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Abstract

Background: Worldwide, the prevalence of obesity and insulin resistance has grown dramatically. Gene expression
profiling in blood represents a powerful means to explore disease pathogenesis, but the potential impact of inter-
individual differences in a cell-type profile is not always taken into account. The objective of this project was to
investigate the whole blood transcriptome profile of insulin-resistant as compared to insulin-sensitive individuals
independent of inter-individual differences in white blood cell profile.

Results: We report a 3% higher relative amount of monocytes in the insulin-resistant individuals. Furthermore,
independent of their white blood cell profile, insulin-resistant participants had (i) higher expression of interferon-
stimulated genes and (ii) lower expression of genes involved in cellular differentiation and remodeling of the actin
cytoskeleton.

Conclusions: We present an approach to investigate the whole blood transcriptome of insulin-resistant individuals,
independent of their DNA methylation-derived white blood cell profile. An interferon-related signature characterizes
the whole blood transcriptome profile of the insulin-resistant individuals, independent of their white blood cell
profile. The observed signature indicates increased systemic inflammation possibly due to an innate immune
response and whole-body insulin resistance, which can be a cause or a consequence of insulin resistance. Altered
gene expression in specific organs may be reflected in whole blood; hence, our results may reflect obesity and/or
insulin resistance-related organ dysfunction in the insulin-resistant individuals.
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Background
Obesity is one of the most important risk factors for in-
sulin resistance, and it is linked to low-grade inflamma-
tion [1]. In general, in an obese adipose tissue, the state
of low-grade inflammation has been predominantly at-
tributed to the accumulation of pro-inflammatory mac-
rophages and other immune cells that produce and
secrete pro-inflammatory cytokines [2]. Studies per-
formed in human and mouse have shown that accumu-
lation of T cells precedes macrophage accumulation in
obese adipose tissue [3] and that numerous changes in
their subpopulations are also linked to the development
of obesity and insulin resistance in animal models [4].
On the same note, an increased white blood count was
associated with the development of insulin resistance
[5]. Insulin resistance has been shown to positively cor-
relate with the neutrophil-lymphocyte ratio [6] and
plasma insulin concentration to positively correlate with
the numbers of lymphocytes and monocytes [7].
The study of obesity-associated insulin resistance can be

performed in metabolically active tissues, such as adipose
tissue, liver. or muscle, using gene expression profiling.
Gene expression profiling of whole blood [8] or PBMCs
[9] is also considered for the study of insulin resistance. It
has been shown that approximately 80% of the whole

blood transcriptome gene expression was shared with any
given tissue [10]. Additionally, the changes in the expres-
sion levels of individual genes reflect alterations in the en-
vironment of whole blood or blood cells and may also
reflect organ-specific changes [10]. Hence, blood may be a
beneficial tool for studying insulin resistance, diabetes,
and obesity. However, differential gene expression analysis
performed in the blood does not always take into account
the potential impact from the inter-individual differences
in a cell-type profile. These differences might represent
changes on the cell type-specific level but also reflect
changes in biologically relevant tissues.
Given a tissue, a cell-type profile can be determined

experimentally, such as fluorescence-activated cell sort-
ing, or computationally [11]. In this paper, we present a
computational approach to investigate the whole blood
transcriptome of individuals from the Cohort on Dia-
betes and Atherosclerosis Maastricht (CODAM) [12]
study, a prospective observational cohort that includes
participants with an elevated risk of type 2 diabetes mel-
litus (T2DM) and cardiovascular disease. In this ap-
proach, we used the computational algorithm EpiDISH
[13] to infer the white blood cell (WBC) profile from
whole blood DNA methylation data. Next, we analyzed
RNA sequencing data in the whole blood of the same

Table 1 Demographic and metabolic characteristics of the study participants

Insulin sensitive
(N=92)

Insulin resistant
(N=65)

p

Sex (#) 49 39 0.419

NGM (#) 62 22 0.000

IGM (#) 19 24 0.146

Type 2 diabetes (#) 11 19 0.04

Smoking status (#) 15 10 1

Lipid-lowering medication (#) 29 26 0.26

Glucose-lowering medication (#) 6 8 0.26

Age (years) 65.1 ± 7.1 65.6 ± 6.3 0.683

BMI (kg/m2) 27.2 ± 3.3 31.3 ± 4.5 < 0.001

Waist circumference (cm) 95 ± 8.9 108.6 ± 9.9 < 0.001

Fasting plasma glucose (mmol/L) 5.1 ± 0.6 5.7 ± 0.7 < 0.001

Glycated hemoglobin (mmol/mol) 42.1 ± 0.5 45.4 ± 0.6 0.006

Cholesterol (mg/L) 5.3 ± 1 5.2 ± 1.1 0.586

HDL (mg/L) 1.4 ± 0.3 1.2 ± 0.3 < 0.001

LDL (mg/L) 3.9 ± 1 3.5 ± 1 0.06

Data are mean and ± SD. P values were calculated with the Wilcoxon rank-sum test for the continuous variables and the chi-squared test for the
categorical variables
NGM Normal glucose metabolism, IGM Impaired glucose metabolism
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group of participants. The objective of this project was
to investigate the whole blood transcriptome profile of
insulin-resistant as compared to insulin-sensitive indi-
viduals independent of inter-individual differences in
their WBC profile.

Results
Characteristics of the study participants
Table 1 shows the demographic and metabolic character-
istics, including the WBC profile, of the 157 participants
according to their HOMA2-IR value. There was no signifi-
cant difference in sex between insulin-resistant and
insulin-sensitive individuals. Compared to the insulin-
sensitive participants, those who were insulin resistant had
higher BMI, waist circumference, fasting plasma glucose
and glycated hemoglobin, and lower HDL cholesterol but
did not differ in total and LDL cholesterol.

Insulin-resistant individuals have a higher relative amount
of whole blood monocytes compared to insulin-sensitive
individuals
Compared to the insulin-sensitive participants, those who
were insulin-resistant had a higher relative amount of mono-
cytes (14 ± 7% vs 11 ± 4% FDR-p=0.029, Table 2); indicating
more pronounced monocytosis [14, 15]. The relative amount
of B cells, NK cells, CD4+ T cells, CD8+ T cells, neutrophils,
and eosinophils did not differ between insulin-resistant and
insulin-sensitive participants (Table 2).
Furthermore, we additionally adjusted the DNA

methylation for three covariates, including smoking sta-
tus, lipid- and glucose-lowering medication, to investi-
gate their impact on WBC composition estimation. We
showed that adjusting the DNA methylation data for
smoking status, or lipid-/glucose-lowering medication
does not affect the estimation of the WBC profile, as the
relative amount of B cells, NK cells, CD4+ T cells, CD8+
T cells, neutrophils, and eosinophils did not differ be-
tween the study participants (Table 3).

Effect of adjustment for WBC profile
We performed RNA sequencing on whole blood to as-
sess transcriptome differences between insulin-resistant
and insulin-sensitive participants. The insulin-sensitive
group was used as a reference and the analysis identified
511 significantly upregulated genes in model 1, 387 in
model 2, and 338 in model 3 (Fig. 1A and Table S1). At
the same time, we identified 309 genes significantly
downregulated in model 1, 225 in model 2, and 217 in
model 3 in the insulin-resistant vs the insulin-sensitive
comparison (Fig. 1B and Table S2). Upon adjustment for
multiple testing, none of these genes reached an individ-
ual FDR-p < 0.05. Figure 1 emphasizes the effect of
adjusting for WBC profile compared to model 1, i.e.
fewer differentially expressed genes. We anticipated that
the adjustment for the WBC profile would reduce power
in the models, since we introduced additional covariates;
therefore, the reduced number of significant genes is not
in itself unforeseen. Yet, the reduction in the number of
differentially expressed genes was much stronger than
would be expected from the added number of covariates
and the genes that were no longer significant were
mostly related inflammatory processes, which implies
that these differences were due to differences in the
WBC profile between insulin resistance and insulin-
sensitive individuals (Figures S2 and S3).
To illustrate this effect we show the top 20 biological

processes (nominal p < 0.05) for each model. There was a
clear effect on the significant biological processes when
we additionally adjusted for WBC composition compared
to model 1 (Fig. 2). More specifically, for the upregulated
genes (Fig. 2A, first and middle column), several immune
response processes (e.g., “neutrophil degranulation” or
“neutrophil activation”) were not enriched in model 2,
while for the downregulated genes (Fig. 2B, first and mid-
dle column) cellular processes (e.g., “RNA splicing” or
“mRNA processing”) were not enriched in model 2. Fi-
nally, Figs. 1 and 2 reveal a great overlap in genes and bio-
logical processes between models 2 and 3, which showed
that additional adjustment for lipid-modifying and

Table 2 WBC profile for the study participants

Insulin sensitive (N=92) Insulin resistant (N=65) p FDR-p

B cells (%) 9 ± 3 8 ± 4 0.113 0.306

NK-cells (%) 11 ± 6 10 ± 6 0.299 0.418

CD4T cells (%) 28 ± 14 26 ± 9 0.131 0.306

CD8T cells (%) 10 ± 10 9 ± 9 0.697 0.814

Monocytes (%) 12 ± 4 14 ± 7 0.002 0.016

Neutrophils (%) 26 ± 16 29 ± 16 0.246 0.418

Eosinophils (%) 0 ± 0 0 ± 0 0.947 0.947

EpiDISH was used to estimate the WBC profile from the DNA methylation data. Data are median ± MAD (median absolute deviation). P values were calculated
with the Wilcoxon rank-sum test. Multiplicity correction was performed by applying the Benjamini-Hochberg method to control the false discovery rate. The
median eosinophil composition of 0% means very low abundance

Kalafati et al. Genes & Nutrition           (2021) 16:22 Page 3 of 13



glucose-lowering medication did not materially alter the
results. The complete list of the GO biological processes is
reported for all models in Tables S3–S4.

Higher expression of interferon-stimulated genes in the
insulin-resistant, independent of the WBC profile
The GO enrichment analysis for the upregulated genes, after
adjusting for the WBC profile (model 2) resulted in four sig-
nificant (FDR-p< 0.05) biological processes. The four signifi-
cant biological processes were combined in a network (Fig.

3A). In total, twenty-three genes within these significant bio-
logical processes were unique and upregulated in the insulin-
resistant group. More specifically, they include interferon-
stimulated genes (ISGs), where interferons induce the expres-
sion of those genes, e.g., ISG15, OAS1, OAS2, OAS3, RASD2,
USP18, IFI27, IFI44L, HERC5, ZC3HAV1, FOXP1, ANXA3,
RTP4, AIM2, TRIM5, ZBP1, and XAF1. Other genes upregu-
lated in the insulin-resistant individuals were involved in dif-
ferent innate immune response processes, e.g., IRF4, LTA,
S100A8, IL4R, IL27RA, and CLEC4D. Collectively, these data

Table 3 Differences in the WBC profile of the study participants, adjusted for smoking status, and lipid- and glucose-lowering
medication

Without
adjustment
(reference)

Smoking
status

Lipid-
lowering
medication

Glucose-
lowering
medication

p
Smoking
status vs
reference

p
Lipid-lowering
medication vs
reference

p
Glucose-lowering
medication vs
reference

B cells (%) 9 ± 4 9 ± 4 9 ± 4 9 ± 4 0.734 0.948 0.911

NK cells (%) 11 ± 6 11 ± 6 10 ± 6 11 ± 6 0.959 0.956 0.821

CD4T cells
(%)

27 ± 12 26 ± 12 27 ± 12 27 ± 12 0.820 0.871 0.563

CD8T cells
(%)

9 ± 10 10 ± 10 10 ± 10 10 ± 10 0.953 0.762 0.493

Monocytes
(%)

12 ± 5 12 ± 5 12 ± 5 12 ± 5 0.814 0.956 0.736

Neutrophils
(%)

27 ± 15 27 ± 15 27 ± 15 27 ± 15 0.959 0.827 0.885

Eosinophils
(%)

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.753 0.810 0.781

EpiDISH was used to estimate the WBC profile from the DNA methylation data. Data are median ± MAD. P values were calculated with the Wilcoxon rank-sum test
and the “without adjustment group” was used as a reference. The median eosinophil composition of 0% means very low abundance

Fig. 1 Venn diagram of the numbers of the significantly (nominal p < 0.05) upregulated (A) and downregulated (B) genes, comparing insulin-
resistant to insulin-sensitive individuals. Three models were used: adjusted for sex, BMI, and age (model 1); additionally adjusted for the WBC
profile (model 2); and additionally adjusted for lipid and glucose-lowering medication (model 3)

Kalafati et al. Genes & Nutrition           (2021) 16:22 Page 4 of 13



show an interferon-related signature characterizing the whole
blood transcriptome profile of the insulin-resistant
individuals.

Lower expression of genes involved in cellular
differentiation and remodeling of actin cytoskeleton in
insulin resistance, independent of the WBC profile
The GO enrichment analysis for the downregulated
genes, after adjusting for the WBC profile resulted in
nine significant (FDR-p < 0.05) biological processes.
These nine significant biological processes were com-
bined in a network (Fig. 3B). In total, twenty genes were
unique and downregulated in the insulin-resistant group.
More specifically, they include (i) genes involved in cel-
lular differentiation and adhesion, e.g., GATA2, S100B,
PTK6, SEMA7A, SPAG9, NTRK1, NPTN, SS18L1, and
CASS4. Furthermore, we identified (ii) genes involved in
the reorganization of the actin cytoskeleton, e.g., LPAR1,
RHOQ, LIMK1, TRIOBP, AVIL, PACSIN1, BAIAP2, and
OBSL1, along with genes involved in (iii) vitamin C
transport, e.g., SLC23A1 and SLC23A2 and (iv) a gene
that promotes hepatic uptake of cholesterol from HDL
(SCARB1). Collectively, these data show the

downregulation of cellular differentiation and actin cyto-
skeleton remodeling in the insulin-resistant group.

Analysis to test the effect of lipid-/glucose-lowering
medication
Exclusion of those who use lipid-modifying and/or
glucose-lowering medication did not materially alter the
results (Tables S5, S6, S7 and S8).

Discussion
In this paper, we present an approach that employs
DNA methylation data to investigate the whole blood
transcriptome of insulin-resistant and insulin-sensitive
individuals from the CODAM study, independent of the
WBC profile. We used the whole blood transcriptome as
a means that reflects the whole blood environment along
with insulin resistance-related organ-specific changes.
We showed the relative amount of monocytes to be sig-
nificantly greater in the insulin-resistant participants.
Furthermore, we demonstrated a distinct whole blood
transcriptome profile in insulin resistance, independent
of the WBC profile. More specifically, we showed a
higher expression of ISGs and a lower expression of

Fig. 2 Heatmaps representing the top 20 GO biological processes for the comparison of insulin-resistant to insulin-sensitive individuals, for the
upregulated (A) and downregulated (B) genes. Three models were used: adjusted for sex, BMI, and age (model 1); additionally adjusted for the
WBC profile (model 2); and additionally adjusted for lipid and glucose-lowering medication (model 3). The GO biological processes were ranked
based on their nominal p < 0.05. The color was based on the log2 fold change of the genes that were used as an input for the GO enrichment
analysis; red gradients indicate upregulation and blue gradients downregulation. NA indicates that the process was not enriched
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genes related to cell differentiation and actin remodeling
characterizing individuals with insulin resistance.
The higher percentage of monocytes in the insulin-

resistant participants is in line with previous findings
[14, 15]. More specifically, De Matos et al. found that
insulin-resistant, but not insulin-sensitive, obese individ-
uals, had an increased percentage of CD14+ CD16+
monocytes compared to healthy control [14]. In
addition, Poitou et al. described a higher percentage of

CD16+ monocytes in obese insulin-resistant individuals
[15]. Hyperglycemia per se may also promote myelopoi-
esis, which in turn results in increased production and
infiltration of monocytes into the atherosclerotic plaques
[16, 17]. Interestingly, both insulin resistance and hyper-
glycemia are risk factors for atherosclerosis [18]. Upon
entry into a tissue, monocytes differentiate into macro-
phages and dendritic cells and exert effects on the tissue
homeostasis. For example, inhibition of colonic

Fig. 3 Two networks of the selected GO biological processes for the comparison of insulin-resistant to insulin-sensitive individuals after adjustment for
WBC profile (model 2) for the upregulated (A) and downregulated (B) genes. The gene expression log2 fold changes are visualized on the nodes of
the network. Genes are visualized as circles; the colors are based on their log2 fold change, and hence, the gradients of red indicate upregulation and
blue indicate downregulation
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macrophage recruitment in the gut promotes insulin
sensitivity [19], and accumulation of macrophages in
adipose tissue is associated with insulin resistance [20].
Thus, causal relationship between monocytosis on the
one hand and insulin resistance and hyperglycemia on
the other may comprise a vicious cycle in which the
order of events is unclear. Hence, we do not know
whether the higher percentage of monocytes we observe
in the obese/overweight insulin-resistant individuals is a
cause or consequence of insulin resistance.
Furthermore, the observed overrepresentation of

monocytes suggests a relative underrepresentation of
other cell types. Since each circulating WBC subtype is
characterized by the expression of a certain set of genes,
we anticipated that the differences in the WBC profile
between insulin-resistant and insulin-sensitive partici-
pants would drive overall whole blood gene expression.
Hence, by adjusting for differences in the WBC profile
we remove this confounding effect. The effect of inter-
person differences in a cellular profile and its contribu-
tion to bulk tissue gene expression has been previously
reported [21–25]. Briefly, biological tissue samples are
characterized by heterogeneous and varying cellular
composition. Particularly if a researcher is primarily in-
terested in the identification of changes in expression of
genes across conditions, concomitant changes in cell
type composition can hamper data interpretation, as de-
tecting differentially expressed genes is strongly affected
by the sample variation in cell-type frequencies. In par-
ticular, Shen-Orr and Gaujoux concisely summarized
and proposed several ways to adjust for cellular profile
changes, e.g., to include them as covariates in a regres-
sion model [23]. In line with our results, Qiao et al. re-
ported different enriched processes in human blood
when adjusting for cellular profile changes [24]. Add-
itionally, and similarly to our results, Zhuang et al. re-
ported less differentially expressed genes when adjusting
for the cellular profile in hippocampal gene expression
in mouse models of Alzheimer’s disease [25].
As we show in Fig. 1 and in Figures S2 and S3, before

adjustment for the WBC profile, immunological path-
ways were overrepresented in the GO analysis. This be-
came less apparent after adjustment, indicating that
these immunological pathways were actually a reflection
of the WBC composition. Furthermore, for the upregu-
lated genes (Figure S2, first and middle column), several
genes usually involved in immune response processes
(e.g., IFIT1, IFI6, IRF7, IRF9, IL1RN) were not differen-
tially expressed in model 2. On the same note, for the
downregulated genes (Figure S3, first and middle col-
umn), several genes usually involved in intracellular pro-
cesses (e.g., PDZK1, UST, PTGDR, CHCHD7) were not
differentially expressed in model 2. Interestingly, several
of the up- and downregulated genes became

differentially expressed after adjusting for the WBC pro-
file. Taken together, adjustment for WBC profile in the
whole blood, as we did in our current differential gene
expression analysis, adds a layer of information that
would otherwise remain elusive while substantially im-
proving the biological interpretation of the data.
We observed higher expression of the S100 Calcium

Binding Protein A8 (S100A8) gene in the insulin-
resistant individuals, independent of the WBC profile.
Increased gene expression of S100A8 in whole blood
has been described in individuals with the metabolic
syndrome [8] and obese individuals [26] and associ-
ated with ROS generation [8, 26]. Furthermore, stud-
ies in humans and mice have reported increased
expression of S100A8 and S100A9 in adipose tissue of
obese and diabetic subjects [27, 28]. Interestingly, in
our analysis, the S100A9 was not significant after
adjusting for the WBC profile. Nevertheless, calpro-
tectin advances ROS generation binds to the toll-like
receptor 4 and receptor for advanced glycation and
products (RAGE), important signaling pathways in-
volved in the pathogenesis of atherosclerosis [26].
Yamaoka et al. hypothesized that the S100A8 (as well
as S100A9 and S100A12) gene might be involved in
the development of atherosclerosis and type 2 dia-
betes [26]. In our analysis, the higher expression of
the S100A8 gene in insulin resistance is independent
of the WBC profile, but the WBC profile activity and
the S100A8/A9-RAGE pathway may be of importance
in the etiology of atherosclerosis.
Furthermore, we observed that, independent of the

WBC profile, the expression of ISGs in the whole blood
was higher in insulin-resistant as compared to insulin-
sensitive individuals. A positive association between BMI
of obese subjects and the increased expression of type I
interferon ISGs has been previously reported in human
PBMCs [29]. Furthermore, van der Pouw Kraan et al. de-
scribed an increase in type I interferon ISGs expression
in type 2 diabetes subjects [30]. ISGs constitute a group
of genes that are upregulated in response to interferon,
indicating increased inflammation due to an innate im-
mune response [31]. Obese individuals are prone to in-
fections and have a worsened immune response to viral
and bacterial infections [32]. Interestingly, it has been
previously shown that viral infections can increase
leukocyte interferon production and may cause systemic
insulin resistance [33] or muscle insulin resistance [34].
Obesity is also characterized by low-grade inflammation
and secretion of pro-inflammatory cytokines into circu-
lation, which may advance insulin resistance [1]. Hence,
this interferon-related signature indicates increased sys-
temic inflammation possibly due to an innate immune
response and whole-body insulin resistance, which can
be a cause or consequence of insulin resistance.
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Independent of the WBC profile, we additionally ob-
served a lower expression of genes involved in cellular
differentiation and reorganization of the actin cytoskel-
eton, in the whole blood of insulin-resistant individuals.
Cellular differentiation is regulated through activation
and repression of transcription factors and is associated
with changes in cell shape, mainly determined by the dy-
namics of the actin cytoskeleton. Interestingly, the tran-
scription factor GATA2 and the calcium-binding protein
S100B were among the most downregulated genes in the
insulin-resistant individuals. Tangen et al. reported
GATA2 downregulated in whole blood gene expression
profiles in individuals with the metabolic syndrome [8].
Additionally, Okitsu et al. reported that interferon-
gamma decreased GATA2 expression in TBR343 cells
(pre-adipocyte stromal cell line), suggesting that
interferon-gamma may influence phenotypic changes in
both hematopoietic and mesenchymal cells by suppres-
sion of GATA2 [35].
Yamaoka et al. showed a positive correlation between

the whole blood S100A8 gene and visceral fat adiposity,
which was strongly associated with measures of insulin
resistance and inflammation [26]. Ghosh et al. reported
that induction of type I interferon in visceral adipose tis-
sue contributes to low-grade inflammation by stimulat-
ing polarization of pro-inflammatory macrophages,
therefore advancing adipose and systemic insulin resist-
ance in obese individuals [36]. Lee et al. reported in-
creased expression of ISGs in the adipocytes of obese
subjects, suggesting a reaction to interferon secreted by
lymphocytes [37]. Previous studies have hypothesized
that altered gene expression in specific organs may be
reflected in whole blood or blood cells [10, 30]. Hence,
we think that the systemic inflammation in combination
with the downregulation of cellular differentiation and
remodeling of actin cytoskeleton we observe in the
whole blood of the insulin-resistant individuals may re-
flect obesity and/or insulin resistance-related organ dys-
function (e.g., adipose tissue or gut) in the insulin-
resistant individuals.
The main strength of this study is the use of the com-

putational algorithm EpiDISH [13] and the DNA methy-
lation data to infer the WBC profile, as an alternative
approach to transcriptomics inferred WBC profile. Using
the DNA methylation data instead of the transcriptomics
data from CODAM to infer the WBC profile enabled us
to perform a differential gene expression analysis with-
out the risk of introducing bias. Also, we adjusted for
differences in WBC profile because we anticipated that
the difference in WBC profile between insulin-resistant
and insulin-sensitive individuals would drive overall
whole blood gene expression. Indeed, the GO analysis
before adjustment was overrepresented by immuno-
logical pathways, which became less apparent after

adjustment. Finally, compared to flow-cytometry, com-
putational algorithms (e.g., EpiDISH, CIBERSORT) are
inexpensive, readily available, and extensively validated
against flow-cytometric (FACS) estimates [11, 13]. On
that note, EpiDISH is able to handle whole blood sam-
ples; estimates for the relative proportions of PBMC sub-
types (lymphocytes (T cells, B cells, NK cells) and
monocytes) within the PBMC pool are consistent when
using whole blood or PBMC only samples [13].
A limitation of this study is that we do not have abso-

lute numbers for the WBC subtypes. Absolute numbers
of cell type amounts in a tissue are important for prog-
nosis and diagnosis in clinical applications [13]. In clin-
ical applications, the WHO in HIV treatment guidelines
accepts relative numbers, but in medical practice, the
decision for treatment depends on absolute numbers
(cell counting per volume) [38]. Therefore, it would be
interesting for future studies to investigate the differ-
ences in adjustment for relative or absolute differences
in WBC profile on blood transcriptome analysis and
subsequent biological interpretation in the context of
obesity/insulin resistance.
Taken together, if DNA methylation and RNA sequen-

cing data are available, we would recommend our pro-
posed approach to other researchers, as it enables a
differential gene expression analysis without the risk of
introducing bias caused by differences in cell type com-
position between individual samples, thereby enabling a
more comprehensive biological interpretation. To our
knowledge, this cross-sectional analysis is the first to
show that an interferon-related signature characterizes
the whole blood transcriptome profile of overweight/
obese insulin-resistant individuals, independent of WBC
profile, which can be a cause or consequence of insulin
resistance. In addition, we show higher expression of the
S100A8 gene in insulin resistance independent of the
WBC profile. Recently the beneficial role of the
hematopoietic-restricted deletion of S100A8 and S100A9
in preventing monocytosis has been reported [17], while
Yamaoka et al., hypothesized that the S100A8 gene
might be involved in the development of atherosclerosis
[26]; therefore, we speculate that the higher expression
of the S100A8 gene in insulin resistance independent of
the WBC profile, may be of importance in the etiology
of atherosclerosis. Our findings of the differential whole
blood transcriptome in insulin resistance may provide
targets and biomarkers for more personalized risk classi-
fication in the prevention and treatment of cardiometa-
bolic disease.

Conclusions
In conclusion, we have presented an approach to investi-
gate the whole blood transcriptome of insulin-resistant
individuals, independent of their DNA methylation-
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derived WBC profile. We reported a 3% higher relative
amount of monocytes in the insulin-resistant individuals.
We anticipated that the differences in WBC profile be-
tween insulin-resistant and insulin-sensitive individuals
would affect overall whole blood gene expression, there-
fore we adjusted for the WBC profile. We observed a
higher expression of ISGs in the whole blood in insulin-
resistant individuals, independent of the WBC profile.
This interferon-related signature indicates increased sys-
temic inflammation possibly due to an innate immune
response and whole-body insulin resistance. We add-
itionally observed a lower expression of genes involved
in cellular differentiation and reorganization of the actin
cytoskeleton, in the whole blood of insulin-resistant in-
dividuals, independent of WBC profile. Altered gene ex-
pression in specific organs may be reflected in whole
blood; hence, we think that our results may reflect obes-
ity and/or insulin resistance-related organ dysfunction in
the insulin-resistant individuals.

Methods
Subject characteristics
The CODAM study is a prospective observational cohort
that includes participants with an elevated risk of T2DM
and cardiovascular disease. Participants were selected
from a large population-based cohort as previously de-
scribed [39]. Briefly, inclusion criteria were Caucasian
descent and age > 40 years and, in addition, at least one
of the following: BMI > 25 kg m2; a family history of
T2DM; a history of gestational diabetes and/or gluco-
suria; and use of anti-hypertensive medication. Combi-
nations of these separate inclusion criteria were also
allowed. The participants were extensively characterized
with regard to their metabolic, cardiovascular, and life-
style profiles during two visits to the University’s re-
search unit. Data were collected for 574 participants at
baseline and for 495 participants at follow-up of 7 years.
Whole blood DNA methylation and transcriptome data
were generated in the follow-up samples of participants
who had been free of cardiovascular disease and type 2
diabetes at baseline. A prerequisite for our participants
was to have HOMA2-IR values, DNA methylation, and
RNA sequencing data. Individuals without these data
were not included in our analysis. Hence, the final data-
set included 157 participants (Figure S1). The medical
ethics committee of the Maastricht University approved
this study. All participants gave written informed
consent.

Assessment of insulin resistance by Homeostasis Model
Assessment
Insulin resistance was estimated according to the
HOMA using the HOMA2 calculator (http://www.dtu.
ox.ac.uk) [40]. A HOMA2-IR cut-off value of 1.7 was

chosen based on the 75th percentile [41] of the partici-
pants with normal glucose metabolism because they pro-
vide the best approximation of the normal values of the
CODAM study population; thus, participants with
HOMA2-IR above or equal to 1.7 were defined as insu-
lin resistant, whereas those with HOMA2-IR below 1.7
were defined as insulin sensitive.

Statistical analyses
Participant characteristics
We assessed the phenotypic differences between the
insulin-resistant and insulin-sensitive participants. Be-
cause the majority of continuous variables were not nor-
mally distributed, the median and median absolute
deviation (MAD) were shown. In addition, for the same
reason, a Wilcoxon rank-sum test for the continuous
variables and a chi-squared test for the categorical vari-
ables was used. Multiplicity correction was performed
on the p values by applying the Benjamini-Hochberg
method to control the false discovery rate (FDR). The
threshold for statistical significance was set at p < 0.05
for nominal and FDR p values.

Estimating WBC blood profiles using DNA methylation
data
Genome-wide DNA methylation analysis
A detailed description regarding the generation and pro-
cessing of the DNA methylation data can be found else-
where [42]. Briefly, DNA was obtained from the
antecubital vein and the buffy coat (representing the
white blood cell fraction of the whole blood sample) was
collected for DNA isolation. The Zymo EZ DNA methy-
lation kit was used to bisulfite-convert 500 ng of gen-
omic DNA, and 4 μl of bisulfite-converted DNA was
measured on the Illumina Human Methylation 450 array
according to the manufacturer’s protocol. The methyla-
tion level was quantified in beta-values [43]. The beta-
value, ranging from 0 to 1, is the ratio of the methylated
probe intensity and the overall intensity (sum of methyl-
ated and unmethylated probe intensities), representing
the fraction of methylated CpGs at a given single CpG
locus. The final dataset consisted of 485,512 methylation
probes measured in 157 samples.
The WBC profile in whole blood was determined

through the Bioconductor package EpiDISH (v2.2.2), a
computational algorithm that estimates tissue cell frac-
tions from DNA methylation data [13]. EpiDISH is an
extension of the CIBERSORT algorithm [11], which is a
general framework that can be applied to diverse cell
phenotypes and genomic data types.
Briefly, as input, EpiDISH requires a “signature matrix”

comprised of genomic loci that have distinct DNA
methylation patterns between the cell types of interest.
Once a suitable knowledge base is created and validated,
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EpiDISH can be applied to characterize cell type propor-
tions in bulk tissue DNA methylation profiles. The DNA
methylation beta values served as input for the CIBER-
SORT algorithm [11] to calculate the amounts of a
priori known cell subtypes from DNA methylation in
blood. EpiDISH estimates the WBC profile from the
relative amount of seven WBC subtypes, namely B cells,
NK cells, CD4+T cells, CD8+T cells, monocytes, neutro-
phils, and eosinophils.
We additionally adjusted the DNA methylation for

three covariates, including smoking status, lipid- and
glucose-lowering medication, to investigate their impact
on WBC composition estimation. In their review, Li
et al. mention several epigenome-wide association stud-
ies that found associations between smoking status and
CpG methylation levels at specific genomic loci [44].
Furthermore, there is evidence of DNA methylation as a
potential mechanism, by which lipid-/glucose-lowering
medications use, e.g., statins or metformin, can lead to
adverse metabolic alterations and subsequently type 2
diabetes [45, 46]. If these loci are also used as cell type-
specific loci to estimate cell type composition, this may
result in confounded composition estimates for smokers
or individuals that take lipid-/glucose-lowering medica-
tion. Hence, three linear models were implemented (i)
adjusted for smoking status (current smoker = 1,
non-smoker = 0), (ii) adjusted for lipid-lowering
medication (on lipid-lowering medication = 1, without
lipid-lowering medication = 0), and (iii) adjusted for
glucose-lowering medication (on glucose-lowering
medication = 1, without glucose-lowering medication
= 0). The DNA methylation beta values were trans-
formed to M-values with the function beta2m [47].
The beta coefficient of the covariates of each inde-
pendent model was subtracted from the M-values. Fi-
nally, the M-values were transformed again to beta
values with the function m2beta [47], and the WBC
profile was estimated anew.

Transcriptome analysis
Briefly, whole blood was collected into PAX gene Blood
RNA tubes according to the manufacturer’s instruction
and stored at -80 until use. Total RNA was extracted
from the whole blood as previously described [48] and
the sequencing reads were mapped to human genome
(HG19). Only reads with both ends mapping onto a sin-
gle gene were considered. The final dataset consisted of
46,628 protein coding and non-coding genes measured
in 157 samples.

Differential gene expression analysis
After preprocessing, we performed a differential gene ex-
pression analysis on RNA-sequencing data for 46,628
genes and 157 samples using the Bioconductor package

edgeR (v3.28.1) [49]. Before fitting a linear model, firstly
pre-filtering of low count genes was applied, where
genes that have CPM values above 0.5 in at least two li-
braries are kept [50]; hence, 23,787 genes remained. Sec-
ondly, based on the FPKM values that were calculated,
genes with at least 1 FPKM in 5% of the samples were
kept [51]. Eventually, in the final dataset 17,658 genes
remained measured in 157 samples. The differential ex-
pression analysis implements a negative binomial gener-
alized linear model with the insulin-resistant and
insulin-sensitive groups; the insulin-sensitive group was
used as a reference. Three models were used: (i) adjusted
for sex, BMI, and age (henceforth referred to as model
1); (ii) additionally adjusted for WBC profile (model 2);
and (iii) additionally adjusted for differences in lipid and
glucose-lowering medication (model 3). All significantly
differentially expressed genes (nominal p< 0.05) were di-
vided into up- (nominal p< 0.05 and log2 fold change >
0) and downregulated (nominal p< 0.05 and log2 fold
change < 0) genes.

Gene Ontology analysis
Gene Ontology (GO) enrichment analysis was per-
formed for each of the three models separately using the
Bioconductor package clusterProfiler (v3.16.1) [52]. The
ontology biological process was used. All significantly
expressed genes were included, divided into up- and
downregulated genes to provide direction for the in-
volved biological processes [23].

Network analysis
To facilitate interpretation, the significant (based on an
individual FDR-p < 0.05) GO biological processes were
imported and visualized as networks were in Cytoscape
(v3.8.0) [53] with the function createNetworkFromIgraph
from the Bioconductor package RCy3 (v3.11) [54]. The
gene expression data were visualized on the nodes of the
networks.

Analysis to test the effect of lipid-/glucose-lowering
medication
The differential gene expression analysis was repeated
excluding the participants that were taking lipid- and/
or glucose-lowering medication. This reduced dataset
consisted of 17 651 genes in 99 samples. Two linear
models were used with the insulin-resistant and
insulin-sensitive groups (the insulin-sensitive group
was used as a reference): (i) adjusted for sex, BMI,
and age and (ii) additionally adjusted for the WBC
profile. GO analysis was performed as described in
the previous section.
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