
REVIEW

The role of the vgf gene and VGF-derived peptides
in nutrition and metabolism

Alessandro Bartolomucci Æ Roberta Possenti Æ
Andrea Levi Æ Flaminia Pavone Æ Anna Moles

Received: 15 September 2006 / Accepted: 24 October 2006 / Published online: 18 October 2007

� Springer-Verlag 2007

Abstract Energy homeostasis is a complex physiological

function coordinated at multiple levels. The issue of

genetic regulation of nutrition and metabolism is attracting

increasing interest and new energy homeostasis-regulatory

genes are continuously identified. Among these genes, vgf

is gaining increasing interest following two observations:

(1) VGF-/- mice have a lean and hypermetabolic pheno-

type; (2) the first VGF-derived peptide involved in energy

homeostasis, named TLQP-21, has been identified. The

aim of this review will be to discuss the role of the vgf gene

and VGF derived peptides in metabolic and nutritional

functions. In particular we will: (1) provide a brief over-

view on the central systems regulating energy homeostasis

and nutrition particularly focusing on the melanocortin

system; (2) introduce the structure and molecular charac-

teristic of vgf; (3) describe the phenotype of VGF deficient

mice; (4) present recent data on the metabolic role of VGF-

derived peptides, particularly focusing on one peptide

named TLQP-21.

Introduction

Energy homeostasis is a complex physiological function

coordinated at multiple levels [5, 45, 47]. Stimulated by the

discovery of leptin and the pandemic diffusion of obesity

and type 2 diabetes, the regulation of energy homeostasis

now receives increasing interest [26, 28, 29]. Novel genes

are continuously identified with a role in energy homeo-

stasis [18, 56, 59, 68, 96]. This leads to a growing need for

new tools to improve the completeness of nutrigenomic

studies [42]. The aim of this review will be to focus on one

such genes, namely vgf. In particular we will: (1) provide a

brief overview on the central systems regulating energy

homeostasis and nutrition particularly focusing on the

melanocortin system; (2) introduce the structure and

molecular characteristic of vgf; (3) describe the phenotype

of VGF deficient mice; (4) present recent data on the

metabolic role of VGF-derived peptides, particularly

focusing on one peptide named TLQP-21.

Hypothalamic and autonomic control of nutrition

and metabolism

The hypothalamus is the core of the central circuits pre-

disposed to regulate energy homeostasis and nutrition by

sensing the level and the activity of central and peripheral

mediators and activating catabolic/anabolic pathways

[36, 53, 77]. The arcuate nucleus (ARC) of the hypothal-

amus is located in the center of this system: (1) it express
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leptin/insulin/ghrelin (among the others) receptors; (2)

activates catabolic/anabolic pathways mediating increased/

decreased energy expenditure and altering food intake

trough distinct downstream neural pathways [22]. Activa-

tion of different sub-population of ARC nuclei determine

opposite effects. Activation of proopiomelanocortin

(POMC) or neuropeptide (NP)Y/agouti-related-peptide

(AGRP) cells determines the activation of catabolic path-

ways leading to fasting/energy expenditure or anabolic

pathways leading to feeding/energy conservation, respec-

tively [22, 53, 77]. Anabolic signals downstream of NPY/

AGRP ARC cells target other hypothalamic nuclei

including the lateral hypothalamus (LH) and the perifor-

nical area. Here peptide signaling includes MCH, orexin

and hypocretins. These neuropeptides stimulate to a dif-

ferent extent food intake, intestinal motility and stimulate

behavioral activities involved in energy conservation

[22, 53, 77].

On the contrary, fasting/energy dissipating pathways

downstream of the ARC encompass the hypothalamic

periventricular (PVN) and LH nuclei, which than projects

to other brain area or the pituitary and leads to the coor-

dinated activation of: (1) the sympathetic innervations to

metabolic tissues (2) the release of epinephrine from the

adrenal medulla; (3) the thyroid axis; (4) substrate oxida-

tion in different tissues; (5) behavioural energy-dissipating

activities; (6) inhibition of feeding. Synergistic activation

of these pathways finally leads to increased energy

expenditure and dissipation (rise in body temperature), as

well as lipolysis [36, 47, 77].

Peripheral target tissues of these pathways include

metabolic tissues such as muscles, liver, as well as the

brown (BAT) and the white adipose tissue (WAT) which

were the focus of several excellent reviews to which

readers are remanded for further details [16, 20, 58, 87].

The melanocortin system

The central melanocortin system is perhaps the best-char-

acterized central pathway regulating energy metabolism

[22, 26]. This collection of circuits is unique in having the

capability of sensing signals from many hormones, nutri-

ents and afferent neural inputs. In the mammalian brain the

melanocortin system is defined by: (1) neurons that express

hypothalamic NPY and AGRP that originate in the ARC;

(2) neurons within the ARC that express POMC, from

which the peptide a-melanocyte-stimulating-hormone (a-

MSH) is cleaved; (3) brainstem POMC neurons originating

in the commissural nucleus of the solitary tract (NTS) and

(4) downstream targets of these POMC and AGRP neurons

expressing the melanocortin-3 (MC3R) and MC4R. In the

CNS, a-MSH is agonists of the MC3R and MC4R, whereas

AGRP is a high-affinity antagonist of both these receptors.

The melanocortin system is regulated by complex cross-

inhibitory signals in that MCR-expressing cells receive

projections from both POMC and AGRP containing fibers.

It has been reported that reduced activity of the CNS

melanocortin pathway promotes fat deposition via both

food intake-dependent and -independent mechanisms [1].

Interestingly very recent evidences obtained in MC4R-/-

mice suggest a divergent melanocortin pathway in the

control of food intake (hypothalamic/amigdaloid nuclei)

and energy expenditure (unknown site, likely brainstem or

spinal cord nuclei) [7]. This relevant observation led Bal-

thasar et al. [7] to conclude that central regulation of

energy balance can be now viewed as having three ele-

ments: (1) a sensory, afferent arm receiving inputs from the

gut, adipose tissue, and metabolic factors, (2) an integrative

component where this sensory information is processed

along with inputs from higher centers in the brain, and (3)

an efferent arm that splits at some level to control food

intake and energy expenditure. Divergence of melanocortin

signaling, with respect to regulation of food intake and

energy expenditure, places MC4Rs on the efferent side of

this system [7].

The vgf gene and VGF-derived peptides

The number of genes involved in the regulation of nutrition

and metabolism is enormous [69]. Among these genes, vgf

is gaining increasing interest following two observations:

(1) VGF-/- mice have a lean and hypermetabolic phenotype

[33, 34], (2) the first VGF-derived peptide involved in

energy homeostasis has been identified [11].

Vgf has been initially identified as a nerve growth factor

(NGF)-inducible transcript in PC12 cells [48]. VGF has a

tissue-specific pattern of expression limited to neurons

within the central and peripheral nervous system and to

various endocrine cells [49, 75]. In the adult rat brain, VGF

mRNA is particularly abundant in the olfactory system,

cerebral cortex, hypothalamus and hippocampus, and in a

number of thalamic, septal, amygdaloid and brainstem

nuclei. Following colchicines treatment to block antero-

grade transport of vesicles to nerve terminals, VGF-

immunoreactivity is present in neurosecretory regions of

the hypothalamus, including the ARC, PVN and supraoptic

and suprachiasmatic nuclei [88]. In the PNS, VGF is highly

expressed in both neurons of sympathetic ganglia and

primary sensory neurons. VGF mRNA has been detected in

the adult rat spinal cord, in a and c motoneurons of the

ventral horn, and in the dorsal horn neurons, as well as in

cells of the inner nuclear and ganglion cell layers of the

retina [25, 78]. Endocrine cell types that express VGF

include posterior pituitary, as well as neuroendocrine and
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endocrine cells of the anterior pituitary, adrenal medulla,

gastrointestinal tract and b-cells pancreatic islets [25, 75].

Consistent with the reported VGF distribution, expression

of VGF in cultured cell lines is limited to those derived

from neuronal and neuroendocrine tissues [72].

The vgf gene encodes a precursor protein of 615

(human) and 617 (rat, mice) amino acids [49, 75]. VGF

precursor protein sequence is highly conserved among rats

and mice, with only 21 out of 617 amino-acids substitu-

tions, none of which occur at the C-terminus. Most

importantly for the results that will be discussed the in the

last section of the review, the aminoacid sequence of the

TLQP-21 peptide is identical in rat and mice and also

highly conserved in humans.

Early studies in PC12 cells demonstrated that VGF is

routed to the secretory compartment and released in

response to depolarizing stimuli [64]. A major feature of

VGF is the presence of specific sequence with basic amino

acid residues that represent potential cleavage sites for

proprotein convertases of the kexin/subtilisin-like serine

proteinase family. Of note, the positions within the VGF

polypeptide of each of these ten pairs of basic residues are

highly conserved across species so far investigated. Upon

processing by the neuroendocrine-specific prohormone

convertases PC1/3 and PC2, VGF may yield a number of

peptides that are stored in dense core granules and secreted

through the regulated pathway [86]. In PC12 cells VGF is

detected by Western blot analysis as a doublet of 80–

90 kDa. Besides the 80–90 kDa doublet, antibodies raised

against the C-terminal nonapeptide of rat VGF protein

identify a number of smaller peptides in brain homoge-

nates, and in extracts of primary cultures of cerebellar

granule cells and of neuronal, endocrine, and pancreatic

cell lines [65, 85]. By convention the VGF derived peptides

are designated by the four N-terminal amino acids and the

total length [49]. The most prominent VGF-derived pep-

tides have apparent molecular masses of 20 and 10 kDa

(named NAPP129 and TLQP-62, respectively), while

others of 18 and 6 kDa (HHPD51) are also often detected.

Other tissues (e.g., adrenal medulla) and cell lines (e.g.,

pituitary-derived GH3 and neural crest-derived PC12)

produce substantial amounts of the 80–90 kDa doublet in

the absence of measurable levels of the low-molecular-

weight species. Small VGF peptides were shown to be

generated by endoproteolytic cleavage in a late compart-

ment of the secretory pathway [85]. The first VGF peptide

identified was AQEE-30, also known as Peptide-V identi-

fied in bovine posterior pituitary [51]. Presently known C-

terminal VGF-derived peptides are summarized in Fig. 1.

In addition, several N-terminal fragments were found in

human cerebrospinal fluid [62, 80, 95]. Finally, it is worth

noting that a recent investigation also showed that pro-

cessing of the neuropeptide precursor VGF was also

affected in dwarf PC1 knockout mouse brains with a

decrease in the level of an endogenous 3 kDa C-terminal

peptide [61].

Quantification of VGF-derived peptides within brain

structures is still in its infancy. Two recent studies provided

data showing a differential amount of AQEE-30 in differ-

ent brain regions and allowed to extrapolate an amount of

at least 20 pmol/brain for this peptide [19, 30]. However

the radioimmunoassay kit is not selective for AQEE-30

because also detects with an affinity of 90% TLQP-62 and

the precursor protein [19].

Up to now, four VGF peptides were shown to possess

biological activity: TLQP-62 and AQEE-30 increase the

synaptic charge in hippocampal neurons [2]; AQEE-30 and

LQEQ-19 facilitate penile erection in rats [82, 83]; TLQP-

21 induces contractile responses in isolated gastric longi-

tudinal muscle by stimulating the production of prostanoids

(Severini et al., unpublished), modulates formalin pain

(Rizzi et al., unpublished) and, as will be described below,

regulate energy homeostasis [11]. In addition, in a recent

report obese carboxypeptidase (Cpefat/fat) mice showed a

reduced level of four fragments of VGF in the prefrontal

cortex [50]. Therefore VGF can be viewed as a polypeptide

precursor encoding for different physiologically active

neuropeptides in analogy with others, e.g., POMC.

The vgf gene modulates nutrition and metabolism:

evidences from VGF knockout mice

As mentioned ARC NPY and a-MSH expressing cells

primarily control the activation of anabolic/catabolic

pathways. The first evidence linking vgf with nutrition was

that mice in the fed state showed colocalization of VGF

mRNA with a-MSH in ARC nuclei. During fasting, VGF

expression generally increases in the ARC where its co-

localization increased with NPY and decreases with POMC

[33, 34]. In addition, VGF mRNA levels are induced in

response to light stimulation in the SCN the site of the

mammalian circadian pacemaker also involved in meta-

bolic regulation [81, 92]. More recently changes in VGF

expression was found to differ in ARC nuclei of siberian

hamsters exposed to short or long day’s length preceding

metabolic and body weight changes [8, 71].

Beside these studies, much of the information for a role

of vgf in nutrition and energy homeostasis derive from

reports on VGF-/- mice developed in 1999 by Salton et al.

[33]. VGF deficient mice were indistinguishable from wild

types at birth, but showed a reduced growing curve

resulting in smaller dimension than wild type littermates:

by postnatal day 3 (PND3), VGF mutant pups weighed

10–20% less; by PND21, 40–60% less than wild types;

after weaning, VGF mutant mice maintained body weights
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50–70% those of wild type. In addition to being smaller,

VGF deficient mice were hypermetabolic by showing

approximately 50% more O2 consumption than wild types.

Importantly, daily food intake was similar to those of wild

types when expressed in absolute grams of ingested food,

while this resulted in an elevation in food intake per gram

of body weight in VGF-deficient compared with wild type

mice. On the contrary, comparable hyperphagic responses

were noted following a 24 h fast.

These changes in metabolic and nutritional parameters

are paralleled by a peculiar endocrine and hematological

profile [33, 34, 90]. Indeed, in ad lib fed VGF mutant mice

mean serum insulin and glucose levels were 20 and 40%

lower than normal mice, while the mean serum cortico-

sterone level of VGF mutant mice was 40% increased, all

consistent with a fasted state. VGF-deficient mice are also

more insulin sensitive by showing a greater and more

prolonged decrease in their plasma glucose levels follow-

ing insulin injection [90].

Metabolic and nutritional changes were paralleled by

molecular changes of hypothalamic neuropeptides. In

VGF-/- mice, hypothalamic levels of NPY and AGRP

mRNAs were elevated by 600 and 800%, respectively,

while POMC mRNA was reduced by 75% in comparison

with controls which is compatible with a fasting state [77].

These findings prove the vgf gene to be a key regulator

of energy homeostasis and nutrition in both basal and

fasting/re-fed protocols. A further confirmation of the key

role played by VGF comes from experimental models of

obesity. Indeed it was proved that VGF is required for

obesity induced by diet, gold thioglucose (GTG) treatment

and agouti ectopic overexpression [34]. In fact, ablation of

the vgf gene blocked the metabolic effects of the high-fat

diet on body and fat-pads weight, as well as changes in

adipose leptin mRNA or circulating leptin. In addition,

mean plasma glucose levels were higher in both mutant and

wild type mice fed the high calorie diet, while circulating

insulin and leptin levels were elevated in wild type mice

but unchanged in VGF mutant mice fed high calories [90].

Another widely used model of obesity is that caused by

GTG [14]. Targeted deletion of the vgf gene completely

prevented the increase in body weight, hyperphagia,

obesity and hyperglicemia produced by GTG treatment in

normal mice [34, 90].

A classical genetic form of obesity is due to ablation of

the leptin gene or its receptor [73]. Targeted deletion of vgf

Fig. 1 The aminoacid sequence

of the proVGF polypeptide and

C-terminal VGF-derived

peptides along with the first

study where the specific peptide

was first described
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completely blocked the effects of leptin deficiency on

hyperphagia, food intake and glucose level and attenuated

body weight gain in VGF-/- Ob/ob double-mutant mice.

ob/ob, Vgf-/- mice had insulin levels intermediate between

ob/ob and wild type mice [90]. However, ablation of the

vgf gene did not prevent the development of increased

adiposity or reduced body temperature in ob/ob mice.

Agouti-mediated obesity results from ectopic overexpres-

sion of the agouti polypeptide, a melanocortin receptor

blocker that decreases normal satiety signaling by a-MSH

[9]. Ablation of the vgf gene in Ay/a mice completely

suppressed the obese phenotype. Plasma glucose levels

were significantly decreased in VGF-deficient mice with or

without the agouti mutation in comparison to wild type or

agouti mutant mice while serum insulin levels in double

mutant mice were significantly lower than those measured

in Ay/a agouti mice and significantly higher than VGF

mutant mice, but were not significantly different from

control levels [90].

These differences in double mutant Ay/a, Vgf-/Vgf- and

Ay/a mice suggested that VGF might function in pathways

downstream to the MC4-R that project via the autonomic

nervous system to peripheral metabolic tissues. Further

support from this observation came from the last experi-

mental model of obesity used by Hahm et al. namely

repetitive daily injections of MSG administered to neonatal

mice from PND2 to PND12 [63]. In this model obesity

results from damage to the hypothalamus, the sympathetic

nervous system including the innervation of BAT that

could disrupt thermogenesis and lead to increased adiposity

[14, 55]. Interestingly, in contrast to all the other forms of

obesity examined targeted deletion of the vgf gene had

little influence on the ability of MSG treatment to increase

body weight but determined a clear hyperglicemia [34, 90].

These results therefore strengthen the findings with double

mutant Ay/vgf mice and further support a role for VGF

downstream of hypothalamic/autonomic centers.

VGF-derived peptides modulate nutrition

and metabolism

The phenotype of VGF-/- mice while clearly suggesting a

metabolic role for vgf does not clarify which are the

molecular mediators of its effect among the several VGF-

derived peptides. We recently started a project to clarify

the biological role of VGF-derived peptides. The bulk of

evidences available so-far regards the C-terminal VGF

internal peptide TLQP-21 which has been recently identi-

fied in the rat brain by of immunoprecipitation,

microcapillary liquid chromatography–tandem mass spec-

trometry and database searching algorithms [11]. We have

previously shown that TLQP-62 is efficiently produced into

dense core granules upon processing by the prohormone

convertase PC1/3 at a site that does not conform to the

classical PC dibasic target motif [86]. Similarly, it is con-

ceivable that TLQP-21 could be produced by the action of

prohormone convertases at the PPARHH even though it

does not matches a consensus prohormone convertase tar-

get site. An intriguing alternative possibility is that TLQP-

21 is generated by extracellular proteases acting on secre-

ted VGF forms [44].

Following its identification, TLQP-21 was chronically

delivered icv for 14 days with osmotic minipumps and

nutritional and metabolic effects investigated in mice in

two conditions, i.e., with standard rodent chow and in high

fat diet. In mice fed a standard diet TLQP-21 treatment

influenced energy expenditure, adrenergic function, and

lipid profile, while body weight and food intake were

unaffected (Fig. 2). In particular we proved that TLQP-21

increased energy expenditure and rectal temperature, an

effect which was paralleled by increased serum epineph-

rine or decreased norepinephrine level, being instead,

independent from locomotor activity, fT3 and fT4 serum

level. Hematological biomarkers showed a consistent pro-

file. TLQP-21 treatment lowered triglycerides (TG) while

free fatty acids (FFA) and glucose level remained unaf-

fected, therefore an increased FFA/TG ratio was observed.

These changes in TLQP-21 treated mice occurred despite a

non-significant reduction of WAT/bw and circulating lep-

tin. Therefore, central TLQP-21 may upset energy balance

in mice. Which would be the primary mechanism trough

which TLQP-21 exert its action? A clear answer to this

question still remains elusive because it is yet unknown: (1)

which brain nuclei produce and release TLQP-21; (2)

which is the receptor of TLQP-21. However, based on

current knowledge, some hypotheses can be formulated.

Severini et al. (unpublished) showed that TLQP-21 stim-

ulated gastric fundus strips contraction, an effect which

was inhibited by pre-treatment with the non-selective

cyclooxygenase (COX) inhibitors indomethacine and

naproxen and by the PGF2dimethyl-amide and SC-19220

which act as FP and EP1 prostaglandin receptor antago-

nists, respectively. In addition, production of prostaglandin

E2 (PGE2), PGF2a and PGD2 was detected in the medium

following co-incubation of rat fundus dissections with

TLQP-21. Central prostaglandins (PGE2 in particular)

induction or treatment is known to induce hyperthermia

and to increase energy expenditure [3, 35, 43]. Therefore

chronic TLQP-21-induced upset of energy balance is

compatible with a mechanism of action involving CNS

COX-2 stimulation and PG production. Interestingly these

changes appear to be independent from changes occurring

in major hypothalamic anorexigenic and orexigenic neu-

ropeptide AGRP, NPY, MCH, POMC and CRH [11].

Therefore, our results would rule out a primary role of the

Genes Nutr (2007) 2:169–180 173

123



hypothalamus in mediating the effects of TLQP-21 while

being compatible with the activation of brainstem nuclei

downstream of the hypothalamus. This conclusion agrees

with the proposal that VGF would function in the outflow

pathways downstream of hypothalamic melanocortin 4

receptors (MC4R) that project via the autonomic nervous

system (ANS) to peripheral metabolic tissues [34, 49]. As

mentioned, Balthasar et al. [7] described a divergent mel-

anocortin pathway in the control of food intake and energy

expenditure. In particular, the brain regions responsible for

melanocortin-induced increase of energy expenditure

might be brainstem and spinal cord neurons in which

MC4R colocalizes with pseudorabies virus injected in the

inguinal white adipose tissue of sirian hamsters [79].

TLQP-21, not affecting either feeding or hypothalamic

peptide mRNAs, but affecting energy expenditure, may

function in one such MC4R regulated extra-hypothalamic

sites regulating energy expenditure. In agreement with this

hypothesis we showed increased catabolic markers in the

BAT and WAT following TLQP-21. In detail, changes in

the BAT were limited to increased b2-AR expression. On

the contrary, molecular analysis of the WAT demonstrated

substantial molecular changes: PPAR-d,(b3-AR, and the

brown adipocytes specific UCP1 mRNA were up-regu-

lated. WAT receives sympathetic innervation downstream

of PVN and VMH hypothalamic nuclei, the nucleus of the

solitary tract, the intermediolateral cell group and the

central autonomic nucleus of the spinal cord [10, 15, 27,

66]. Sympathetic stimulation determines lipolysis and

energy expenditure primarily via b-adrenergic stimulation

[4, 41, 46]. In agreement with this proposal, following

TLQP-21 treatment WAT weight slightly decreased while

b3-AR gene expression was up-regulated within the same

tissue, with the two parameters being inversely correlated,

and being inversely correlated with norepinephrine tissue

content. TLQP-21 treatment, in addition to b3-AR, also

resulted in increased PPAR-d gene expression in the WAT,

which may also contribute to the observed increase in

energy expenditure. Supporting this it has been reported

that PPAR-d determines fatty acid oxidation and energy

uncoupling in WAT [16, 24, 89]. Finally TLQP-21 also

increased UCP1 mRNA in the WAT. Fat pads in mammals

are a mix of brown (expressing UCP1) and white (not

expressing UCP1) adipocytes with a site-specific preva-

lence of one or the other [20]. The epididymal (or

perigonadal) WAT is mainly constituted of white adipo-

cytes. Therefore, increased UCP1 gene expression after

TLQP-21 treatment would imply transdifferentiation of

brown adipocytes in the WAT [29, 60, 84].

Therefore, central TLQP-21 infusion upsets energy

balance but did not determine an overall shift in energy

homeostasis, as proved by the lack of changes in body

weight. Important, Jethwa et al. [39], in an abstract pre-

sented at the meeting of Neuroendocrinology, showed that

TLQP-21 could affect energy homeostasis in siberian

hamster. Therefore, these data support and extend our

observation by demonstrating that TLQP-21 has catabolic

effects in rodents.

Following our observations in mice we hypothesized

that TLQP-21 could affect energy balance when energy

homeostasis is boosted by a hypercaloric diet consisting of

14 days high fat diet (20% lard addition; HF). Diet-induced

obesity starts to develop in control animals (HF-CON),

which at the end of the experiment showed increased body

weight gain, increased caloric efficiency and hypertrophy

of visceral WAT when compared with mice receiving a

Fig. 2 Diagrammatic drawing

of the effects induced by

chronic central TLQP-21

treatment. :, ; and =/: and

bolded fonts represent

significantly increased,

decreased and slightly increased

parameters, respectively
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standard diet. Without any difference in Kcal ingested by

mice eating high fat diet and treated with TLQP-21 (HF-

TLQP-21) or vehicle (HF-CON), TLQP-21 treatment pre-

vented development of diet-induced obesity (Fig. 3).

Indeed, HF-TLQP-21 treated mice only showed a modest

and non-significant increase in body and WAT weight, and

caloric efficiency when compared to ST-CON. Endocrine

biomarkers were consistent with the obesity-like phenotype

of HF-CON mice: serum leptin increased, while ghrelin

decreased. HF-TLQP-21 mice instead showed approxi-

mately half, and non-significant, rise of leptin showed by

HF-CON mice and normalization of ghrelin. TLQP-21-

induced increase of EE, T and adipose tissue catabolic

mediators, is compatible with the block of weight gain and

adiposity [52, 53, 77].

It is worth noting that HF-CON mice showed changes in

pattern of hypothalamic gene expression consistent with

the development of obesity, i.e., up-regulated MCH and

POMC (Bartolomucci et al., unpublished). These effects

have been previously described in the early phase of diet

induced obesity [23, 98] and are understood in terms of

compensatory increase in energy expenditure (e.g., POMC)

or enhanced appetite for a palatable diet (e.g., MCH). HF-

TLQP-21 mice showed a complete normalization of

hypothalamic mRNA changes observed in HF-CON mice

while showing a decrease in growth-hormone-secreta-

gogues-receptor (GHS-R) expression (Bartolomucci et al.,

unpublished), the receptor for GH segretagogues, which

has been identified as a hypothalamic regulator of anabolic

functions [57, 97]. These effects at the hypothalamic level

is similar to those discussed above for mice fed a standard

diet, which would rule out a primary involvement of

hypothalamic peptides in the action of TLPQ-21, the only

exception being the inhibition of GHS-R expression.

In conclusion, our study identified for the first time a

metabolic role for a recently identified VGF-derived pep-

tide, TLQP-21. Overall, results discussed address a role for

this peptide in centrally stimulating the autonomic nervous

system, possibly via central PG induction and peripheral

adrenomedullary activity and adipose tissue catabolism, to

upset energy balance. By virtue of its effect, TLQP-21 also

limited weight gain and adiposity associated with high-fat

diet.

Surprisingly, the profile of TLQP-21 treated mice clo-

sely matches the phenotype of the VGF-/- mice [11, 33, 34].

It is not unusual that results from constitutive gene-

knockout and pharmacological studies determine contrast-

ing findings, and this is particularly true when knockout

mice are produced before a given function is addressed for

the gene products, as is the case for vgf [13, 31, 32, 76].

Well-known examples of contradictory findings concern

5HT-1B and POMC. 5HT-1B knockout mice exhibit an

increased, while 5HT-1B agonists treated subjects exhibit

a decreased locomotory response to cocaine [17, 70].

Fig. 3 Physiological effects of

chronic central TLQP-21 in

mice fed high-fat diet. Upper
left changes in body weight;

Upper right changes in white

adipose tissue weight; Lower
changes in circulating leptin and

ghrelin. Adapted from [11]
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POMC-deficient mice are obese and hyperphagic and do

respond to melanocortin agonists treatment, while b-

endorphin treatment results in hyperphagia [6, 94]. In both

cases the advocated explanation to the apparent paradox

regards the alteration in other brain systems than the tar-

geted one.

However, an intriguing hypothesis would resolve the

contradictory finding of our and Hahm et al. studies: one or

more VGF-derived peptides should have an anabolic role

positively affecting energy homeostasis. Recently we

started to investigate this hypothesis by focusing on other

C-terminal VGF-derived peptides than TLQP-21, i.e.,

TLQP-62 and HHPD-41 spanning from residues 556–617

and 577–617 of ProVGF sequence, respectively. TLQP-62,

also known as VGF-10, represent the 62-aminoacid car-

bossi terminus of VGF which was identified by Trani et al.

[86] in cultured PC12 cells and thereafter shown to mod-

ulate the synaptic charge in hippocampal neurons [2].

TLQP-62 could be generated by PC1/3 [86]. On the other

hand HHPD-41 would represent the proteolytic residue of

the TLQP-21’s cleavage from TLQP-62 (La Corte et al.,

unpublished). Our preliminary observations on TLQP-62

and HHPD-41 showed that, unlike TLQP-21, they both

possess a positive role on feeding (Rizzi et al., unpub-

lished). In both experiments, mice were overnight fasted,

injected with TLQP-62 or HHPD-41 and re-fed. Food

intake was monitored for the following 24 h. Results

showed that both peptide at doses comprised between 1 and

4 mM determined an increase in food intake up to 24 h

following a single icv injection. Further detailed studies are

needed before a conclusion can be reached, however, the

evidences we collected would suggest that following PC1/3

processing of ProVGF and production of TLQP-62 a fur-

ther proteolytic processing would produce at least two

nutrionally/metabolic active peptides at the C and N ter-

minus of TLQP-62 namely HHPD-41 (or in alternative its

internal AQEE-30) and TLQP-21. These two neuropep-

tides would have an opposite effect on feeding and

metabolic functions being anabolic and catabolic, respec-

tively. When comparing our findings with TLQP-21 [11]

with the phenotype of VGF-/-, it can be suggested that the

endogenous physiological role of TLQP-21 should not be

as powerful in opposing the role of other VGF-derived

peptides such as HHPD-41 (or AQEE-30).

Future directions

Following the identification of the vgf gene [48], the gen-

eration of VGF deficient mice [33] and the identification of

the first metabolically active VGF peptide TLQP-21 [11] it

is now clear that the vgf gene is a key regulator of energy

homeostasis and the autonomic nervous system. However

major challenges are open for further investigations.

Among the most important is the clarification of our

hypothesis of the existence of at least a second metaboli-

cally active VGF-derived peptide. In addition identification

of the receptor(s) for VGF peptides and the clarification of

their regional distribution within the CNS will open new

avenue of research and will provide an invaluable tool for

biomedical research and development of new metabolically

active drugs

Update added in proof

In the time comprised between acceptance and publication

there have been a number of significant advancements on

VGF biochemistry, histology and physiology, which are

discussed below.

Identification of VGF-derived peptides

Previous reports described several fragments derived

from the amino-terminal region of the ProVGF peptide in

human cerebrospinal fluids and its association with neu-

rological disorders [62, 80, 95]. Recent reports extend

this observation to patients prodromal for or at first-onset

psychosis [37, 38] as well as to patients diagnosed as

schizophrenia [91]. In addition, two previously unrec-

ognised amidated VGF-derived peptides, secreted from

human medullary thyroid carcinoma TT cells, were

identified and named NERP-1 and NERP-2 [93]. NERP-1

and NERP-2 correspond to fragments VGF285–VGF311

and VGF314–VGF350 of the rat ProVGF peptide,

respectively. Experimental evidence proves that the two

peptides dose-dependently suppress vasopressin release

induced by NaCl or angiotensin II in vivo and also

vasopressin secretion from hypothalamic explants in

vitro.

Identification of VGF fragments immunoreactivity

in endocrine tissues

Histological evidences now demonstrate that: 1) proVGF-

related peptides are present in electron-dense granules

within endocrine cells (thyroid, parathyroid, lung, and

stomach) early during development and adulthood and

increase in hyperplasia and tumors [67]; 2) VGF(556–565)

and VGF(282–291) immunoreactivity has been described

in delta somatostatin-producing cells, whereas the human

C-terminus antiserum selectively immunolabeled alpha

glucagon and pancreatic polypeptide cells. The same cells

showed immuno-reactivity for VGF(443–588) antiserum
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while VGF(298–306) and C-terminus immunoreactivity

were found in virtually all pancreatic endocrine cells [21].

Of main interest, Cocco et al. [21] showed that the

VGF(556–565) antibody also recognized a number of low

molecular mass fractions including a form corresponding

to the rat TLQP-21 [11].

Metabolic role of TLQP-21

We have recently extended our observations to TLQP-21: 1)

We determined physiological, biochemical and molecular

changes associated with diet-induced obesity in a popula-

tion of fast weight gaining mice (Bartolomucci et al.,

submitted). Our results demonstrated that chronic icv

infusion of TLQP-21 prevents diet-induced obesity despite

overfeeding associated with the palatable diet and that

these effects are paralleled by activation of catabolic

pathways within the eWAT but not within the BAT; 2) we

demonstrated that chronic icv TLQP-21 treatment does not

modulate the GH-IGF1 axis in adult mice [12].

Following our identification of the central catabolic role

of TLQP-21 [11], Jethwa et al. [40] provided evidences

that acute icv but not ip administration of TLQP-21

decreased food intake. Chronic icv treatment (daily injec-

tion) caused a sustained reduction in food intake and body

weight and decreased abdominal fat deposits. No change in

energy expenditure was observed. In addition, chronic

TLQP-21 did not exert any change in hypothalamic gene

mRNA, while determining a reduction in BAT UCP1.

Overall these data largely confirm a catabolic role for

TLQP-21 which is independent of hypothalamic neuro-

peptides investigated [11, Bartolomucci et al., submitted].

Therefore, three independent studies [11, 40, Bartolomucci

et al., submitted] proved a catabolic role for TLQP-21 but

differ in the possible mechanism underlying the effect

observed: i) increased energy expenditure/WAT catabolic

effects in our studies; ii) reduced food intake in the hamster

studies. A number of methodological (repeated injections

vs. chronic infusion; the dose used; etc.) and species-spe-

cific (hamster have a peculiar physiological adaptation to

food-shortage/short day length-induced hibernation [54])

issues may be advocated and should be experimentally

ruled out before any conclusion can be drawn on TLQP-21

mechanism of action. Notwithstanding, the conclusion that

TLQP-21 negatively affects energy balance and does have

a catabolic effect in rodents is now proved by different

studies.
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