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Abstract

Background: Folic acid and its derivates, known as folates, are chemoprotective micronutrients of great interest
because of their essential role in the maintenance of health and genomic integrity. The supplementation of folic acid
during pregnancy has long been known to reduce the risk of neural tube defects (NTDs) in the foetus. Folate
metabolism can be altered by many factors, including adequate intake through diet. Folate deficiency can compromise
the synthesis, repair and methylation of DNA, with deleterious consequences on genomic stability and gene
expression. These processes are known to be altered in chronic diseases, including cancer and cardiovascular diseases.

Main body: This review focuses on the association between folate intake and the risk of childhood leukaemia. Having
compiled and analysed studies from the literature, we show the documented effects of folates on the genome and
their role in cancer prevention and progression with particular emphasis on DNA methylation modifications. These
changes are of crucial importance during pregnancy, as maternal diet has a profound impact on the metabolic and
physiological functions of the foetus and the susceptibility to disease in later life. Folate deficiency is capable of
modifying the methylation status of certain genes at birth in both animals and humans, with potential pathogenic and
tumorigenic effects on the progeny. Pre-existing genetic polymorphisms can modify the metabolic network of folates
and influence the risk of cancer, including childhood leukaemias. The protective effects of folic acid might be dose
dependent, as excessive folic acid could have the adverse effect of nourishing certain types of tumours.

Conclusion: Overall, maternal folic acid supplementation before and during pregnancy seems to confer protection
against the risk of childhood leukaemia in the offspring. The optimal folic acid requirements and supplementation doses
need to be established, especially in conjunction with other vitamins in order to determine the most successful
combinations of nutrients to maintain genomic health and wellbeing. Further research is therefore needed to uncover
the role of maternal diet as a whole, as it represents a main factor capable of inducing permanent changes in the foetus.
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Background
Nutrition represents one of the leading preventable risk
factors in the development of cancer, accounting for
nearly 10% of total cases in the UK [1]. The concept of
chemoprevention in the insurgence of cancer was first
introduced by Sporn [2, 3] and has since been employed
in the attempt to arrest, retard or reverse tumorigenic
processes by the use of biological and nutritional com-
pounds such as phytochemicals (e.g. carotenoids, allyl
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sulphur compounds, glucosinolates, isothiocyanates and
polyphenols) and vitamins. Diet and the assimilation of
micronutrients, therefore, have a substantial impact on
health and disease.
Folic acid (or vitamin B9) and its derivatives, collectively

known as folates, are chemoprotective micronutrients of
great interest belonging to the B vitamin group. They are
water-soluble vitamins that function as co-factors in a
variety of enzymatic reactions within the cell. Folates are
naturally found in leafy vegetables, eggs, legumes, bran
and dry fruit, whereas the synthetic form, which has a
higher bioavailability, is added as a food fortifier in cereal
grain products or used as a dietary supplementation [4, 5].
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Folate is essential for the correct functioning of the
human body and the maintenance of genomic integrity.
Within the cell, it participates in two types of reactions, bio-
synthesis of nucleotides and methylation reactions, which
are required in the fundamental biological processes of
DNA synthesis, DNA repair and DNA methylation [6–8].
Folic acid is also needed for correct functioning of
mitochondria and maintenance of mitochondrial DNA
(mtDNA) [9] (Fig. 1).
Folate deficiency is associated with several disorders

such as neural tube defects (NTDs) and malformations
in the developing foetus, as well as cardiovascular
diseases, depression and Alzheimer’s disease in adults
[10–12]. Given its role in the maintenance of genomic
stability, insufficient folic acid also appears to be
involved in the insurgence of cancer [13]. In addition to
the above, there is evidence that folic acid deficiency
during pregnancy could represent a risk factor for the
development of childhood leukaemia in the offspring.
The chemoprotective properties of folic acid with

respect to cancer initiation and progression will be ex-
plained. In particular, the effects of folate deficiency on
genomic health and its potential impact on the insurgence
of childhood leukaemia will be discussed. Several studies
and findings have been compiled to provide a comprehen-
sive view of current research covering these aspects:

1. The association between folate intake and the risk of
childhood leukaemia, by considering studies on the
efficacy of folic acid supplementation before or
during pregnancy in preventing the disease in the
offspring
Fig. 1 The relationship between folic acid deficiency and the genomic inst
functions of the cell, compromising the genomic stability for both nuclear
nucleotides, causing DNA damage that cannot be repaired efficiently beca
donors, the unavailability of folates can alter DNA methylation, causing cha
chromosomes. Deprivation of folic acid also causes oxidative stress in the c
2. The role of folic acid in influencing the methylation
patterns of DNA, an inheritable epigenetic
regulatory mechanism capable of altering gene
expression in the progeny

The biological role of folates in the cell
Folates are involved in the cellular one-carbon metabol-
ism, acting as one-carbon carriers for the transfer of
methyl groups. The metabolically active form of folic acid
is tetrahydrofolate (THF), which can be converted into
other structurally related molecules, each having a specific
function and forming a complex network of enzymatic
reactions (Fig. 2).

Nucleotide biosynthesis
Folates are responsible for the synthesis of purines and
pyrimidines for the correct assembly of DNA and RNA.
In particular, they mediate the only known reaction for
the de novo synthesis of thymidine, which consists in the
conversion of deoxyuridine monophosphate (dUMP) to
deoxythymidine monophosphate (dTMP) by the transfer
of a methyl group [14, 15].

Methylation reactions
As methyl group donors, folates are involved in methyla-
tion reactions including DNA methylation, a major epigen-
etic process capable of influencing gene expression. Specific
loci known as CpG islands are methylated through the
modification of cytosine to form 5-methylcytosine by an
enzymatic reaction involving the transfer of a methyl group
from S-adenosylmethionine (SAM) [16]. Folates are
involved in the conversion of homocysteine to methionine
ability. Low levels of folic acid interfere with the normal biological
and mitochondrial DNA. Folic acid deficiency affects the synthesis of
use of an overall decrease in the nucleotide availability. As methyl
nges in gene expression and compromising the integrity of
ell with consequences affecting the integrity of mitochondrial DNA



Fig. 2 Intracellular network of reactions in the metabolism of folates. A variety of related compounds derived from folic acid have specific biochemical
functions. Folic acid is first converted into dihydrofolate (DHF) and subsequently into tetrahydrofolate (THF) by the enzyme DHF reductase (DHFR).
5,10-methyleneTHF and 10-formylTHF are responsible for the synthesis of purines; 5,10-methyleneTHF also mediates the conversion of dUMP to dTMP
for the synthesis of thymidine, catalysed by the enzyme thymidine synthase (TS). 5-methylTHF is involved for methylation reactions, particularly in the
conversion of homocysteine to methionine for the formation of SAM, a major methyl donor for DNA (figure taken from [6])
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required for the formation of SAM. This is achieved by a
one-carbon transfer to vitamin B12, which will then be used
for the methylation of homocysteine to methionine. By the
addition of adenine to methionine, SAM is formed, which
is the main methyl donor for DNA [17].

Folate deficiency and genomic damage
Abnormalities in nucleotide biosynthesis and methyla-
tion reactions are capable of affecting DNA synthesis,
DNA repair and DNA methylation, potentially leading
to genomic instability of the cell (Fig. 3).
In conditions of folic acid depletion, the conversion of

dUMP cannot proceed, leading to its abnormal intracellular
accumulation and misincorporation in the DNA instead of
thymine [18]. Excessive uracil content causes point muta-
tions, single- and double-strand DNA breaks, chromosome
breaks and formation of micronuclei [19, 20]. The inability
to provide nucleotides adequately renders DNA synthesis
inefficient, compromising the regenerative power of tissues
[21] and the ability to repair DNA efficiently [22].
Disruption of methylation reactions is not limited to

altered gene expression. Demethylation of centromeres
causes structural and functional aberrations within the
chromosome, notably during mitosis, leading to abnormal
chromosome segregation and aneuploidy [23]. Low folate
has also been shown to alter the expression of microRNAs
(miRNAs) due to abnormal DNA methylation [24]. miR-
NAs are non-coding oligonucleotide RNAs detaining an
important role in gene regulation. When abnormally
expressed, they can gain oncogenic properties and initiate
tumorigenesis [25] and NTDs [26]. Studies on the expres-
sion profile of miRNAs have been conducted to uncover a
possible role in leukaemogenesis [27] because of their
regulatory function in haematopoiesis [28]. The data
collected from in vitro experiments on DNA damage and
aberrant DNA methylation are consistent with results
obtained in vivo in mice subjected to a diet with extreme
folic acid deficiency [29–31].

Nuclear abnormalities and aneuploidy
The discovery of Howell-Jolly bodies in erythrocytes with
megaloblastic anaemia was the first evidence of chromo-
some damage caused by folic acid deficiency [32–34].
Howell-Jolly bodies are chromosomal fragments that lag
behind during anaphase, a form of micronuclei present
solely in erythrocytes. Studies on sufferers of Chron dis-
ease found that their frequency was linked with low serum
and intracellular folate [35].
Similar results have been obtained for human lympho-

cytes cultured in folic acid-depleted media. The formation
of micronuclei and other nuclear abnormalities such as
nucleoplasmic bridges and nuclear buds were observed,



Fig. 3 Processes and consequences contributing to the genomic instability of the cell. Altered DNA synthesis, DNA repair and DNA methylation
compromise the genomic stability of the cell. DNA damage and chromosomal abnormalities result from an incorrect assembly of DNA and the
inability to repair errors efficiently, potentially affecting the next generation of cells or leading to cell death. If DNA methylation is disrupted,
epigenetic changes affecting gene expression can occur, including incorrect methylation patterns or changes in chromatin structure
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which are indicators of genomic damage [36, 37]. Under
similar conditions, particularly in the absence of thymi-
dine, fragile sites and chromosome breakage also occur,
which are attributable to the misincorporation of uracil in
the DNA [19, 20, 38–40]. Increased chromosomal damage
and the inability to efficiently repair aberrant hypoxan-
thine bases was observed in deprived lymphocyte cultures
when compared to folate-replete controls [22]. Accumula-
tion of S phases and subsequent induction of apoptosis
has also been described [41].
Wang et al. [42] and Beetstra et al. [43] revealed an

association between folic acid deficiency and the incidence
of aneuploidies of chromosomes 17 and 21, often
observed in breast cancer and leukaemia. This was also
observed for chromosome 8 [44], found abnormal in
number in prostate, skin and breast cancers, cholestea-
toma and leukaemia [45–48]. In particular, trisomy 8 has
been reported as a recurrent chromosomal abnormality in
acute myeloid leukaemia (AML) and hence considered a
cytogenetic marker of AML [49, 50]. Ni et al. [44] demon-
strated that aneuploidy of chromosome 8 is influenced by
folic acid deficiency similarly to chromosome 17. In
addition, riboflavin deficiency seemed not to aggravate the
risk of aneuploidy, which is coherent with other studies in
which riboflavin had no influence on the formation of
micronuclei [51].

Telomere abnormalities
The consumption of vital micronutrients through diet,
most notably folic acid, represents an important deter-
minant for the maintenance of telomere length and
health [52–54]. Telomeres consist of repeated hexameric
sequences (TTAGGG) found at the end of chromosomes
together with other accessory proteins. This complex is
called “telosome” and protects chromosome ends from
degradation and chemical damage, which could result in
chromosomal instability and breakage [55]. Because of
their chemical composition rich in thymidine, chromo-
some ends are thought to be susceptible to uracil misin-
corporation and impaired repair.
Telomeric abnormalities and dysfunction have been

associated with ageing, cancer and degenerative diseases
[55–57]. Telomeric shortening is commonly observed in
initial stages of tumorigenesis, but in some cancers, exces-
sive telomerase activity can cause abnormally elongated
telomeres [56]. Epigenetic changes, especially DNA
methylation, can also disrupt the normal maintenance of
the telomere length by interfering with the expression of
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the machinery involved [58–60]. These effects are particu-
larly critical during foetal life, as early programming
events in utero can have a permanent impact on health
and susceptibility to disease.
Low maternal folic acid levels have been shown to cause

shorter telomeres in the newborn, although the clinical
implications in later life are not known [61, 62]. In popula-
tion studies, low folate status was associated with telomere
abnormalities in a non-linear manner. Considering that
the normal concentration in population ranges between
13.5 and 45.3 nmol/L [63], with a plasma concentration
below 11.6 nmol/L, telomere length increased, whereas
shortening was observed above the median [64]. In vitro,
human lymphoblasts cultured in folic acid-deficient
medium showed that chromosomes undergo an initial
telomeric elongation followed by a rapid shortening, both
being indicators of genomic instability [54].

Damage to mitochondrial DNA
Genomic instability is not limited to nuclear DNA dam-
age, as also mitochondrial DNA (mtDNA) appears to be
affected by lack of folic acid. Folates possess anti-oxidant
properties against reactive oxygen species (ROS) and lipid
peroxidation and are able to process harmful metabolites,
preventing mitochondrial toxicity [9, 65, 66]. Folic acid de-
ficiency can cause oxidative stress and initiate apoptosis
[67] with deleterious consequences on the integrity of
mtDNA. Most studies, conducted on rodents, found an
increased number of mtDNA deletions when folic acid
was deficient [68–72]. Studies on different tissue types in
rats demonstrated that mtDNA deletions in the liver
induced by ageing are associated to folate levels, indicating
that folic acid supplementation reduces the occurrence of
these deletions by two- to threefolds when compared to
depleted rats [72]. This has also been observed in rat
lymphocytes, where folic acid deficiency causes increased
deletions by nearly fourfolds [71].
Accumulation of somatic deletions and mutations in the

mtDNA may play a role in tumorigenesis, as mtDNA is
subjected to detrimental factors originating from the
environment, including dietary deficits [73]. Damage to
mtDNA is capable of inducing reactions that can damage
the nuclear DNA as well, by both genetic and epigenetic
mechanisms, including methylation, chromatin remodel-
ling and signalling pathways [74]. This is particularly rele-
vant in cancer because damaged mitochondria can induce
changes in the genome and in the surrounding micro-
environment, both capable of creating an advantageous
setting for tumorigenesis [75].
In haematological malignancies, somatic mutations and

changes in mitochondrial gene expression have mainly
been observed in myelodysplastic syndromes [76, 77].
Acquired mitochondrial mutations have also been found
in the bone marrow of nearly 40% of patients with adult
leukaemia, when compared to normal tissue with no mu-
tations [78]. These results are similar to other studies on
different cancers, where only a fraction of patients with
the same malignancy showed mtDNA mutations [79–83].
Acquired mtDNA deletions and low folate status have

been associated with incidence of hepatocellular carcin-
oma, suggesting that carcinogenesis is attributable to the
deleterious effects of folate deficiency on the stability of
both nuclear and mitochondrial DNA [84]. Studies on
the impact of nutrients and correlated mitochondrial
damage in the offspring are limited, but it is known that
mtDNA in the placenta responds to environmental fac-
tors. For instance, airborne pollution is capable of dam-
aging the mitochondria and altering methylation
patterns, potentially leading to adverse health outcomes
for both mother and foetus [85, 86].
The mitochondrial genome is highly variable among

different populations, which poses a limitation when
searching possible pathogenic mutations [87, 88]. Also,
the consequences depend on the locus and the extent of
the mutations, as certain mutations seem to have no ef-
fect on the function, metabolism or phenotype of the
mitochondrion or the cell as a whole [78]. In fact, poten-
tially pathogenic mutations are found in the population,
although the vast majority is not clinically expressing the
disease [89].

Genomic damage caused by folate deficiency and
ionising radiations
To better comprehend the extent of the DNA damage
inflicted by folic acid deficiency, comparative studies have
been conducted on the similarities with ionising radiation
damage. Courtemanche et al. [90] showed that cultured
lymphocytes depleted of folic acid or irradiated with high-
dose radiation presented similar DNA double-strand
breaks and were both subjected to decreased proliferation,
cell cycle arrest and apoptosis. However, differences in
gene expression analysis indicated that, although similar,
the damage seems to arise following different pathways.
The exact mechanism that the cell employs in response to
nutritional deficits has been studied in Caenorhabditis
elegans [91]. Folate deficiency also seems to be an enhan-
cing factor of DNA damage resulting from radiation
in vivo [92], which led to the investigation of folic acid
acting as a radioprotective agent in vitro [93].

Folates as modulators of DNA methylation
Methylation of CpG islands at the promoter or regulatory
regions of a given gene represses its expression, whereas
unmethylation allows the transcription to proceed (Fig. 4).
The exact mechanism is not completely understood. The
positioning of the methyl group is thought to physically
impede the binding of the transcription machinery and
block the activation of that gene. However, exceptions to
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Fig. 4 Methylation can modify the expression of genes. Methylated regions upstream the start site of transcription are a signal of gene
repression. Conversely, the absence of methylation promotes the transcription of the gene
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this mechanism exist. For instance, methylation seems to
activate the transcription of the gene for telomerase [94].
Hypo- and hypermethylation of CpG islands is of particular
interest in carcinogenesis, as tumour-suppressor genes and
proto-oncogenes become erroneously inactivated and acti-
vated, respectively, causing uncontrolled growth [95, 96].
DNA methylation forms distinctive patterns in different

tissue types that can be transmitted to the next generation of
cells to perpetuate the expression profile for the appropriate
differentiation of tissues. However, it appears that the main-
tenance of the methylation per se is not sufficient to guaran-
tee the stable expression pattern throughout the entire
genome [97]. The poor availability of folates as a source of
methyl groups can influence the ability to maintain the cor-
rect methylation patterns, causing mainly hypomethylation of
genomic DNA [98, 99], reversible upon re-supplementation
[17, 100–102]. The disruption of methylation patterns by lack
of folates can also occur by hypermethylation of certain loci,
although this might seem counterintuitive. Different cell
types and specific loci in the genome respond to folate status
in different ways, thus affecting gene expression by various
mechanisms [16, 103, 104].
Folates and DNA methylation patterns in foetal life
Folate deficiency has been shown to influence the methy-
lation status of certain genes at birth in both animals and
humans. Recent findings in rats clarified that gestational
folic acid intake can influence the progeny’s gene expres-
sion and this occurs in an organ-specific manner, with the
brain being the most susceptible to these changes [105].
This is particularly relevant in conception, which occurs

before the DNA methylation pattern re-programming. The
critical window period to determine the DNA methylation
pattern is right after fertilisation, when the zygote is in
between the morula and blastocyst phases [106]. The
periconceptional period is also crucial for the establishment
of correct genetic, epigenetic and metabolic settings for
successful reproduction, and nutrients of the one-carbon
metabolism play a pivotal role in these processes [107].
Gonseth et al. [108] demonstrated that exposure to fo-
lates 12 months before conception is capable of modifying
DNA methylation in healthy newborns. Genes involved in
neural crest development (TFAP2A), acute myeloid leukae-
mia (STX11), cystic kidney disease (CYS1) and other genes
involved in foetal facial (OTX2) and neural development
were sensitive to the modifying effects of folate deficiency
on methylation patterns. Deficiency in periconceptional
folate consumption was associated with methylation of
promoter regions of these genes resulting in downregula-
tion, with potential tumorigenic effects on genes with
tumour-suppressor properties. Steegers-Theunissen et al.
[109] examined the use of folic acid during pregnancy and
the methylation status of the offspring. Maternal folic acid
supplementation resulted in a 4.5% increase in the methyla-
tion of insulin-like growth factor 2 (IGF-2) in the progeny,
which is positively associated with maternal SAM levels,
inversely proportional to weight at birth, and it has been
linked with several chronic disturbances. Chang et al. [110]
compared DNA methylation levels in different tissues from
aborted foetuses affected by NTDs with normal healthy
controls. The brain tissue was hypomethylated in foetuses
with NTDs. The folate in serum was also lower in mothers
whose foetuses presented NTDs, further confirming the as-
sociation between folic acid levels and methylation status.
However, the hypothesis that folate deficiency acts as

limiting factors during the embryonic development is con-
troversial. In fact, studies on the association between the
exposure to folates during foetal life and the global DNA
methylation status at birth in folate-replete populations
have yielded contrasting results. It is plausible that the re-
lationship between folic acid consumption and its effects
on DNA methylation is dose dependent, meaning that
populations with severe folic acid deficiency are more
prone to the modifying effects of folate on methylation
than folate-replete populations [108, 111]. This is coherent
with studies from Heijmans et al. [112] and Tobi et al.
[113] who investigated the epigenetic alterations in
individuals who suffered hunger during war with a severe
deficiency in folic acid. Heijmans et al. found that IGF-2
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was hypomethylated, and Tobi et al. identified hypome-
thylation in INSIGF and hypermethylation in IL-10, LEP,
ABCA1, GNASAS and MEG3, which are associated with
growth and metabolic disorders.

Contribution of diet in the epigenetic control of gene
expression
Maternal diet during pregnancy can influence many
physiological and metabolic functions in the foetus and
determine susceptibility in the development of diseases
later in life [114]. The intrauterine process of foetal pro-
gramming has been associated with physical, psycho-
logical, metabolic and pharmacological stress factors.
These exogenous events are capable of inducing per-
manent changes in the foetus, with potential post-natal
consequences [115]. The developing foetus is subjected
to an extensive programme of cell division, growth and
differentiation. Differentiation requires a precise organ-
isation of gene expression, which is regulated by DNA
methylation, chromatin structure and other genetic and
epigenetic determinants [116]. Any interference with
these events of epigenetic modification can permanently
compromise gene expression and have serious repercus-
sions on the development of the organism [115, 117].
Experiments on agouti mice proved that nutrition can

induce epigenetic changes in the offspring by interfering
with normal DNA methylation, influencing the suscepti-
bility to disease [118–120]. The coat colour of agouti
mice is determined by the methylation of the agouti
gene, which is strongly dependent on the maternal diet
[120]. This has led to the hypothesis that the risk of de-
veloping diseases might partially be attributable to par-
ental nutrition [121–123]. An intracisternal A particle
(IAP) is present in the upstream region of the agouti
gene. The gene is regulated by the promoter activity of
IAP by methylation. The availability of methyl groups
from the maternal diet during pregnancy increases the
methylation of DNA in the IAP gene, inducing pheno-
typic changes that affect the gene expression of the pro-
geny (i.e. change in coat colour) [118, 119]. In a separate
study, Waterland et al. [121] identified similar loci in the
human genome with distinct methylation patterns de-
pending on the season of birth.
In mice, a paternal diet low in protein induced epigen-

etic changes in the progeny, when compared to controls
with an equilibrated protein intake. The changes affected
the methylation of DNA in the liver in the genes in-
volved in the biosynthesis of lipids and cholesterol [124].
Paternal fat-rich diets reduce the methylation status of
the Il13ra2 gene in pancreatic cells in female progeny
[59]. A protein-depleted diet in the mother during preg-
nancy has also been shown to dysregulate DNA methy-
lation and gene expression but was reversible if folic
acid was supplemented [114].
Folates and cancer
The capability of folates of modulating DNA methylation,
repair and synthesis suggests a role in tumorigenesis. Folate
deficiency has been proposed as a contributing factor in the
development of cervical, lung, breast, brain, colorectal and
pancreatic cancers [6, 14, 125–127]. In particular, a large
number of studies on humans have shown that a higher
intake of folates through diet and higher plasma levels of
folate are associated with lower risk of developing polyps
and tumour in the colon [21, 128–131].

Interaction of folates with cancer-related genes
It is now well established that mutations in the BRCA1
and BRCA2 genes can result in defective DNA repair
and lead to the development of breast cancer. As folate
deprivation is linked with chromosomal abnormalities, it
has been proposed that carriers of germinal mutations
to these genes are more susceptible to the genomic
damage caused by low levels of folic acid, when
compared to individuals without the mutation. The
study revealed that the mutation of BRCA1 and BRCA2
did not increase the magnitude of damage caused by
folic acid deficiency. Moderate folic acid deficiency
showed a greater chromosomal instability than the dam-
age observed in mutation carriers [132].
Lack of folic acid can also affect the genetic and epigen-

etic integrity of p53, which is a well-characterised tumour
suppressor [29, 133]. Inactivating mutations of p53 have
been described in cancer [134]. However, it appears that
structural damage to the gene caused by folate deficiency
has no effect on gene transcription, expression and function
and has not prevented folic acid-deprived lymphocytes
from undergoing apoptosis via p53 activation [41, 135]. In
rats, p53 mRNA transcript levels in the colon were
decreased by folic acid deprivation, but no changes were
observed in its methylation status, suggesting that colon
cancer tumorigenesis is initiated by other mechanisms than
p53 inactivation [136].

Excessive folic acid intake and cancer progression
It is generally agreed that high levels of folic acid confer
protective action lowering the risk of malignant disease
[137, 138]. According to the World Health Organization
(WHO) guidelines regarding folic acid intake for pregnant
women, over-supplementation has no negative outcomes
on health [139], which has however been contested in a
number of studies. Selhub and Rosenberg [140] discussed
various issues in discordance with the claims from the
WHO, while Smith et al. [98] highlighted the possibility of
folic acid supplementation not being beneficial for the
population as a whole. For instance, an excessive intake of
folic acid may nourish tumours that have already initiated.
The stage of the malignancy and the time period of folic
acid supplementation could make a substantial difference
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in whether folic acid acts as suppressor of malignant
transformation or promoter of growth for established
tumours [21, 141]. This has been particularly evident for
colorectal cancer [21, 142] and prostate cancer [143]. In
vitro studies on colon cancer cell lines showed that folic
acid supplementation in medium is capable of changing
DNA methylation patterns, as well as altering the prolifer-
ative capacity and phenotype of these cells in culture. This
is of particular importance in understanding the role of
folic acid supplementation on the behaviour of tumours in
terms of phenotypic changes, motility and invasion [144].
Other studies have reported an increased proliferation due
to altered DNA methylation in response to excessive folic
acid supplementation [6, 145].

Folate intake, haematopoiesis and leukaemia
Folate in haematopoiesis
Folic acid and vitamin B12 are involved in the correct pro-
duction and maturation of blood cells from haematopoi-
etic stem cells (HSCs), particularly for the production of
red blood cells [146]. Bills et al. [147] proved that folic
acid-depleted mice showed an ineffective haematopoiesis,
with changes affecting the maturation of progenitor cells.
This is evident in megaloblastic anaemia, a disorder of

erythropoiesis that arises from folic acid or vitamin B12
deficiency. This haematological disorder is characterised
by the accumulations of enlarged, immature erythro-
blasts in the bone marrow due to an impaired DNA syn-
thesis and capacity to divide [148], highlighting the role
of these vitamins in the maintenance of genomic health.

The prenatal origin of leukaemia
Leukaemia is characterised by the presence of acquired
chromosomal rearrangements that are confined to the
diseased bone marrow cells. Retrospective studies car-
ried out on Guthrie cards of individuals that developed
leukaemia during childhood showed the presence of
genetic rearrangements in those archival samples. This
constitutes the proof that the initiating genetic events
leading to leukaemia were already present in utero [149,
150]. Furthermore, secondary events must occur after
birth to promote the cancer through clonal expansion
[151]. Notwithstanding, the exact aetiology of childhood
leukaemia is largely unknown. The causes for the arising
of chromosomal translocations and the methylation
patterns that accompany different leukaemia phenotypes
are still not fully understood. Leukaemogenesis appears
to be a result of genetic and environmental factors,
occurring prior and during pregnancy, but also post-
partum and later in life (Fig. 5). Several environmental
factors have been identified, including exposure to radi-
ation, certain chemicals or infections [152, 153]. The
role of nutrition is also gaining importance, as micronu-
trients are capable of interfering with the genomic
stability, and studies are already being undertaken to
assess the extent of this influence [154, 155].

Maternal intake of folic acid and childhood leukaemia
The current recommended consumption and supple-
mentation of folic acid intake is summarised in Fig. 6.
The recommended daily assumption (RDA) of folic acid
is 400 μg/day in adults, 600 μg/day in pregnant women
and 500 μg/day during lactation. The Estimated Average
Requirements (EARs) are 320, 520 and 450 μg/day, re-
spectively [5]. Folic acid supplementation is required
during pregnancy, first and foremost for the prevention
of NTDs [156]. It appears that consumption of folic acid
and multivitamin supplements reduces the risk of
leukaemia in the offspring, one of the most prevalent
cancers in children under 15 years of age [157]. Al-
though research on this topic has been contradictory
[158–162], recent publications suggest that folic acid
does play a protective role against these malignancies.
Metayer et al. [163] considered 12 studies conducted in

ten countries from 1980 to 2012 to extract data on the in-
take of folic acid and other vitamins in women during and
before pregnancy. According to this epidemiological study,
the risk of acute lymphoblastic leukaemia (ALL) is lowered
when folic acid plus multivitamins were taken during the
year before and during pregnancy. Similarly, the risk for
AML decreased with folic acid intake before and during
pregnancy, but other vitamin intake seemed not to have the
same protective effect. In particular, folic acid supplementa-
tion seemed to have a more evident protective effect
towards AML than ALL, with a diminished incidence of
32% for AML versus 21% for ALL. Vitamin intake was as-
sociated with a decreased risk for ALL of 15%, whereas no
correlation was found with the risk of developing AML.
Despite the lack of information on dosage, it is clear that
folic acid and other vitamins are required during the entire
course of pregnancy, from the very early stages, as has long
been known in regard to NTDs [156]. At doses above
200 μg/day, unmetabolised folic acid is observed in circula-
tion [164]. Since the long-term effects of this phenomenon
have not been investigated, the recommended dosage
(Fig. 6) remains questionable, as well as the potential risks
of the metabolite in plasma [140, 165, 166].
In a recent matched case-control study from Singer

et al. [167], maternal intake of folate, vitamins B12 and
B6, riboflavin and methionine 1 year before pregnancy
were examined, confirming their protective action
against ALL and AML. Similar findings are shown in a
more comprehensive study focusing on the maternal
dietary quality as a whole, rather than individual nutri-
ents [168]. Other case-control studies [169] have investi-
gated the risk for ALL only, the most common form of
childhood leukaemia, finding reduced risk for the disease
linked to maternal supplementation of folic acid.



Fig. 5 Multi-hit hypothesis for the insurgence of childhood leukaemia. The initiation of childhood leukaemia requires multiple oncogenic events to
occur, with the first event occurring in utero and a second hit occurring after birth or later in life. The first event may be called the predisposing
condition at the genomic level that is necessary but not sufficient for the insurgence of cancer. Leukaemia is initiated when a second event promotes
abnormal cell proliferation
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Role of genetic polymorphisms in the development of
childhood leukaemia
Polymorphisms in genes participating in folate metabol-
ism are capable of modifying the pathways through
which folic acid is processed but also influence the
susceptibility to cancer (leukaemia, lung, breast, brain,
colorectal, gastric, head and neck malignancies) and
Fig. 6 Current recommendations for folic acid nutritional requirements
per age. The Institute of Medicine (Food and Nutrition Board)
determined the recommended daily assumption (RDA) and Estimated
Average Requirements (EARs) for folate according to age and status. For
infants (0–12 months), adequate intake (AI) is presented instead, as the
influence of maternal nutrients can interfere with experimental evidence
for RDA and EAR. During pregnancy and lactation, the requirements are
higher, as the developing foetus needs high levels of folic acid. At doses
above 200 μg, unmetabolised folate is detectable in plasma
other diseases. Mutations have been identified in the
MTHFR, TS, MTR and MTRR genes (Fig. 2) [170]. The
most common variants of the MTHFR gene are C677T,
characterised by a C→ T transition, and A1298C, where
an A→ C transversion occurs; both result in reduced
enzymatic activity [171, 172].
A number of studies have been undertaken to under-

stand the role of polymorphisms in genes involved in folic
acid metabolism in the development of childhood leukae-
mia, yielding discordant results. While a reduced suscepti-
bility to ALL has been disproven by some [173–178],
others showed a significant decrease in its insurgence
linked to the presence of polymorphisms [179–182]. Five
studies on the MTHFR 677CT polymorphism did not find
any significant difference in the susceptibility to ALL
[173–177], whereas four studies proved that the poly-
morphism conferred a diminished risk in the development
of the malignancy in the Brazilian and Western European
populations [179–182]. Similar results come from the
MTHFR 677TT variant. While most studies agree on an
insignificant difference in risk for ALL, the Korean popu-
lation showed to have an increased susceptibility due to
the polymorphism [173, 176, 182].
The A1298C variant shows similar conflicting results.

Some data suggest that it plays a role in increasing the
risk for childhood leukaemia [182, 183], although this
has been disproven by others [173, 176, 180]. The MTRR
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A66G polymorphism seemed to confer a reduced risk of
developing ALL in most populations apart from the
Korean population, where the variant did not show to
influence the susceptibility to the disease [184]. Poly-
morphisms of the TSER, the promoter enhancer region
of the TS gene, did not show to be a significant factor in
determining the risk for ALL [185–188].
Milne et al. [161] investigated the risk of ALL in a

population-based case-control study, in which 392 indi-
viduals with polymorphisms in the MTHFR, MTR,
MTRR and CBS genes and 535 controls were analysed,
investigating both parents and progeny. The risk of de-
veloping ALL seemed to be diminished in offspring of
fathers with the genotype MTRR 66GG. The authors
concluded that the risk of ALL in the progeny due to
polymorphisms in genes of the folate metabolism can be
influenced by maternal intake of folic acid, although
more research is needed.
Limited information is available about the susceptibil-

ity to AML. Most studies conclude that there is no asso-
ciation between polymorphisms of MTHFR and the risk
of AML [189–191]. Certain studies, however, have
proven that the polymorphic variant MTHFR C677T is a
risk factor for the development of AML in the Romanian
and Asian populations [192–195].
The differences in these results could be attributable

to genetic and environmental variants in geographic
areas and populations [178, 196].
Most studies on the risk of leukaemia in children have

focused on the role of single nutrients, rather than a
wider understanding of the maternal diet as a whole. It
is likely that several factors and interactions of nutrients
are accountable for the development of the disease. Fur-
ther research is needed to uncover the multiple aspects
of the diet and their effects on the health of the mother
and progeny. Paternal periconceptional folic acid supple-
mentation has also been considered in some studies, but
results are inconclusive [197, 198].

Conclusions
Correct nutrition represents one of the most crucial pro-
tective factors for many pathological conditions includ-
ing cancer. Certain nutrients have proven to detain a
protective and preventive role for the maintenance of
human health. However, the interaction between specific
nutrients and development of disease is complex and
might be influenced by additional dietary and environ-
mental factors, indicating that the association between
maternal folic acid intake and methylation status of the
progeny is non-linear and non-definitive.
Folates are required within the cell for synthesis, repair

and methylation of nuclear and mitochondrial DNA. The
studies examined in this review suggest that folic acid defi-
ciency is capable of interfering with these processes, which
are extremely important during foetal development and, if
altered, are capable of promoting carcinogenesis and the
development of other diseases. In particular, DNA damage
due to lack of folates can lead to the formation of chromo-
somal abnormalities, which are considered a hallmark in
cancer and leukaemia. Overall, folic acid intake during
pregnancy seems to provide protection against the risk of
leukaemia in the offspring.
The exact optimal dosage is still unclear, considering

that excessive intake of folic acid might have serious draw-
backs, including the nourishment of pre-existing cancers
or pre-cancerous conditions. However, the overall dietary
plan in pregnancy, disease and non-disease conditions
should consider the interaction of multiple nutrients,
rather than the accurate dosage of single compounds.
Genomic damage and cancer growth can be potentially
controlled through a combination of different micronutri-
ents and correct dosage. In this respect, personalised nu-
trition could be implemented not only to provide a better
diet plan during pregnancy but also as an adjuvant to anti-
cancer therapies for specific tumours.
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