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Abstract Emerging evidence suggests that dietary phy-

tochemicals, in particular flavonoids, may exert beneficial

effects in the central nervous system by protecting neurons

against stress-induced injury, by suppressing neuroinflam-

mation and by promoting neurocognitive performance,

through changes in synaptic plasticity. It is likely that

flavonoids exert such effects in neurons, through selective

actions on different components within a number of protein

kinase and lipid kinase signalling cascades, such as phos-

phatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and

mitogen-activated protein kinase. This review details the

potential inhibitory or stimulatory actions of flavonoids

within these pathways, and describes how such interactions

are likely to affect cellular function through changes in the

activation state of target molecules and/or by modulating

gene expression. Although, precise sites of action are

presently unknown, their abilities to: (1) bind to ATP

binding sites on enzymes and receptors; (2) modulate the

activity of kinases directly; (3) affect the function of

important phosphatases; (4) preserve neuronal Ca2+

homeostasis; and (5) modulate signalling cascades lying

downstream of kinases, are explored. Future research

directions are outlined in relation to their precise site(s) of

action within the signalling pathways and the sequence of

events that allow them to regulate neuronal function in the

central nervous system.
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Abbreviations

MAPK Mitogen-activated protein kinase

ERK Extracellular signal-regulated protein kinase

JNK c-Jun N-terminal kinase

PI3K Phosphatidylinositol-3 kinase

PKB Protein kinase B

PKC Protein kinase C

ASK1 Apoptosis signal-regulating kinase 1

STAT-1 Signal transducer and activator

of transcription-1

AP-1 Activated protein-1

CREB cAMP response element-binding protein

ATF-1/2 Activating transcription factor 1/2

MSK1 Mitogen- and stress-activated protein kinase 1

MTOR Mammalian target of rapamycin

p47phox NADPH oxidase (p47 cytoplasmic element;

p90RSK (RSK): 90 kDa ribosomal S6 kinase

MEF-2 Myocyte enhancer factor 2

DSP Dual specificity phosphatase

PTEN Phosphatase and tensin homologue deleted

on chromosome ten

LPS Lipopolysacharide

IL-1b Interleukin-1b
INOS Inducible nitric oxide synthase

ENOS Endothelial nitric oxide synthase

IFN-c Interferon gamma

LDL Low-density lipoprotein

NO• Nitric oxide

TNF-a Tumor necrosis factor-alpha

BBB Blood brain barrier

CNS Central nervous system
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Introduction

Recently, there has been intense interest in the potential of

flavonoids to modulate neuronal function and prevent age-

related neurodegeneration. Dietary supplementation stud-

ies, in humans and animals, using flavonoid-rich plant or

food extracts have highlighted their potential to influence

cognition and learning [60, 70, 95, 175, 183, 194, 197],

presumably by protecting vulnerable neurons, enhancing

existing neuronal function or by stimulating neuronal

regeneration. Their neuroprotective potential has been

shown in both oxidative stress- [77] and Ab-induced-neu-

ronal death models [109]. Evidence also supports the

beneficial and neuromodulatory effects of flavonoid-rich

ginkgo biloba extracts, particularly in connection with age-

related dementias and Alzheimer’s disease [14, 109, 203].

Furthermore, the citrus flavanone, tangeretin, has been

observed to maintain nigrostriatal integrity and function-

ality following lesioning with 6-hydroxydopamine,

suggesting that it may serve as a potential neuroprotective

agent against the underlying pathology associated with

Parkinson’s disease [42]. The exact mechanisms by which

flavonoids might exert such effects are not fully under-

stood, although evidence from cell studies suggests that

flavonoids express a wide variety of cellular actions and

may influence neuronal function via the modulation of

critical neuronal signalling pathways.

Flavonoids comprise the most common group of poly-

phenolic compounds in the human diet and are found

ubiquitously in plants. Major dietary sources of flavonoids

include fruits, vegetables, tea, wine, cereals and fruit juices

(reviewed in [111]). Flavonoids consist of two aromatic

carbon rings: benzopyran (A and C rings) and a benzene (B

ring) (Fig. 1) and may be divided in six subgroups based on

the degree of the oxidation of the C-ring, the hydroxylation

pattern of the ring structure and the substitution of the

3-position. The main dietary groups of flavonoids are (1)

flavonols (e.g. kaempferol, quercetin), which are found in

onions, leeks, broccoli, (2) flavones (e.g. apigenin, luteo-

lin), which are found in parsley and celery, (3) isoflavones

(e.g. daidzein, genistein), which are mainly found in soy

and soy products, (4) flavanones (e.g. hesperetin, naringe-

nin), which are mainly found in citrus fruit and tomatoes,

(5) flavanols [e.g. catechin, epicatechin, epigallocatechin,

epigallocatechin gallate (EGCG)], which are abundant in

green tea, red wine, chocolate, and (6) anthocyanidins (e.g.

pelargonidin, cyanidin, malvidin), whose sources include

red wine and berry fruits. Further information regarding the

structure and classes of flavonoids may be found in the

thorough review by Manach et al. [111].

Historically, the biological actions of flavonoids have

been attributed to their antioxidant properties, either through

their reducing capacities per se or through their influences

on the intracellular redox status [139, 140]. However, it has

been speculated that their classical hydrogen donating

antioxidant activity is not the explanation for the bioactivity

of flavonoids in vivo. Indeed, it has become evident that

flavonoids are more likely to exert their neuroprotective

actions by (1) the modulation of intracellular signalling

cascades which control neuronal survival, death and dif-

ferentiation; (2) affecting gene expression and (3)

interactions with mitochondria [148, 159, 185]. This review

will highlight some of the interactions of flavonoids with

major neuronal intracellular signalling pathways, in partic-

ular those that are vital in determining neuronal death,

survival, differentiation and proliferation. Although, there

have been a huge number of investigations into the actions of

flavonoids within signalling pathways, the aim of this review

will be to highlight the potential mechanisms by which

flavonoids interact within neuronal signalling cascades.

Flavonoid metabolism and access to the brain

Flavonoids display potent antioxidant capacity in vitro

[138–140]. However, during absorption flavonoids are

extensively metabolised resulting in a significant alteration

in their redox potentials. It has become clear that the bio-

active forms of flavonoids in vivo are not those forms

found in plants. For example, the majority of flavonoid

glycosides, and in some instances the aglycones, present in

plant-derived foods, are extensively conjugated and me-

tabolised during absorption (reviewed in [47, 51, 162, 163,

180]). In particular, there is much evidence for the exten-

sive phase I de-glycosylation and phase II metabolism of

the resulting aglycones to glucuronides, sulphates and

O-methylated forms during transfer across the small

intestine [157, 162] and then again in the liver. Further

transformation has been reported in the colon where the

enzymes of the gut microflora degrade flavonoids to simple

phenolic acids [146]. In addition, flavonoids may undergo

at least three types of intracellular metabolism: (1) Oxi-

dative metabolism, (2) P450-related metabolism and (3)

conjugation with thiols, particularly GSH [158, 160]. Cir-

culating metabolites of flavonoids, such as glucuronides,

sulphates and conjugated O-methylated forms, or intra-

cellular metabolites like flavonoid-GSH adducts, have

greatly reduced antioxidant potential [160]. Indeed, studies

have indicated that although such conjugates and metabo-

lites may participate directly in plasma antioxidant

reactions and in scavenging reactive oxygen and nitrogen

species in the circulation, their effectiveness is reduced

relative to their parent aglycones [41, 122, 152, 170, 189].

In order to understand whether flavonoids and their

metabolic derivatives are capable of direct neuroprotective

effects, it is crucial to ascertain whether they are able to
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access the central nervous system. In order for flavonoids

to enter into the brain, they must first cross the blood brain

barrier (BBB). The function of the BBB includes protection

of the brain from xenobiotics and the general maintenance

of the brain’s microenvironment [2, 193]. Studies by

Youdim et al. indicated that certain flavonoids were able to

penetrate the BBB in relevant in vitro and in situ models

[193, 195, 196]. In these studies, the flavanones, hesperetin,

naringenin and their relevant in vivo metabolites, as well as

some dietary anthocyanins, cyanidin-3-rutinoside and pe-

largonidin-3-glucoside, were able to traverse the BBB.

Furthermore, it was demonstrated that the uptake of the

relatively lipophilic flavanones, naringenin and hesperetin,

was much greater than for other flavonoids, such as epi-

catechin, epicatechin metabolites, anthocyanins and their

glucuronidated metabolites, which are more polar in

nature. This study suggested that the potential for flavonoid

penetration is dependent on compound lipophilicity [193].

Accordingly, it is plausible that the uptake of the less polar

methylated metabolites, such as the methylated epicatechin

metabolites (formed in the small intestine and liver), may

be greater than the parent aglycone. For the same reason,

the more polar flavonoid glucuronidated metabolites,

which seem to have low BBB permeability values [193],

may not be able to access the brain. However, evidence

exists to suggest that certain drug glucuronides may cross

the BBB [1] and exert pharmacological effects [94, 164],

suggesting that there may be a specific uptake mechanism

for glucuronides in vivo. It has also been suggested that

apart from the components’ lipophilicity, the ability of

flavonoids to enter the brain may be influenced by their

interactions with specific efflux transporters expressed in
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Fig. 1 The structures of the five

main classes of flavonoids. The

major differences between the

individual groups reside in the

hydroxylation pattern of the

ring-structure, the degree of

saturation of the C-ring and the

substitution of the 3-position
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the BBB. One such transporter is P-glycoprotein [195],

which plays an important role in drug absorption and brain

uptake [107]. In the study conducted by Youdim et al.

[195], the differences between naringenin and quercetin

flux into the brain in situ was attributed not only to their

differences in lipophilicity, but also to their ability to act as

efflux transporter substrates.

There is also evidence from animal feeding studies to

suggest that flavonoids may access the brain. The tea

flavanol EGCG has been reported to access the brain after

oral administration to mice [166]. Furthermore, oral

ingestion of pure epicatechin resulted in the detection of

epicatechin glucuronide and 30-O-methyl-epicatechin glu-

curonide in rat brain tissue [3]. Anthocyanidins have also

been detected in the brain after oral administration [53,

168], with several anthocyanidins being identified in dif-

ferent regions of rat brain after the animals were fed with

blueberry [12]. Such flavonoid localisation has been cor-

related with increased cognitive performance, suggesting a

central neuroprotective role of these components.

It is clear that the concentrations of flavonoids and their

metabolite forms accumulated in vivo, for example in the

plasma or in organs such as the brain [3] are lower (high nM,

low lM) than those recorded for small molecule antioxidant

nutrients such as ascorbic acid and a-tocopherol [67]. In

addition, these in vivo forms will mainly be metabolites

possessing lower antioxidant potential relevant to parent

compounds. Therefore, the beneficial effects of flavonoid

metabolites in vivo are unlikely to result by their ability to

out-compete antioxidants such as ascorbate, which are

present at higher concentrations (high lM to mM). For

example, flavonoids have been shown to protect neurons

against oxidative stress more effectively than ascorbate even

when the latter was used at tenfold higher concentrations

[150], which supports a non-antioxidant mechanism of

action. If such an antioxidant mechanism is unlikely in vivo,

there must be other potential routes by which they exert

beneficial effects at the cellular and tissue level. Over the last

5–10 years evidence has accumulated to suggest that the

cellular effects of flavonoids may be mediated by their

interactions with specific proteins central to intracellular

signalling cascades [148]. In the next section we highlight the

potential for these polyphenols and their metabolites to

interact at various points within the mitogen activated protein

kinase (MAP kinase) signalling pathway and the phospho-

inositide 3-kinase (PI3 kinase/Akt) signalling cascade.

Flavonoid interactions with neuronal signalling

cascades

Flavonoids have been shown to exert modulatory effects in

neurons through selective actions at different components

of a number of protein kinase and lipid kinase signalling

cascades, such as the PI3 kinase (PI3K)/Akt, tyrosine

kinase, protein kinase C (PKC) and mitogen-activated

protein kinase (MAP kinase) signalling pathways [7, 61,

93, 116, 149, 159, 178] (Fig. 2). Inhibitory or stimulatory

actions at these pathways are likely to profoundly affect

cellular function by altering the phosphorylation state of

target molecules and/or by modulating gene expression.

Although selective inhibitory actions at these kinase cas-

cades may be beneficial in cancer, proliferative diseases,

inflammation and neurodegeneration they could be detri-

mental during development particularly in the immature

nervous system when protein and lipid kinase signalling

regulates survival, synaptogenesis and neurite outgrowth.

In the mature brain, post-mitotic neurones utilise MAP

kinase and PI3K cascades in the regulation of key functions

such as synaptic plasticity and memory formation [106,

167] (Fig. 2), thus flavonoid interactions within these

pathways could have unpredictable outcomes and will be

dependent both on the cell type and disease studied.

Flavonoids have the potential to bind to the ATP-binding

sites of a large number of proteins [38] including, mito-

chondrial ATPase [50], calcium plasma membrane ATPase

[13], protein kinase A [136], protein kinase C [61, 81, 101,

142, 176] and topoisomerase [18]. In addition, interactions

with the benzodiazepine binding sites of GABA-A recep-

tors and with adenosine receptors [48, 117] have been

reported. For example, the stilbene resveratrol and the citrus

flavanones, hesperetin and naringenin, have been reported

to have inhibitory activity at a number of protein kinases

Fig. 2 Overview of MAP kinase and Akt/PKB signalling cascades in

neurons. Flavonoid-induced activation of ERK1/2 or PI3K/Akt

pathways acts to stimulate neuronal survival and/or enhance synaptic

plasticity and long-term potentiation relevant to the laying down of

memory. In addition, inhibitory actions within JNK and p38 pathways

are likely to be neuroprotective in the presence of stress
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[56, 73, 154]. This inhibition is mediated via the binding of

the polyphenols to the ATP binding site, presumably

causing three-dimensional structural changes in the kinase

leading to its inactivity. They may also interact directly with

mitochondria, for example, by modulating the mitochon-

drial transition pore (mPT), which controls cytochrome c

release during apoptosis [65, 169], or by modulating other

mitochondrial associated pro-apoptotic factors such as

DIABLO/smac [64, 165]. Potential interactions with the

mPT are especially interesting, as the transition pore pos-

sesses a benzodiazepine-binding site where flavonoids may

bind [48, 117] and influence pore opening and cytochrome c

release during apoptosis.

Flavonoids may also be capable of modulating gluta-

mate excitotoxicity via direct scavenging of ROS or by the

modulation of calcium influx. Abnormal influx of Ca2+

through AMPA-type glutamate receptors has been strongly

implicated in neuronal death associated with a number of

brain disorders through activation of Ca2+-dependent pro-

teases, phospholipases and stress-activated kinases.

Flavonoids may be capable of rendering heteromeric

AMPA receptor assemblies Ca2+-impermeable by up-reg-

ulating GluR2 subunit expression [147]. Alternatively,

flavonoids and their metabolites may prevent neuronal

injury by scavenging of reactive intermediates such as

superoxide and peroxynitrite derived from calcium

mediated activation of xanthine oxidase and nitric oxide

synthase, respectively. Lastly, modulation of signalling

pathways and inhibition of calcium-activated kinases may

also act to prevent excitotoxic death in neurons.

MAP kinase signalling cascade

Mitogen-activated protein kinases (MAPK) belong to the

super-family of serine/threonine kinases and play a central

role in transducing various extracellular signals into intra-

cellular responses [36, 63]. MAPK cascades are organised

into three main levels of regulation: (1) a MAP kinase

kinase kinase (MAPKKK), which phosphorylates and

activates (2) a MAP kinase kinase (MAPKK), which in

turn, phosphorylates and activates (3) a MAPK [36, 114].

The best characterised MAPK pathways are the mitogenic

extracellular signal-regulated protein kinase (ERK) path-

way (Fig. 3) and the stress activated, c-Jun N-terminal

kinase (JNK) (Fig. 4) and p38 (Fig. 5) cascades. Once

activated, ERK, JNK and p38 phosphorylate a number of

cytosolic proteins and transcription factors resulting in the

enhancement of their transcriptional activities and activa-

tion of dependent genes [84].

ERK and JNK are generally considered as having

opposing actions, in particular in neuronal apoptosis [188].

Fig. 3 Potential points of action of flavonoids within ERK pathway.

ERK1/2 are activated by upstream MAPKK, such as MEK1/2, and

MAPKKK, such as c-Raf. MEK1/2 induce ERK1/2 activation via

dual phosphorylation on threonine 202 and tyrosine 204 residues

within the tripeptide motif TEY. Phosphorylation of ERK leads to the

activation of a number of transcription factors, important in control-

ling differentiation, neuronal survival and various forms of cellular

plasticity. For example, ERK activates pro-survival transcription

factor CREB, by activating both p90RSK and MSK1/2. Other

important targets include, ATF-1, Elk-1 and stat1/3, all of which are

implicated in the regulation of various forms of cellular stress,

including genotoxic agents, inflammatory cytokines and UV

irradiation
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ERK1/2 are usually associated with pro-survival signalling

[11, 19, 83] through mechanisms that may involve acti-

vation of the cAMP response element binding protein

(CREB) [19, 39] (Fig. 3), the up-regulation of the anti-

apoptotic protein Bcl-2 and non-transcriptional inhibition

of BAD [19, 83]. On the other hand, JNK has been strongly

linked to transcription-dependent apoptotic signalling [118,

198], possibly through the activation of c-Jun [15] and

other AP-1 proteins including JunB, JunD and ATF-2 [46]

(Fig. 4). Many investigations have indicated that flavo-

noids and their metabolites may interact selectively within

the MAPK signalling pathways [92, 93]. The potential

modulation of MAPK signalling by flavonoids is signifi-

cant as ERK1/2 and c-Jun amino-terminal kinase are

involved in growth factor induced mitogenesis, differenti-

ation, apoptosis and various forms of cellular plasticity [32,

33, 71, 118, 198].

Oxidative stress also has a diverse effect on the MAPK

cascade [17, 172, 174]. Changes in the cellular redox status

may result in the activation of pro-apoptotic signalling

proteins such as JNK [46, 129, 141, 145, 148], which may

initiate apoptotic mechanisms within cells [96] (Fig. 4).

Additionally, oxidative stress may affect mitochondria by

influencing the mitochondrial transition pore (mPT) and/or

release of cytochrome c [88, 102]. There is strong evidence

linking the activation of JNK to neuronal death in response

to a wide array of pro-apoptotic stimuli both in develop-

mental and degenerative death signalling [46, 118]. In the

context of oxidative insults in neurons, JNK has been

shown to be activated by dopamine [110], by 4-HNE [24,

132, 155], through reduced expression of SOD1 [113], by

hydrogen peroxide [39] and by oxLDL [149].

Extracellular signal-regulated protein kinase pathway

The ERK pathway is activated when Ras recruits c-Raf (a

MAPKKK) to the membrane, resulting in its activation.

Activated Raf then phosphorylates and activates MEK1/2

(MAPKK), which directly activates ERK through dual

phosphorylation on threonine202 and tyrosine204 residues

within the tripeptide motif TEY (Fig. 3). The ERK path-

way is very responsive to growth factors and signals from

certain G protein-coupled receptors and protein kinase C

and two major isoforms of ERK, p44 (ERK1) and p42

(ERK2) have been identified [21]. Although most investi-

gations have centred on the potential of flavonoids to

modulate the phosphorylation state of ERK1/2 [74, 108,

148, 149, 159], it is highly likely that their actions on this

MAPK isoform result from effects on upstream kinases,

such as MEK1 and MEK2, and potentially membrane

receptors [148]. This appears likely as flavonoids have

close structural homology to specific inhibitors of ERK

signalling, such as PD98059 (20-amino-30-methoxyflavone)

(Fig. 6). PD98059 is a flavone that has been shown to act in

vivo as a highly selective non-competitive inhibitor of

MEK1 activation and the MAP kinase cascade [9, 52, 98,

130]. PD98059 acts via its ability to bind to the inactive

forms of MEK so preventing its activation by upstream

activators such as c-Raf [9] (Fig. 3). This raises the pos-

sibility that flavonoids, and their metabolites, may also act

on this pathway in a similar manner. In support of this, the

flavonol quercetin, and to a lesser extent its O-methylated

metabolites have been shown to induce neuronal apoptosis

via a mechanism involving the inhibition of ERK, rather

than by induction of pro-apoptotic signalling through JNK

Fig. 4 Potential points of action

of flavonoids within JNK

pathway. JNK is regulated by a

variety of MAPKKK’s,

including MEKK1/4 and

apoptosis-stimulating kinase

(ASK1), which is further

regulated by GTPases and Rac1.

Unlike the ERK pathway, the

JNK cascade is strongly

activated by stress signals such

as UV and c-radiation, oxidative

stress and inflammatory

cytokines. The MAPKK,

MKK4/7, dually phosphorylates

JNK within the Thr138-Pro-

Tyr-185 motif (pTPpY) in the

catalytic core of active JNK.

Active JNK has been strongly

linked to transcription-dependent

apoptotic signalling, mainly

through the activation of c-Jun

and other AP-1 proteins

including JunB, JunD and ATF-2
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[159]. The potent inhibition of ERK activation, and indeed

Akt/PKB phosphorylation, was accompanied by activation

of BAD and a subsequent strong activation of caspase-3.

There is increasing evidence that neuroinflammatory

processes contribute to the progressive neuronal damage

observed in neurodegenerative disorders such as AD [128]

and PD [90, 177], and also with neuronal injury associated

with stroke [10]. Central to neuroinflammation is the

generation of nitric oxide (NO•) via increases in the

expression of the inducible isoform of nitric oxide synthase

(iNOS) in glial cells. Crucially the transcriptional regula-

tion of iNOS in activated glial cells is dependent on

signalling through the MAPK pathway, specifically

through activation of ERK1/2 [16, 55, 112]. The MEK

inhibitor PD98059 has been shown to effectively block

iNOS expression and generation of NO• [16], suggesting

that flavonoids may also be capable of exerting anti-

inflammatory actions via inhibitory actions on MEK1

within the ERK signalling pathway. Thus far, studies have

indicated that flavanols [72, 105], flavones [34, 87, 99, 151,

186], and flavonols [35] are all capable of inhibiting the

release of NO• by activated microglia via the down-regu-

lation of iNOS gene expression. However, it is not known

if such effects are mediated by changes in signalling

through ERK, or any other MAPK. Whether inhibition

of MAPK signalling by flavonoids plays a role in the

observed anti-neuroinflammatory effects requires further

investigation.

Certain flavonoids have also been observed to exert a

stimulatory effect on ERK1/2. For example, the flavan-3-ol,

(–)-epicatechin, and one of its metabolites, 30-O–methyl-(–)-

epicatechin, have been shown to stimulate phosphorylation

of ERK1/2 and the downstream transcription factor CREB at

physiologically relevant concentrations [147]. Interestingly,

this activation of the ERK pathway was no longer apparent at

higher concentrations suggesting that effects on this pathway

are concentration specific. Furthermore, stimulation of the

ERK1/2 and CREB was not observed with (–)-epicatechin-

5-O-b-D-glucuronide suggesting that effects on the ERK

pathway may be dependent on cell or membrane perme-

ability, as has been previously reported [160]. In support of

these observations, the protective action of another flavanol,

EGCG, against 6-hydroxy dopamine toxicity and serum

deprivation has been shown to involve the restoration of both

protein kinase C and ERK1/2 activities [104, 137].

One explanation for the concentration-specific regula-

tion of the ERK pathway, and indeed other MAP kinase

cascades (JNK and p38), may be related to the ability of

flavonoids to exert high affinity receptor agonist-like

actions at low concentrations and direct enzyme inhibition

at higher concentrations [7, 179], or by inducing receptor

desensitization. The identity of the primary flavonoid

interacting sites in neurons is unknown and could be either

at the cell surface or intracellular, although the ERK and

PI3K dependence to CREB phosphorylation is very similar

to ionotropic receptor signalling [133]. Receptors reported

to act as flavonoid-binding sites, that are present in cortical

neurons, are adenosine [79] and GABAA receptors [4, 80].

However, a specific plasma membrane binding site for

polyphenols has recently been described in rat brain [69].

In addition, monomeric and dimeric flavanols show nano-

molar affinity and efficacy at testosterone receptors [127]

Fig. 5 Potential points of

action of flavonoids within p38

pathway. p38 is activated by a

variety of cellular stresses

including osmotic shock, pro-

inflammatory inflammatory

cytokines, lipopolysacharides,

UV light and growth factors.

The activity of p38 is regulated

by the MKK’s, MKK3 and

MKK6, which in turn, are

regulated by the upstream

MAPKKK, MEK1/4 and ASK.

Active p38 regulates the

phosphorylation of the

transcription factors ATF-2,

Max and MEF2, which are

implicated in cellular response

to a variety of cellular stress,

including genotoxic agents and

inflammatory cytokines
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and resveratrol rapidly activates ERK signalling through

alpha and beta oestrogen receptors [91]. Collectively, this

raises the possibility that flavonoids may act on the ERK

pathway via acting through steroid-like receptors in neu-

rons to modulate ERK and CREB-mediated gene

expression.

In addition to a receptor-mediated mechanism, it is

equally plausibly that changes in ERK activation and

related transcription factors (i.e. CREB) may result from

flavonoid-induced modulation of phosphatase activity.

Phosphatases act in opposition to kinases by de-phos-

phorylating specific kinases and in the process either

activate or de-activate them. Consequently, phosphatases

are integral to many signalling pathways. Because ERK

and other MAPK require both Thr and Tyr

phosphorylation for full activity, dual specificity phos-

phatases (DSPs) that de-phosphorylate both sites are

uniquely positioned to regulate MAPK signal transduction

cascades. At least nine DSPs, also termed MAPK phos-

phatases (MKPs), have been identified in mammalian

cells [25]. DSPs frequently associated with ERK inacti-

vation include MKP3, MKP4, and phosphatase of

activated cells 1 (PAC1), although MKP3 (also termed

PYST1) is probably the best studied and the most specific

for ERK1/2 versus other MAPK [89]. The finding that

multiple phosphatases inactivate the ERK pathway sug-

gests that the duration and extent of ERK activation is

controlled by a balance of the activities of upstream

MAPKK, such as MEK1, and phosphatases, such MKP3.

Although there has been intense interest in the ability of

flavonoids to modulate kinases, thus far there is no indi-

cation that they may affect signalling pathways via a

modulation of phosphatase activity. If flavonoids are

capable for reacting with phosphatases, such as MKP3,

then this is likely to have a dramatic effect on the acti-

vation states of important kinases like ERK1/2. Future

investigations in this area should consider the potential of

flavonoids to inhibit, or activate phosphatases, the con-

centration-dependency of these effects and the mechanism

by which they do so.

Stress-activated protein kinases: c-Jun-N-terminal

kinase (JNK) and p38

c-Jun-N-terminal kinase (JNK) is regulated by a variety of

MAPKKK’s, including MEKK1/4 and apoptosis signal-

related kinase (ASK1) [26, 76], which is further regulated

by GTPases and Rac1 [120, 121] (Fig. 4). Unlike the ERK

pathway, the JNK cascade is strongly activated by stress

signals such as UV and c-radiation, oxidative stress and

inflammatory cytokines [45, 75, 97, 103, 184]. JNK itself is

activated by MKK4/7, a MAPKK, via dual phosphoryla-

tion within the Thr138-Pro-Tyr-185 motif (pTPpY) in its

catalytic core. There is very strong evidence linking the

activation of JNK to neuronal injury in response to a wide

array of pro-apoptotic stimuli in both developmental and

degenerative death signalling [45, 46, 118]. In the context

of oxidative insults in neurons, JNK has been found to be

activated by dopamine [110], by 4-HNE [24, 132, 155] and

through reduced expression of superoxide dismutase

(SOD) 1 [113]. In addition, the activation of JNK pathway

and the death of specific neuronal populations is crucial

during early brain development [103]. As with the other

MAP kinases, the core signalling unit is composed of a

MAPKKK, typically MEKK1-4, which phosphorylate and

activate MKK4-7, which then phosphorylate and activate

the JNK [45, 75]. Another MAPKKK, apoptosis signal-
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Fig. 6 The structure of MEK inhibitor PD98059 and the PI3K

inhibitors, LY294002, have close structural homology to that of

flavonoids. LY294002 and quercetin both fit into the ATP binding

pocket of the PI3K, inhibiting its activity. It appears that the number

and substitution of hydroxyl groups on the flavonoid B-ring and the

degree of un-saturation of the C2–C3 bond are important determi-

nants of their activity. Such inhibitory actions have been proposed as

potential mechanisms by which flavonoids act to modulate neuronal

function
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regulating kinase 1 (ASK1), also plays an essential role in

stress-induced apoptosis [76, 182]. ASK1 can be activated

in response to a variety of stress-related stimuli, including

oxidative stress and activates MKK4, which in turn acti-

vates JNK (Fig. 4) and indeed p38 (Fig. 5) [115].

Overexpression of ASK1 has been shown to induce the

activation of both JNK and p38 and lead to apoptosis via

signals involving the mitochondrial cell death pathway [76,

103].

The flavanols, epicatechin and 30-O-methyl-epicatechin

have been shown to protect neurons against oxidative

damage via a mechanism involving the suppression of

JNK, and downstream partners, c-jun and pro-caspase-3

[149, 161]. In support of these observations, the flavone,

baicalein, has been shown to significantly inhibit 6-OHDA-

induced JNK activation and neuronal cell death and quer-

cetin may suppress JNK activity and apoptosis induced by

hydrogen peroxide [78, 181], 4-hydroxy-2-nonenal [173]

and tumour necrosis factor-alpha (TNF-alpha) [92]. There

are a number of potential sites where flavonoids may

interact with the JNK pathway. For instance, flavonoid-

mediated inhibition of oxidative stress-induced apoptosis

may occur by preventing the activation of JNK by influ-

encing one of the many upstream MAPKKK activating

proteins that transduce signals to JNK (Fig. 4). Their

ability to inhibit JNK activation may proceed via flavo-

noid-induced modulation of the ASK1 phosphorylation

state, and its association with 14-3-3 protein, which is

essential for suppression of cellular apoptosis [201]. Oxi-

dative stress in known to regulate the activity of this

MAPKKK by causing the de-phosphorylation of ASK1 at

Ser967 and its phosphorylation at Thr845 in the activation

loop, both of which are correlated with ASK1 activity and

ASK1-dependent apoptosis [62, 171]. Flavonoids may

modulate ASK1 activity by affecting these phosphorylation

sites, or by influencing PI3K/Akt signalling, which is

known to induce phosphorylation of ASK1 at Ser83, an

event which attenuates ASK1 activity and promotes cell

survival [86].

Another potential mechanism by which flavonoids act is

through the ability to preserve Ca2+ homeostasis, thereby

preventing Ca2+-dependent activation of JNK [45, 149].

Calcium dependent MAPK signalling has been suggested

to play a role in glutamate receptor-mediated neuronal

stress [133]. The influx of Ca2+ into the cytosol from the

extracellular space or from intracellular stores following

stress stimuli may activate Ca2+/calmodulin kinases, which

in turn can stimulate the activation of all three MAPK,

especially JNK [190]. Alternatively, flavonoids may exert

direct interactions with upstream signalling components

required for the recruitment and activation of JNK in

neurons. Studies have indicated that some flavonoids may

be capable of exerting neuroprotective actions through an

attenuation of the pro-apoptotic signalling cascade lying

downstream of JNK. Phosphorylation of the AP-1 protein

c-Jun on Ser-63 and Ser-73 by JNK causes increased

transcriptional activity [134], which has been linked to

stress-induced apoptosis. Activated c-Jun is known to

regulate the expression of pro-apoptotic genes that may

activate Bax, leading to the release of cytochrome c from

mitochondria, and culminating in a stimulation of caspases

9 and 3 [198]. Investigation has indicated that oxidative-

induced activation of caspase-3 in neurons is blocked by

flavonoids, providing compelling evidence in support of a

potent anti-apoptotic action of flavonoids in these cells

[149, 150, 160].

The p38 mitogen-activated protein kinase also plays an

important role in the signal transduction of extracellular

signals into the nucleus [125, 143] (Fig. 5). Similar to the

JNK pathway, p38 MAP kinase is activated by a variety of

cellular stresses including osmotic shock, pro-inflamma-

tory inflammatory cytokines, lipopolysacharides, UV light

and growth factors [68, 100, 125, 135, 144]. The p38

pathway is regulated by the MKKs, MKK3 and MKK6,

which in turn, are regulated by the upstream MAPKKK,

MEK1/4 and ASK [125] (Fig. 5). The activation of p38 has

been shown to lead to the phosphorylation of the tran-

scription factors ATF-2 [135], Max [199] and MEF2 [191,

202]. Such targets, in particular ATF-2 and MEF2 are

known to regulate various forms of cellular stress, includ-

ing genotoxic agents, inflammatory cytokines and UV

irradiation.

There are very few investigations that have addressed

the ability of flavonoids to modulate neuronal signalling

through the p38 pathway. However, there are some studies

which suggest that flavonoids may interact within the p38

pathway in other cells types, for example in human

mammary epithelial cells [59], thus hinting that they may

be able to induce neuronal effects via this pathway. The

challenge now is to determine the precise site(s) of action

of flavonoids within the p38 cascade and the sequence of

events that allow them to regulate stress-induced neuronal

death in the central nervous system. One such potential site

of action may be specific redox-sensitive motifs, notably

cysteine residues, similar to those reported for JNK [131].

JNK redox regulation has been proposed to proceed

through its binding to redox sensitive proteins such as

glutathione-S-transferase (GST) [5, 6, 123]. It has been

shown that under unstressed conditions, JNK is associated

with GST resulting in the inhibition of JNK activity, but

that JNK dissociates from GST following UV or oxidative

stress [5, 192]. Flavonoids also may act to inhibit JNK

activity, and other MAPK members, via the nucleophilic

addition of flavonoid o-quinones, formed from the intra-

cellular oxidation of flavonoids [156, 158], to these

cysteine residues.
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PI3 kinase signalling pathway

In addition to MAPK pathway, flavonoids have been shown

to modulate signalling through the serine/threonine kinase,

Akt/PKB, one of the main downstream effectors of PI3K, a

pivotal kinase in neuronal survival [37, 40, 85, 119]

(Fig. 7). PI3K is a heterodimer of a catalytic subunit (p110)

and a regulatory subunit (p85) [27, 31, 82] and it is thought

that binding between PI3K and phospholipids is due to the

ability of the regulatory subunit to interact with both the

catalytic subunit and receptor tyrosine kinases. Active

PI3K catalyzes the production of phosphatidylinositol-

3,4,5-triphosphate (PIP3) by phosphorylating phosphati-

dylinositol (PI), phosphatidylinositol-4-phosphate (PIP)

and phosphatidylinositol-4,5-bisphosphate (PIP2). PIP3

may then activate phosphoinositide-dependent protein

kinase 1 (PDK1), which plays a central role in many signal

transduction pathways [31, 153], activating Akt and the

PKC isoenzymes p70 S6 kinase and RSK [126]. Through

its effects on these kinases, PDK1 is involved in the reg-

ulation of a wide variety of processes, including cell

growth, cell proliferation, differentiation, cell cycle entry,

cell migration and apoptosis [31].

One of the most important targets of PI3K and PDK1 is

Akt, (also known as Protein Kinase B), as this kinase plays

a critical role in controlling cellular survival and apoptosis

[22, 57, 58]. Akt promotes cell survival by inhibiting

apoptosis through its ability to phosphorylate and inacti-

vate several important targets, including Bad [30],

Forkhead transcription factors [20, 23] and caspase-9 [22]

(Fig. 6). Indeed, activation of Akt/PKB in neurons has

been shown to lead to an inhibition of proteins central to

neuronal death machinery, such as the pro-apoptotic Bcl-2

family member, BAD [200], and members of the caspase

family [19, 85] that specifically cleave poly(ADP-ribose)

polymerase [37, 85], thus promoting cell survival. Akt is

activated by phospholipid binding and activation loop

phosphorylation at Thr308 by PDK1 [8] and by phosphor-

ylation within the carboxy terminus at Ser473 and the

activation of Akt is a pro-survival event in many cell types

due to its ability to inactivate BAD via phosphorylation at

Ser136 [43, 49].

There is powerful evidence that flavonoids inhibit PI3K

via direct interactions with its ATP binding site. Indeed, a

number of studies have demonstrated that the structure of

flavonoids determines whether or not they act as potent

inhibitors of PI3K [7, 54]. One of the most selective PI3K

inhibitors available, LY294002 (Fig. 5), was modelled on

the structure of quercetin [116, 178]. LY294002 and

quercetin fit into the ATP binding pocket of the enzyme

Fig. 7 Potential points of action of flavonoids within PI3K/Akt

signalling pathway. Active PI3K catalyzes the production of

phosphatidylinositol-3,4,5-triphosphate (PIP3) which activates phos-

phoinositide-dependent protein kinase 1 (PDK1). PDK1 plays a

central role in many signal transduction pathways, activating Akt and

the PKC isoenzymes p70 S6 kinase and RSK. Through its effects on

these kinases, PI3K is involved in the regulation of a wide variety of

processes, including cell growth, cell proliferation, differentiation,

cell cycle entry, cell migration and apoptosis. Flavonoids have been

proposed to act on this pathway via direct modulation of PI3K activity

via binding to its ATP binding pocket, in a similar manner to that of

LY294002. Alternatively, they may act to modulate the activity of the

tumour suppressor, PTEN

266 Genes Nutr (2007) 2:257–273

123



although with surprisingly different orientations [179]. It

appears that the number and substitution of hydroxyl

groups on the B-ring and the degree of un-saturation of

the C2–C3 bond are important determinants of this par-

ticular bioactivity. Interestingly in this regard quercetin

and some of its in vivo metabolites inhibit pro-survival

Akt/PKB signalling pathways [159] by a mechanism of

action consistent with the flavonoids binding to and

inhibiting PI3K activity. Prior to inducing measurable

losses of neuronal viability, quercetin stimulates a strong

inhibition of basal Akt phosphorylation at both the reg-

ulatory serine473 and catalytic threonine308 sites, rendering

it inactive. The inhibition of Akt/PKB phosphorylation in

this way may reflect potential inhibition of its upstream

partner PI3K, as has previously been described [116]. If

Akt/PKB inhibition is sustained, which has been reported

to occur during neuronal exposure to quercetin, this leads

to extensive caspase-3 activation and subsequent caspase-

dependent cleavage of Akt/PKB, an event that effectively

turns off the major survival signal and results in the

acceleration of apoptotic death [159]. However, at lower

concentrations, quercetin has also been shown to trigger

CREB activation in neurons indicating that exposure

concentration is pivotal in determining either pro-

apoptotic or anti-apoptotic effects [159]. Indeed, low

concentrations of quercetin, may activate the MAPK

pathway (ERK2, JNK1 and p38) leading to expression of

survival genes (c-Fos, c-Jun) and defensive genes (Phase

II detoxifying enzymes; glutathione-S-transferase, quinone

reductase) resulting in survival and protective mech-

anisms (homeostasis response), whereas high

concentrations stimulate pro-apoptotic pathways and ulti-

mate caspase activation [93].

Another potential mechanism by which flavonoids may

modulate the PI3 kinase/Akt signalling pathway is by

their ability to modulate the expression or activity of

PTEN (phosphatase and tensin homologue deleted on

chromosome ten), also referred to as MMAC (mutated in

multiple advanced cancers) phosphatase [29, 44, 66].

PTEN is a tumour suppressor implicated in a wide variety

of human cancers [28] and the main substrates of PTEN

are inositol phospholipids generated by the activation of

the PI3K [124]. PTEN acts a major negative regulator of

the PI3K/Akt signalling pathway [28, 187] and thus a

modulation of its expression or activation by flavonoids

will have a profound effect of cellular function. For

example, if flavonoids are capable of inhibiting PTEN in

cancer cells this may lead to an increase in cancer cell

proliferation and tumour growth. On the other hand, its

activation in post-mitotic cells, such as neurons, may have

a positive effect by increasing Akt and CREB activity

leading to a promotion of neuronal survival and synaptic

plasticity (Fig. 2).

Conclusions

Emerging evidence suggests that dietary phytochemicals,

in particular flavonoids, may exert beneficial effects in the

CNS by protecting neurons against stress induced injury,

by suppressing the activation of microglia and astrocytes,

which mediate neuroinflammation, and by promoting

synaptic plasticity, memory and cognitive function. Evi-

dence supports the localization of flavonoids within the

brain, thus these phytochemicals may be regarded as a

potential neuroprotective, neuromodulatory or anti-neuro-

inflammatory agents. It appears highly likely that such

beneficial properties are mediated by their abilities to

interact with both protein and lipid kinase signalling cas-

cades, rather then via their potential to act as antioxidants.

The concentrations of flavonoids encountered in vivo are

sufficiently high to exert pharmacological activity at

receptors, kinases and transcription factors. However,

precise sites of action are presently unknown. It is likely

that their activity depends on their ability to: (1) bind to

ATP sites on enzymes and receptors; (2) modulate the

activity of kinases directly, i.e. MAPKKK, MAPKK or

MAPK; (3) affect the function of important phosphatases,

which act in opposition to kinases; (4) preserve Ca2+

homeostasis, thereby preventing Ca2+-dependent activation

of kinases in neurons; and (5) modulate signalling cascades

lying downstream of kinases, i.e. transcription factor acti-

vation and binding to promoter sequences.

Another unknown factor relates to the precise cellular

site of action of flavonoids. For example, does flavonoid

action require cellular uptake or are they capable of medi-

ating effects via extracellular receptor binding. Presently,

there is no certainty either way, although flavonoid glucu-

ronides, which are unable to enter cells to any significant

degree, do not express cellular effects. This may suggest a

requirement for cytosolic localisation, although it could

equally signify that the conjugation of flavonoids with

glucuronide or sulphate moieties blocks receptor binding

and therefore their cellular activity. It appears likely that the

inhibition of Akt is almost certainly mediated via actions at

PI3K, thus requiring cellular uptake. However, actions at

ERK1/2 could result from either flavonoid modulation of

upstream regulatory kinases or by binding directly to

receptors. The challenge now is to determine the precise

site(s) of action of flavonoids within the signalling path-

ways and the sequence of events that allow them to regulate

neuronal function in the central nervous system.

Ultimately actions within these neuronal signalling

cascades may be beneficial or negative in the context of the

brain. For example, whilst they may be positive in the

treatment of proliferative diseases, they could be detri-

mental to the nervous system, at least at high

concentrations, where these same pathways act to control
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neuronal survival and synaptic plasticity. Thus, flavonoid

interactions with intracellular signalling pathways could

have unpredictable outcomes and will be dependent on the

cell type (i.e. neurons, astrocytes, microglia, oligodendro-

cytes), the disease studied and the stimulus applied. In

summary, it is evident that flavonoids are potent bioactive

molecules and a clear understanding of their mechanisms

of action as modulators of cell signalling will be crucial in

the evaluation of their potential to act as inhibitors of

neurodegeneration or as modulators of brain function.
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