in humans, posing
an additional level of complexity in translation of the results to healthy and diseased metabolism. The past few
decades have witnessed a surge in development of increasingly sensitive molecular techniques and bioinformatic tools
for storing, managing, and analyzing increasingly large datasets. Application of such powerful means to molecular
nutrition research led to a major leap in study designs and experimental approaches yielding experimental data
connecting dietary components to human health. Scientific journals bear major responsibilities in the advancement of
science. As primary actors of dissemination to the scientific community, journals can impose rigid criteria for publishing
only sound, reliable, and reproducible data. Journal policies are meant to guide potential authors to adopt the most
updated standardization guidelines and shared best practices. Such policies evolve in parallel with the evolution of
novel approaches and emerging challenges and therefore require constant updating. We highlight in this manuscript
the major scientific issues that led to formulating new, updated journal policies for Genes & Nutrition, a journal which
targets the growing field of nutritional systems biology interfacing personalized nutrition and preventive medicine,
with the ultimate goal of promoting health and preventing or treating disease. We focus here on relevant issues
requiring standardization in nutrition research. We also introduce new sections on human genetic variation and
nutritional bioinformatics which follow the evolution of nutritional science into the twenty-first century.
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Introduction
The intensity and pace of modern science has acceler-
ated at a breath-taking speed since the start of the mod-
ern genome era (circa 1990). High-throughput omics
technologies have been applied to experimental designs
and analytical methods based on reductionism and
population averages, the “normal” scientific strategies
[54] of the late twentieth and early twenty-first centuries.
However, results produced under the current research
model are unable to explain the complexity of biological
processes. Nevertheless, the foundation of knowledge
created during the post-genomic era justifies a “para-
digm shift” [54] in how biomedical research needs to be
conducted to understand how to maintain health and
prevent or treat disease.
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Genes & Nutrition (G&N) not only recognizes this sci-
entific evolution but also plays a key role in promoting
high-quality research in the trans-disciplinary fields link-
ing nutrition, environment, genetics, and human health
by setting high standards for studies accepted for publi-
cation. The tenth anniversary of G&N provided an op-
portunity not only to restate our mission but also to
announce new guidelines for manuscripts submitted to
this journal based on the significant advances in biomed-
ical research in the past two decades. Genes & Nutrition
was the recipient of many such advances and disseminated
new ideas and results to the nutrition research commu-
nity. Relevant examples are cited in the text below.
Mission
Genes & Nutrition is an international, inter-disciplinary,
peer-review journal for research on the relationship be-
tween genetics and nutrition, with the ultimate goal of
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providing knowledge for improving human health. Since
its inception in 2006, G&N has seen a steady increase in
readership, reflected in a credible impact factor that has
recently resulted in its inclusion into the BioMed
Central (BMC) family of free access journals.
In parallel with regular publications, the editorial team

has stimulated readers’ involvement through editorials
and commentaries, position papers (e.g., [46]), project
ideas (e.g., [99]), literature highlights (e.g., [85]), as well
as novel formulas leaving the authors a space for freely
debating their opinions on the most “provocative” scien-
tific issues relevant to the aims and scope of the journal
(e.g., [75]). Our overall goal is to contribute to shaping
the identity of the growing field of nutritional systems
biology, interfacing personalized nutrition and prevent-
ive medicine, which started blooming within the mo-
lecular nutrition community in the twenty-first century.

Guidelines, standards, and reproducibility of
scientific data and findings
The application of advanced genomics technologies to
nutrition (nutrigenomics) provides foundational know-
ledge for advancing nutrient–health associations for ana-
lysis of underlying mechanisms. High-throughput omics
technologies are increasingly used to identify the often
intertwined pathways of nutrient-dependent modulation
of gene expression (at the gene, protein, metabolite
levels) and/or epigenomic modifications, towards mech-
anistic understanding of nutrient-driven molecular
processes at the system level [101]. Similar to all other
fields of science applying such tools, successful outcome
of sensitive molecular approaches requires a high degree
of standardization at all levels of the experimental
process, to limit confounders to a minimum and enable
testing for reproducibility, thus avoiding generation of
conflicting results. Genes & Nutrition has been frontline
in requesting standardization of data, tools, and services.
With this Editorial, we wish to endorse the agreed
“Principles and Guidelines for Reporting Preclinical
Research” (https://www.nih.gov/research-training/rigor-
reproducibility/principles-guidelines-reporting-preclinical-
research) jointly issued by major scientific journals to
support scientific rigor and reproducibility [65]. In
addition to standard requirements for human ethics and
animal welfare, we highlight here the minimal require-
ments of our specific journal regarding standardization of
nutritional studies, building and expanding on the shared
policies of BMC Journals which request compliance to
widely accepted guidelines (Table 1).

Human genetic data
Genes & Nutrition was among the first specialty journals
to focus on studies of the effects of nutrients on the
expression of genetic information in humans and how
genetic makeup alters the metabolism of nutrients
[73, 83, 91, 108]. Perhaps no area of modern biomed-
ical research has progressed as rapidly and contributed as
profoundly as the analysis of genome sequence and struc-
ture. The NCBI list of completely or nearly completed se-
quenced genomes shows 3716 eukaryotes (plant and
animal), 75,302 prokaryotes, 5962 viruses, 7799 plasmids,
and 8748 organelle DNAs (http://www.ncbi.nlm.nih.gov/
genome/browse/, accessed 16 October 2016).
The production of sequence data has far outpaced the

ability to understand how genetic makeup influences
phenotype or responds to nutrition and other environ-
mental factors. Linking genetic loci that co-segregate with
the trait within families (i.e., linkage analysis) proved highly
successful using DNA molecular markers (rev in [74]).
Over 1000 human monogenic diseases were identified by
the year 2000 [42]. Exome and whole-genome sequencing
(WGS) can now identify rare deleterious mutations in in-
dividuals [20], and comparison to parents or siblings en-
riches the chances of linking phenotype to genotype [69].
Although called monogenic disease, the age of disease
onset, its severity, and time to outcome all differ be-
tween individuals carrying the same mutation demon-
strating that other genes play a role disease etiology
(e.g., [15]): in reality, no phenotype is produced by a
single gene, except for those that are embryonically
lethal. Exome and WGS have produced an additional
surprise: any person’s genome typically contains ~100
genuine loss-of-function variants generating about 20
completely inactivated genes [60]. Such mutations may
be phenotypically silent in the heterozygote: the Exome
Aggregation Consortium (ExAC) analyzed 60,706 hu-
man exomes and discovered each genome contains ~54
variants reported as disease-causing [58] with ~41 oc-
curring at >1% frequency in populations. In addition,
this consortium found that 163 of 192 variants classi-
fied as pathogenic were benign or probably benign.
Candidate gene and genome-wide association studies

(GWAS) utilize the same molecular technology as link-
age studies to identify single nucleotide variants (SNVs)
associated with complex diseases using a population-
based as opposed to a family-based design. Thousands
of GWA studies have been published associating one or
more single nucleotide variants to ~800 phenotypes that
include disease [106], diet intake [94], metabolism [8, 81],
anthropometry [106], pharmacogenomics [17, 70], and
brain-related disorders [56]. Over 15,000 trait–SNP asso-
ciations at p value ≤5.0 × 10−8 have been amassed as of
2013 ([106] and https://www.ebi.ac.uk/gwas/). The major-
ity of these SNP–trait associations have small effect sizes,
and the sum of all variants identified for a trait explains
only a small proportion of the phenotype [111].
Explaining the “missing or phantom heritability” has

forced a re-evaluation of the assumptions and strategies
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Table 1 Selected standards for biomedical research

Acronym Name Portal Reference

BioDBcore Core Attributes of Biological Databases http://biocuration.org/communitystandards
-biodbcore/

[35]

CIMR Core Information for Metabolomics
Reporting

http://www.metabolomics-msi.org/

FAIR Findable, Accessible, Interoperable,
Reusable Data Principles

http://datafairport.org/fair-principles-living-
document-menu

[107]

GCCP Guidance on Good Cell Culture Practice http://iclac.org/references/reading-guidelines/ [12, 25]

GSC Genomics Standards Consortium http://gensc.org/ [22]

ICLAC International Cell Line Authentication
Committee

http://iclac.org/wp-content/uploads/Advice-to-
Scientists_09-Jan-2014.pdf

MIABE Minimum Information About a Bioactive
Entity

http://www.psidev.info/node/394 [72]

MIAME Minimum Information About a Microarray
Experiment

https://biosharing.org/bsg-s000177 [5]

MIAPE Minimum Information about a Proteomics
Experiment

http://www.psidev.info/miape

MIBBI Minimum Information for Biological and
Biomedical Investigations

https://biosharing.org/standards/?selected_facets
=isMIBBI:true

[95]

IHM International Human Microbiome Standards http://www.microbiome-standards.org/

MIGEN Minimal Information about a Genotyping
Experiment

http://migen.sourceforge.net/ [36]

MIQE Minimum Information for Publication of
Quantitative Real-Time PCR Experiment

http://miqe.gene-quantification.info/ [7]

MixS—MIGS/MIMS Minimum Information about a (Meta)Genome
Sequence

http://wiki.gensc.org/index.php?title=MIGS/MIMS [27]

PGRCR Principles and Guidelines for Reporting
Preclinical Research

https://www.nih.gov/research-training/rigor-reproducibility
/principles-guidelines-reporting-preclinical-research

Stem Cells Guidelines for Stem Cell Research and Clinical
Translation

http://www.isscr.org/docs/default-source/guidelines/isscr-
guidelines-for-stem-cell-research-and-clinical-translation.
pdf?sfvrsn=2

Women’s Health Analysis of menstrual cycle phase [1]

Table 2 Missing heritability and the limitations of genome wide and candidate gene association studies

Limitation Comments References

Epistatic Interactions Association studies analyze a single variable (e.g., SNP) with a trait. GWAS correct
each SNP for multiple comparisons. Well documented in animal models with increasing
numbers of examples in humans. Accounting for interactions decreased the amount of
missing heritability. New analytical methods are being developed to test for interactions.

[11, 61, 62, 67, 105, 114]

Ascertainment bias Many phenotypes such as type 2 diabetes or obesity were poorly characterized. For
example, analysis of NHANES data demonstrated that body mass index was poorly
associated with markers of cardiometabolic health. Not limited to GWAS

[97]

Gene–environment
interactions

All organisms have genetic variation, producing phenotypic variation in response to
environmental factors—this is the basis of natural selection. High-density genotyping,
exome, and whole-genome sequencing have proved that each genome differs from
all others. Adaptation to local environments has produced selection of gene variants
—e.g., lactase persistence in Europe, Africa, and part of the Mideast and selection for
metabolizing high-fat diets in Greenland Inuits. Experimental systems have demonstrated
gene–diet interactions but as with SNP–disease studies, the effect size is small.

[24, 38, 39, 57, 71, 109,
113]

Epigenetics An epigenetic trait is a stably heritable phenotype resulting from changes in a chromo
some without alterations in the DNA sequence. Although not measured in most
association studies, DNA methylation and chromatin modifications alter the expression
of genetic information differentially in each tissue. Parent-of-origin genomic imprinting
also alters gene regulation.

[14, 29, 88, 112]
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of GWAS designs [26]. Table 2 describes some of the
factors that influence genetic associations with pheno-
types such as disease or response to diet. We recognize
that few, if any, human research studies can incorporate
all of these variables. However, interpretations of results
must be tempered when relying on analysis of single
omic or independent datasets.
G&N receives many manuscripts that describe statisti-

cally significant associations of a single nucleotide
variable with a complex trait, such as obesity or re-
sponse to a nutrient or diet. In almost all cases, the
effect size is not reported and the studies are done in
one population. In view of the limitations of SNV as-
sociation studies (which are similar to those of
GWAS), G&N will publish manuscripts associating
one or two SNPs in one to several genes only when
the effect size is reasonably high and conducted in
more than one population. We encourage the use of
classical statistical analysis of group differences when
appropriate (e.g., by sex, age) but also systems ap-
proaches to both experimental designs and methods
for data analysis.

Designing human population/cohort studies
Risk factors calculated from population studies, most
simply derived by comparing some measureable pheno-
type between control versus case (or intervention), are
the average risk for the population (specifically, popula-
tion attributable risk (PAR) [82]). Using an example
from genetics, the PAR means that the incidence of a
given disease or phenotype would change if the SNP or
allele was eliminated in the population. Hence, PARs
should not be considered as “personal risk factors.” Un-
fortunately, this important distinction is frequently
disregarded.
Given the limitations of randomized clinical trials

(RCTs), case intervention, and cohort studies for nutrition
research (see [3, 32]), new experimental designs are needed
to develop individual risk or benefit factors based on pre-
dictor variables from human clinical studies. N-of-1 studies
are emerging as an experimental approach that first char-
acterizes and then sorts individuals with similar metabolic
profiles (e.g., [28, 44, 87]). While characterization and clus-
tering can be done with baseline data, the response to
acute challenges (e.g., mixed meal [92]) or short-term (e.g.,
weeks) interventions may be more informative given the
variability in homeostasis between individuals [109]. Each
individual serves as her/his own control, which eliminates
ascertainment bias. This approach was first used in
psychology studies [90] and then applied to clinical re-
search [30, 31]. A trivial example is to compare individual
male versus female or groups of males and females, al-
though discovery-based algorithms (e.g., machine learning)
may identify metabolic clusters based on all available data
without a priori grouping. A number of n-of-1 studies have
been published, including proposals to better define exactly
how these studies should be conducted [10]. Since these
concepts and approaches are not well tested, G&N will
consider publishing results of studies analyzing individuals
or groups identified by various clustering methods as long
as the design can be justified and the results robust.

Women’s health research
The US government passed the National Institute of
Health Revitalization Act in 1993 (http://orwh.od.nih.-
gov/about/pdf/NIH-Revitalization-Act-1993.pdf ) that re-
quired women and minorities to be included in federally
funded clinical studies, with exceptions only when justi-
fied. Women had been largely excluded from many
health research studies as a protective measure against
unintended harm to the individual and her fetus [64].
Significant differences have been measured in a large
number of biochemical and physiological systems that
are consistent with sex-specific genetic profiles [77, 110].
These dissimilarities are in addition to the metabolic
changes caused by exposure to hormones during the
menstrual cycle and changes in hormone levels during
pregnancy and lactation. Circulating levels of progester-
one and estrogen are lowest during the early follicular
phase when differences between a male and a female are
probably least affected by hormone levels [1]. The result
of sexual dimorphisms in metabolite levels [66] particu-
larly in response to hormonal variations may lead to
biased nutritional recommendations for men and
women of all age groups.
While a review of sexual dimorphic differences between

sexes is beyond the scope of this editorial, we also highlight
the increasing awareness that fluctuating hormone levels
during the menstrual cycle alter, for example, macronutri-
ent metabolism [13], metabolic profiles [104], cardiometa-
bolic markers [86], lipid kinetics [84], and the immune cell
repertoire [50]. A recent review (of 146 articles winnowed
by specific criteria from 1809) found a lack of consistency
in determining the menstrual phase between studies and
recommended the use of one of the six methods to assess
cycle phase [1]. Recognizing that many existing systems
nutrition studies will not have considered the menstrual
cycle in comparing physiological and metabolic differences
between males and females, new studies that adopt one
of these methods to assess menstrual cycle phase will
improve interpretation and reproducibility of results.

Animal genetics
Many research studies in nutrition and toxicology relied
on outbred mice to better reflect the structure of the
population and translatability to humans (e.g., [37]). The
use of outbred animals makes it difficult to appropriately
power the experiment. In addition, maintaining a truly
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outbred population in breeding facilities is a significant
challenge.
A distinct advantage of laboratory animals is the ability

to develop inbred strains of defined genetic makeup.
Mouse fanciers in Asia bred mice for coat color at least
since the 1700s (https://www.genome.gov/10005832/
background-on-the-history-of-the-mouse/). Researchers
began using mice to study Mendelian inheritance pat-
terns in the early 1900s when they began inbreeding
mice first for coat color and subsequently for suscepti-
bility to disease [103]. The limitation of using inbred an-
imals is that each strain is genetically unique, often
producing measurably different metabolic, developmen-
tal, or behavioral phenotypes. The Jackson Laboratory
maintains not only a resource for mouse genetic data
(http://www.informatics.jax.org/) but also phenotypic
data based on its own in-house and published research
results (http://phenome.jax.org/). Genetic variation can
be incorporated into experiments by using several par-
ental inbred strains and comparing physiological or tran-
scriptomic responses.
A more recent development in analyzing complex

traits was the creation of hybrid mouse diversity panel
(HMDP) [59]. The HMDP consists of about 100 inbred
strains generated from 30 parental inbred strains (e.g.,
BALB/c, C57BL/6) plus ~70 recombinant inbred mice
(e.g., C57BL/6 × DBA). The combination of inbreeding
these strains is to provide high-resolution mapping of
genetic loci. DNA from many of these strains has been
sequenced and all have been densely genotyped. The
HMDP strains have substantial variation in metabolic,
phenotypic traits, and disease susceptibilities with differ-
ential responses to changes in diet (e.g., [59]) which will
allow for identifying interacting genes and gene–envir-
onment interactions. Data from studies involving the
HMDP and some complementary human data can be
accessed at the systems genetics resource [98]. Given the
variability in phenotypes based on genetics, G&N will re-
quire strain designations and their commercial source
for all studies.

Animal diets
The complexity of diet compositions is widely acknowl-
edged and yet the use of “standard chow diets” for nutri-
tional studies in laboratory animals is common.
Different lots of chow diets vary in chemical compos-
ition with the best-known examples being fatty acid
composition [55] and estrogenic isoflavones [6, 18]. Mice
fed different lots of chow have significantly different pat-
terns of gene expression [53] confounding the ability to
replicate gene–diet as well as microbiome studies. Ricci
and Ulman (principals of Research Diets, Inc, New
Brunswick, NJ) have developed what should be a simple
meme for writing descriptions of animal diets [80]:
� Can I report it (can I tell others exactly what my
animals were fed)?

� Can I repeat it (is there diet variability and will I be
able to get the same results next year)?

� Can I revise it (as my hypotheses change, can I
easily change the dietary components while keeping
it otherwise matched to previous diets)?

The American Institute of Nutrition created the semi-
purified AIN93A diet in 1993 [79] with revisions for
growth, pregnancy, and lactation (AIN93G) and adult
maintenance (AIN93M) in 1997 [78]. Semi-purified re-
fers to the use of defined sources of carbohydrate, vita-
mins, minerals, protein source, and other essential
nutrients plus dietary lipids in the form of corn, coconut,
soy, or other plant-based oils (e.g., [45]). The chemical
composition of an oil is also likely to vary depending
upon the source and lot. The BIOCLAIMS project
(http://bioclaims.uib.eu/) published a modified AIN93
diet in Genes & Nutrition that improved the essential
fatty acid composition, polyunsaturated-to-saturated-fat
ratio (>2), and use of oils without polyphenols or caro-
tenes [34]. While these semi-purified component diets
are standardized, chemical manipulations can be accom-
modated if nutrient-to-calorie ratios are maintained [80].
In line with the effort of ensuring reproducibility and

scientific rigor, G&N requests authors to provide the full
composition not only of experimental diets but also of
the control standard diet employed in intervention stud-
ies on animal models. When sourced from commercial
entities, the diet composition should be accompanied by
the company name and diet identifier.

Peripheral blood mononuclear cell (PMBC) analysis
Analyzing gene–nutrient interactions in humans is chal-
lenging because most human tissues cannot be sampled.
In contrast, peripheral blood mononuclear cells
(PBMCs) are easily obtained and pose no ethical barrier
for most ages and conditions. The accessibility of these
primary cells for studies of transcriptomic and DNA
methylation analysis in response to diet and other envir-
onmental factors is highly tempting. PBMCs, however,
are a highly diverse ecosystem. The mouse Immuno-
logical Genome Project (ImmGen) estimates that blood
contains more than 250 types of cells and similar diver-
sity likely exists in humans (https://www.immgen.org/).
The number of these different PBMC types varies de-
pending on the immunological status of the animal
which would be defined by host and microbiome gen-
ome interactions [16] and their combined interactions
with environmental factors. Although this consortium
has yet to analyze RNA or DNA methylation levels in re-
sponse to diet, they reported that 22% of PBMC tran-
scripts differed by more than twofold across 39 inbred
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mouse, reflecting the influence of genetic background on
gene expression.
Isolation procedures for distinct subsets of PBMC have

been described (e.g., [33]) and methods have been devel-
oped to deconvolute PBMC expression [4] and DNA
methylation [51] profiles to (albeit large) functional sub-
groups of cells. Arguments that transcriptomic or
methylation profiles can be used as markers of disease
or response to diet or other environmental influences
are subject to the same criticism. Hence, G&N will only
publish PBMC transcriptomics or DNA methylation
studies with (semi-)purified cells or analyzed by methods
that correlate experimental data with typical complete
blood count (CBC).

Cell line authentication
Scientific progress in biomedical (including nutrition) re-
search was immensely boosted several decades ago by
the introduction of in vitro cell models. Cell lines of
mammalian origin are now available from almost all tis-
sues, but genotypic and phenotypic changes have been
described to occur in most of them over time (passage).
Different laboratories may have no or different quality
control procedures and hence the same cell lines may
differ significantly [23]. The authentication and purity of
cell lines are often undervalued by many researchers,
who are frequently not aware of specific standards and
guidelines ([9] and http://iclac.org/databases/cross-con-
taminations/). Major cell repositories should be the first
to carry out unique identification of deposited cell lines,
and the source of a cell line should always accompany
the name identifier in published papers [102]. Alignment
to good cell culture practices [12] published by the
International Cell Line Authentication Committee
(http://iclac.org/references/reading-guidelines/) is a pre-
requisite read for successful use of mammalian cell
models in all branches of biomedical research. Funding
agencies and scientific journals are increasingly request-
ing authors for proofs of cell line authentication ([21]).
Adherence to standardized terminology in the naming of
cell lines is explicitly requested to journals and conse-
quently to the authors [23].
A high proportion of manuscripts received by Genes &

Nutrition employ stable cell lines to investigate nutrient-
dependent modulation of metabolic pathways in dif-
ferent tissues. To ensure reproducibility and reliability
of research results, and in line with the policies
adopted by major scientific journals (NIH Rigor and
Reproducibility: Principles and Guidelines for Report-
ing Preclinical Research and Endorsement by major
journals - https://www.nih.gov/research-training/rigor-
reproducibility/principles-guidelines-reporting-preclinical-
research), manuscripts submitted to G&N should
report the source, authentication, and contamination
testing in the “Materials and Methods” section, per-
formed according to widely accepted international
guidelines ([2] and references therein). Studies involv-
ing human embryonic stem cells must meet not only
these exacting research standards but also ethical and legal
standards applicable to all human research experiments.
An international compilation of human research stan-
dards is available from the Office of Human Research
Protections of the US Department of Health and Human
Services (https://www.hhs.gov/ohrp/).

Microbiome
The use of high-throughput sequence technologies
spurred the study of the microbiomes that live in and on
humans and other organisms. Many investigators have
studied the gut microbial community because of the ob-
vious involvement in gastrointestinal disorders such as
inflammatory bowel disease [52]. The microbial ecosys-
tem, however, plays a key role in metabolizing and pro-
ducing nutrients (e.g., [63]), modulating the immune
system [96], and producing signaling molecules affecting
the gut–brain axis [40]. A primer for researchers for
conducting a microbiome study has recently been pub-
lished [27] and refinements in standards are likely to be
developed as this field matures.

Natural bioactives
Disease prevention and treatment using natural products
and their analogs has a long and rich history in Eastern
and Western medicine. The quest for and application of
bioactive extracts and purified chemical substances of
nutritional interest from both herbal and animal origin
is attracting increasing attention among clinical and
basic science investigators (e.g., [19, 93]).
An expanding focus of this research is aimed at eluci-

dating the mechanism of action of “natural compounds”
and the presumed consequences for metabolic health.
Segments of the non-scientific community, and in
particular the media, avidly follow the developments of
this research field. The phenomenological/ethno-medical
field has contributed observational and anecdotal results
stimulating researchers to propose robust, science-based
mechanisms of action. In particular, the definition of key
molecular pathways affected by phytochemical and nu-
tritional bioactive compounds is of crucial importance to
understand health effects. Unfortunately, research in this
area often lacked rigor, reproducibility, and molecular
detail, and its outcomes were therefore received with
justifiable skepticism.
G&N publishes original research papers and reviews

dealing with bioactive constituents of traditional or novel
foods, and of botanical extracts targeted at promoting
health and preventing or treating disease. According to
our scopes and aims, G&N encourages studies of the

http://iclac.org/databases/cross-contaminations/
http://iclac.org/databases/cross-contaminations/
http://iclac.org/references/reading-guidelines/
https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.hhs.gov/ohrp/


Table 3 Summary of genes and nutrition publication guidelines

1. Standardization/reproducibility of data and findings. Manuscripts
submitted to G&N should contain the necessary information allowing
evaluation of alignment with widely accepted best practices (see
Table 2 for specific guidelines). These standards include descriptions of
reference materials and reagents, study design, laboratory protocols,
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effects of bioactives on the modulation of biochemical
pathways, cellular signaling, and gene expression.
In line with our quest for standardization, studies

dealing with the effects of natural compounds or
food/botanical extracts should report a complete
characterization and standardization of the compound/
s under study, to allow reproducibility. Exceptions to
this guideline may be possible with very strong evi-
dence of the importance of their results or when deal-
ing with novel botanical extracts of extreme interest,
whose effects have never been reported in the available
literature, and for which chemical characterization is in
progress.
data analysis, and reporting. We recommend authors to refer to the
MIBBI Portal (Minimum Information for Biological and Biomedical
Investigations) for prescriptive checklists for reporting biological and
biomedical research where applicable.

2. Gene variants. G&N manuscripts reporting associations between single
SNPs and complex phenotypes or single SNPs and response to diet will
not be sent for peer review unless (i) the effect size is large, (ii) p values
significant and corrected for multiple comparison, and (iii) replicated in
a second study. Complex phenotypes include diseases, anthropometric
measures (e.g., body weight or body mass index), and intermediate risk
factors (e.g., levels or changes in fasting blood parameters).

3. Women’s health research. Sexual dimorphism in metabolic response
should be assessed, and when possible, the phase of the menstrual
cycle phase analyzed by one of the six methods described in [1].

4. Animal genetics. G&N will require strain designations and their
commercial source for all studies.

5. Animal diets. Different lots of chow diets vary in chemical
composition with the best examples being fatty acid composition [55]
and estrogenic isoflavones [6, 18]. Ricci and Ulman (principals of
Research Diets, Inc, New Brunswick, NJ) have developed what should be
a simple meme for writing descriptions of experimental diets [80]

6. Peripheral blood mononuclear cell (PMBC) analysis. The accessibility of
PBMCs for studies of transcriptomic and DNA methylation analysis in
response to diet and other environmental factors is highly tempting.
PBMCs, however, are a highly diverse ecosystem. Isolation procedures
for distinct subsets of PBMC have been described (e.g., [33]), and
methods have been developed to deconvolute PBMC expression [4]
and DNA methylation [51] profiles to (albeit large) functional subgroups
of cells.

7. Cell line authentication. Different laboratories may have no or
different quality control procedures and hence the “same” cell lines may
differ significantly [23]. The authentication and purity of cell lines are
often undervalued by many researchers, who are frequently not aware
of specific standards and guidelines ([9] and http://iclac.org/databases/
cross-contaminations/). Alignment to good cell culture practices [12]
published by the International Cell Line Authentication Committee is a
prerequisite read for successful use of mammalian cell models in all
branches of biomedical research.

8. Microbiome. A primer for researchers for conducting a microbiome
study has recently been published [27] and refinements in standards are
likely to be developed as this field matures.

9. Natural compounds. Studies dealing with the effect of natural
compounds or food/botanical extracts should report characterization
and standardization of the material utilized to allow reproducibility as a
prerequisite for peer reviewing. Standard reporting methods are
described in [72].

10. Data standards. Compliance of submissions with standards of good
data practices, such as FAIR guidelines (data is required to be Findable,
Accessible, Interoperable, and Reusable—[107]) is essential.
Nutritional bioinformatics
As in other life science disciplines, data science is an
indispensable component of contemporary nutrition re-
search. With growing possibilities to measure, store, and
analyze data and knowledge (e.g., [100]), availability and
means to effectively integrate and mine information is
rapidly becoming a key determinant of successful trans-
lation of nutrition research into human health benefits
(e.g., [41, 89]). Application of existing and development
of new computational methods (e.g., [68]) are being used
for systems analysis of high dimensional, multi-omic
data sets (e.g., [47, 49]) and their integration with
physiological and clinical endpoints to infer health ef-
fects of interventions [48].
To promote leveraging advances in data science to

facilitate goals of nutrition research, G&N has estab-
lished a novel “Nutritional Bioinformatics” section.
Traditionally, the disciplines of bioinformatics and
nutrition research have evolved independently. In this
new section, we emphasize the connection between
the two, recognizing the specific requirements for
data science approaches in the context of nutrition
research (e.g., dealing with subtle and broad/systems
effects of dietary interventions) as well as establishing
state-of-art data handling practices within classical
nutritional studies. G&N actively encourages efforts
towards development and application of data analytics
methods and resources tailored to use in nutrition re-
search. The “Nutritional Bioinformatics” section welcomes
submission of articles addressing development and
utilization of novel analytics approaches, software, tools,
and data resources relevant in the context of nutrition re-
search. Descriptions of newly developing research infra-
structures aimed at providing services to the nutrition
research community are also encouraged and welcomed.
Compliance of submissions with standards of good data
practices, such as FAIR guidelines (data is required to be
Findable, Accessible, Interoperable, and Reusable–[107])
is essential.
Summary
Reproducibility, or at least the ability to understand the
reasons for different results and outcomes in preclinical
and clinical research experiments, is now demanding the
attention of researchers, funding agencies, and the pub-
lic (e.g., [76]). The intent of this editorial was to provide
guidance for improving the quality of systems nutrition

http://iclac.org/databases/cross-contaminations/
http://iclac.org/databases/cross-contaminations/
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research (Table 3). We recognize, however, that new de-
velopments will require constant updating of methods,
experimental designs, and computational analysis. As
our climate changes and population growth increases to
the expected nine billion by 2050, our field of research
must continue to produce high-quality, reliable results
that can be translated into health-promoting action [43].
Genes & Nutrition remains committed to promoting and
publishing this research in a timely fashion to improve
nutrition knowledge for applications for personal and
public health.
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