Skip to main content
  • Published:

Nutrition, sirtuins and aging

Abstract

Beyond our inherited genetic make-up environmental factors are central for health and disease and finally determine our life span. Amongst the environmental factors nutrition plays a prominent role in affecting a variety of degenerative processes that are linked to aging. The exponential increase of non-insulin-dependent diabetes mellitus in industrialized nations as a consequence of a long-lasting caloric supernutrition is an expression of this environmental challenge that also affects aging processes. The most consistent effects along the environmental factors that slow down aging — from simple organisms to rodents and primates — have been observed for caloric restriction. In the yeast Saccharomyces cerevisiae, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, sirtuins (silencing information regulators) have been identified to mediate as “molecular sensors” the effects of caloric restriction on aging processes. Sirtuins are NAD+-dependent deacetylases that are activated when e.g. cell energy status is low and the NAD+ over NADH ratio is high. As a consequence transcription rates of a variety of genes including that of the apoptosis inducing p53 gene are reduced. Moreover, in C. elegans, sirtuins were shown to interact with proteins of the insulin/IGF-1 signaling cascade of which several members are known to extend life span of the nematodes when mutated. Downstream targets of this pathway include genes that encode antioxidative enzymes such as Superoxide dismutase (SOD) whose transcription is activated when receptor activation by insulin/IGF is low or when sirtuins are active and the ability of cells to resist oxidative damage appears to determine their life span. Amongst dietary factors that activate sirtuins are certain polyphenols such as quercetin and resveratrol. Whereas their ability to affect life span has been demonstrated in simple organisms, their efficacy in mammals awaits proof of principle.

References

  • Ailion, M., Inoue, T., Weaver, C.I., Holdcraft, R.W. and Thomas, J.H. (1999) Neurosecretory control of aging in Caenorhabditis elegans.Proceeding of the National Academy of Sciences USA 96, 7394–7397.

    Article  CAS  Google Scholar 

  • Alcedo, J. and Kenyon, C. (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons.Neuron 41, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.M., Latorre-Esteves, M., Neves, A.R., Lavu, S., Medvedik, O., Taylor, C, Howitz, K.T., Santos, H. and Sinclair, D.A. (2003) Yeast life-span extension by calorie restriction is independent of NAD fluctuation.Science 302, 2124–2126.

    Article  PubMed  CAS  Google Scholar 

  • Apfeld, J. and Kenyon, C. ( 1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans.Nature 402, 804–809.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Sasaki, Y. and Milbrandt, J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration.Science 305, 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  • Baek, S.H., Min, J.N., Park, E.M., Han, M.Y., Lee, Y.S., Lee, Y.J. and Park, Y.M. (2000) Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle.Journal of Cellular Physiology 183, 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M., Bonafe, M., Franceschi, C. and Paolisso, G. (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans.American Journal of Physiology: Endocrinology and Metabolism 285, El064–1071.

    Google Scholar 

  • Barzilai, N. and Gupta, G. (1999) Interaction between aging and syndrome X: new insights on the pathophysiology of fat distribution.Annals of the New York Academy of Sciences 892, 58–72.

    Article  PubMed  CAS  Google Scholar 

  • Bernarducci, M.P and Owens, N.J. (1996) Is there a fountain of youth? A review of current life extension strategies.Pharmacotherapy 16, 183–200.

    PubMed  CAS  Google Scholar 

  • Blander, G. and Guarente, L. The Sir2 family of protein deacetylases.Annual Reviews in Biochemistry 73, 417–435.

  • Bluher, M., Kahn, B.B. and Kahn, C.R. (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue.Science 299, 572–574.

    Article  PubMed  Google Scholar 

  • Bray, G.A. (2004) Medical consequences of obesity.Journal of Clinical Endocrinology & Metabolism 89, 2583–2589.

    Article  CAS  Google Scholar 

  • Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, PL., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W. and Greenberg, M.E. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.Science 303, 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W.Y., Wang, D.H., Yen, R.C., Luo, J., Gu, W. and Baylin, S.B. (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses.Cell 123, 437–448.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R. and Sinclair, D.A. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.Science 305, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Coschigano, K.T., Clemmons, D., Bellush, L.L. and Kopchick, J.J. (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice.Endocrinology 141, 2608–2613.

    Article  PubMed  CAS  Google Scholar 

  • Escobedo, J., Pucci, A.M. and Koh, T.J. (2004) HSP25 protects skeletal muscle cells against oxidative stress.Free Radical Biology and Medicine 37, 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J, Bussiere, F. and Hekimi, S. (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans.Developmental Cell 1, 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D.B. and Johnson, T.E. (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility.Genetics 118, 75–86.

    PubMed  CAS  Google Scholar 

  • Frye, R.A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.Biochemical and Biophysical Research Communications 273, 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Grubisha, O., Smith, B.C. and Denu, J.M. (2005) Small molecule regulation of Sir2 protein deacetylases.Federation of European Biochemistry Society Journal 272, 4607–4616.

    CAS  Google Scholar 

  • Gupta, G., Cases, J.A., She, L., Ma, X.H., Yang, X.M., Hu, M., Wu, J., Rossetti, L. and Barzilai, N. (2000) Ability of insulin to modulate hepatic glucose production in aging rats is impaired by fat accumulation.American Journal of Physiology: Endocrinology and Metabolism 278, E985–991.

    PubMed  CAS  Google Scholar 

  • Hertweck, M., Gobel, C. and Baumeister, R. (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span.Developmental Cell 6, 577–588.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R. (1989) Food, reproduction and longevity: is the extended life span of calorie-restricted animals an evolutionary adaptation?Bioessays 10, 125–127.

    Article  PubMed  CAS  Google Scholar 

  • Holt, PR., Moss, S.F., Heydari, A.R. and Richardson, A. (1998) Diet restriction increases apoptosis in the gut of aging rats.Journal of Gerontology Series A: Biological Sciences and Medical Sciences 53, B168–172.

    CAS  Google Scholar 

  • Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., Scherer, B. and Sinclair, D.A. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.Nature 425, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Hoyert, D.L., Arias, E., Smith, B.L., Murphy, S.L. and Kochanek, K.D. (2001) Deaths: final data for 1999.National Vitality Status Report 49, 1–113.

    Google Scholar 

  • Hursting, S.D. and Kari, F.W. (1999) Theanti-carcinogeniceffects of dietary restriction: mechanisms and future directions.Mutation Research 443, 235–249.

    PubMed  CAS  Google Scholar 

  • Jee, C., Vanoaica, L., Lee, J., Park, B.J. and Ahnn, J. (2005) Thioredoxin is related to life span regulation and oxidative stress response in Caenorhabditis elegans.Genesto Cells 10, 1203–1210.

    Article  CAS  Google Scholar 

  • Johnson, T.E., Henderson, S., Murakami, S., de Castro, E., de Castro, S.H., Cypser, J., Rikke, B., Tedesco, P. and Link, C. (2002) Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease.Journal of Inherited Metabolic Disease 25, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, C. (2005) The plasticity of aging: insights from long lived mutants. Cell120, 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtiang, R. (1993) A C. elegans mutant that lives twice as long as wild type.Nature 366, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Koubova, J. and Guarente, L. (2003) How does calorie restriction work?Genes and Development 17, 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Lakowski, B. and Hekimi, S. (1998) The genetics of caloric restriction in Caenorhabditis elegans.Proceeding of the National Academy of Sciences USA 95, 13091–13096.

    Article  CAS  Google Scholar 

  • Lin, K., Dorman, J.B., Rodan, A. and Kenyon, C. (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans.Science 278, 1319–1322.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R. and Guarente, L. (2002) Calorie restriction extends Saccharomyces cerevisiae life span by increasing respiration.Nature 418, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Merry, B.J. (2004) Oxidative stress and mitochondrial function with aging—the effects of calorie restriction.Aging Cell 3, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I. (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.Molecular Biology of the Cell 16, 4623–4635.

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, PP, Lanfrancone, L. and Pelicci, P.G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals.Nature 402, 309–313.

    Article  PubMed  CAS  Google Scholar 

  • Mobbs, C.V., Bray, G.A., Atkinson, R.L., Bartke, A., Finch, C.E., Maratos-Flier, E., Crawley, J.N. and Nelson, J.F. (2001) Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases life span.Journal of Gerontology Series A: Biological Sciences and Medical Sciences 56, 34–44.

    Google Scholar 

  • Moller, D.E. and Kaufman, K.D. (2005) Metabolic syndrome: a clinical and molecular perspective.Annual Review of Medicine 56, 45–62.

    Article  PubMed  CAS  Google Scholar 

  • Moon, Y.S. and Kashyap, M.L. (2004) Pharmacologic treatment of type 2 diabetic dyslipidemia.Pharmacotherapy 24, 1692–1713.

    Article  PubMed  CAS  Google Scholar 

  • Mora, S. and Pessin, J.E. (2002) An adipocentric view of signaling and intracellular trafficking.Diabetes/Metabolism Research and Reviews 18, 345–356.

    Article  PubMed  CAS  Google Scholar 

  • Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A. and Ruvkun, G. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans.Nature 389, 994–999.

    Article  PubMed  CAS  Google Scholar 

  • Osawa, T. and Kato, Y. (2005) Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia.Annals of the New York Academy of Sciences 1043, 440–451.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri, L., Mameli, M. and Ronca, G. (1999) Effect of resveratrol and some other natural compounds on tyrosine kinase activity and on cytolysis.Drugs under Experimental and Clinical Research 25, 79–85.

    PubMed  CAS  Google Scholar 

  • Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H. and Neri, C. (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons.Nature Genetics 37, 349–350.

    Article  PubMed  CAS  Google Scholar 

  • Parkes, T.L., Elia, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P and Boulianne, G.L. (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons.Nature Genetics19, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Parkes, T.L., Hilliker, A.J. and Phillips, J.P. (1999) Motorneurons, reactive oxygen, and life span in Drosophila.Neurobiology and Aging 20, 531–535.

    Article  CAS  Google Scholar 

  • Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W. and Guarente, L. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma.Nature 429, 771–776.

    Article  PubMed  CAS  Google Scholar 

  • Revollo, J.R., Grimm, A.A. and Imai, S. (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.Journal of Biological Chemistry 279, 50754–50763.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M. and Puigserver, P. (2005) Nutrient control of glucose homeostasis through acomplexofPGC-lalpha and SIRT1.Nature 434, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, D.R, Sapp, P., O’Regan, J., McKenna-Yasek, D., Schlumpf K.S., Haines, J.L., Gusella, J.F., Horvitz, H.R. and Brown, R.H. Jr. (1994) Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers.American Journal of Medical Genetics 51, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Schinner, S., Scherbaum, W.A., Bornstein, S.R. and Barthel, A. (2005) Molecular mechanisms of insulin resistance.Diabetic Medicine 22, 674–682.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M.T., Smith, B.C., Jackson, M.D. and Denu, J.M. (2004) Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.Journal of Biological Chemistry 279, 40122–40129.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. (2002) Human Sir2 and the ‘silencing’ of p53 activity.Trends in Cell Biology 12, 404–406.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos, J.L., Escalante-Semerena, J.C., Grubmeyer, C., Wolberger, C. and Boeke, J.D. (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family.Proceedings of the National Academy of Sciences USA 97, 6658–6663.

    Article  CAS  Google Scholar 

  • Tissenbaum, H.A. and Guarente, L. (2001) Increased dosage of a sir-2 gene extends life span in Caenorhabditis elegans.Nature 410, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Toth, M.J. and Tchernof, A. (2000) Lipid metabolism in the elderly.European Journal of Clinical Nutrition 54, S121–125.

    PubMed  CAS  Google Scholar 

  • Tuljapurkar, S., Li, N. and Boe, C. (2000) A universal pattern of mortality decline in the G7 countries.Nature 405, 789–792.

    Article  PubMed  CAS  Google Scholar 

  • Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., Lu, X., Soron, G., Cooper, B., Brayton, C., Hee Park, S., Thompson, T., Karsenty, G., Bradley, A. and Donehower, L.A. (2002) p53 mutant mice that display early ageing-associated phenotypes.Nature 415, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A.R. and Walker, B.F. (1993) Nutritional and non nutritional factors for ‘healthy’ longevity.Journal of the Royal Society of Health 113, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Zhai, Q., Chen, Y., Lin, E., Gu, W., McBurney, M.W. and He, Z. (2005) A local mechanism mediates NAD-dependent protection of axon degeneration.Journal of Cell Biology 170, 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. and Tissenbaum, H.A. (2005) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO.Mechanisms of Ageing and Development 127, 48–56.

    Article  PubMed  Google Scholar 

  • Weindruch, R. and Sohal, R.S. (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging.New England Journal of Medicine 337, 986–994.

    Article  PubMed  CAS  Google Scholar 

  • Wolkow, C.A., Kimura, K.D., Lee, M.S. and Ruvkun, G. (2000) Regulation of C. elegans life-span by insulin-like signaling in the nervous system.Science 290, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M. and Sinclair, D. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans.Nature 430, 686–689.

    Article  PubMed  CAS  Google Scholar 

  • Yanase, S., Yasuda, K. and Ishii, N. (2002) Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span.Mechanisms of Ageing and Development 123, 1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.J., Kow, L.M., Funabashi, T. and Mobbs, C.V. (1999) Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms.Diabetes 48, 1763–1772.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Wenzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, U. Nutrition, sirtuins and aging. Genes Nutr 1, 85–93 (2006). https://doi.org/10.1007/BF02829950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829950

Keywords