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Abstract The cholinergic theory of aging states that

dysfunction of cholinergic neurons arising from the basal

forebrain and terminating in the cortex and hippocampus

may be involved in the cognitive decline that occurs during

aging and Alzheimer’s disease. Despite years of research,

pharmacological interventions to treat or forestall the

development of Alzheimer’s disease have primarily

focused on enhancing cholinergic transmission, either

through increasing acetylcholine (ACh) synthesis or inhi-

bition of the acetylcholinesterase enzyme responsible for

ACh hydrolysis. However, recent studies have indicated

that dietary supplementation can impact the cholinergic

system, particularly during aging. The purpose of the

present review is to examine the relevant research sug-

gesting that cholinergic functioning may be maintained

during aging via consuming a diet containing polyunsatu-

rated fatty acids (PUFAs). The data reviewed herein indi-

cate that, at least in animal studies, inclusion of PUFAs in

the diet can improve cholinergic transmission in the brain,

possibly leading to improvements in cognitive functioning.
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Introduction

For many years, it has been known that dysfunction of

cholinergic neurons arising from the basal forebrain and

terminating in the cortex and hippocampus are involved in

the cognitive decline that occurs during aging as well as

during the development of Alzheimer’s disease. This

‘‘cholinergic theory of aging’’ has received support from

numerous studies demonstrating that the disruption of

cholinergic function via anticholinergic drugs or basal

forebrain lesions in young animals produces cognitive

deficits commonly seen in aged animals [1]. In addition,

aged animals exhibit cholinergic dysfunction evidenced as

a reduced choline uptake in the hippocampus, striatum, and

cortex [2]. Studies on postmortem human tissue have also

shown that basal forebrain cholinergic cells undergo atro-

phy, loss of choline acetyltransferase activity and a slight

decline in cell number [3].

Unfortunately, despite years of research into the biology

of amyloid beta and tau, the actual interventions to treat or

forestall the development of Alzheimer’s disease have

primarily focused on enhancing cholinergic transmission,

either through increasing acetylcholine (ACh) synthesis or

inhibition of the acetylcholinesterase (AChE) enzyme

responsible for ACh hydrolysis [4]. AChE inhibitors

have, thus, far proven most efficacious in improving

cognitive performance in the Alzheimer’s disease patients

and include both synthetic AChE inhibitors (tacrine and

donepezil) and natural compounds [5, 6]. In fact, one of the

most widely used treatments for AD is the drug galanta-

mine, originally isolated from the Galanthus worownii plant

[7]. Galantamine exerts dual effects on the cholinergic

system: inhibition of AChE and stimulation of postsynaptic

nicotinic receptors [8]. Based on the efficacy of galanta-

mine, screening studies have led to the identification and
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isolation of natural AChE inhibitors from herbs [9], plants

[10], seeds and fruits [11]. In addition, recent studies have

indicated that dietary polyunsaturated fatty acids (PUFAs)

may be able to modulate cholinergic activity, either through

enhancement of ACh release or inhibition of ACh hydro-

lysis (Table 1). If this is the case, and if treatments to

increase cholinergic function remain at the forefront of the

fight against Alzheimer’s disease, it might be possible to

obtain these cholinergic enhancements via dietary means.

The purpose of the present review is to examine the relevant

research suggesting that cholinergic functioning may be

maintained via a diet containing PUFAs.

Dietary PUFAs

Polyunsaturated fatty acids are structurally characterized as

simple lipids containing two or more double bonds. The two

major classes of PUFAs are the n-3 and the n-6 fatty acids,

which share metabolic enzymes, but can have vastly dif-

ferent functions. Linoleic acid (C18:2 n-6, LA) and alpha-

linolenic acid (C18:3 n-3, ALA) are the main essential fatty

acids, so-called ‘‘essential’’ because they cannot be syn-

thesized in vivo and must be obtained from the diet. LA can

be metabolized to arachidonic acid (C20:4 n-6, AA) and

docosapentaenoic acid (C22:5 n-6, DPA) while ALA is

converted to eicosapentaenoic acid (C20:5 n-3, EPA) and

docosahexaenoic acid (C22:6 n-3, DHA). The predominant

sources of n-3 PUFAs are vegetable oils and fish: ALA and

LA are found in green leafy vegetables, oils, and nuts while

DHA and EPA are found in fish [12]. Brain availability of

dietary PUFAs depends on metabolism of ALA and LA

to DHA and AA by the liver, followed by uptake from

circulation. Oral administration of ALA results in brain

accumulation of EPA and DHA, but not ALA itself.

Conversely, administration of LA results in a short-lived

enrichment of LA in brain tissue along with a long-term

accumulation of AA [13]. Dietary DHA has been reported

to result in DHA enrichment of neuronal plasma mem-

branes [14], although no association between dietary DHA

and brain DHA has also been reported in aged animals [15].

PUFAs and the aging brain

The coordination and execution of cognitive processes

depends on the appropriate detection and propagation of

signals from both the environment and surrounding cells in

the brain. The responsivity of each cell depends on the

composition of the cell membrane, through which all sig-

nals must pass. Neuronal membranes are especially rich in

fatty acids, which participate in structural maintenance,

generation of second messengers and signaling molecules,

and modulation of enzyme activity [16]. The aged brain

exhibits lower levels of PUFA in neuronal membranes as

compared to young animals, which could account for

functional neuronal declines in the aged brain [17]. Less

free and phospholipid-bound fatty acids are found in the

aged brain, particularly in the cortex and hippocampus

[18]. These alterations contribute to a decrease in mem-

brane fluidity, which is particularly evident in the hippo-

campus, cortex, cerebellum and striatum of aged rats [19].

The age-related decline in neuronal membrane fatty acid

composition also contributes to alterations in neuronal

morphology and reduced synaptic plasticity [20]. Deficits

in membrane fatty acid composition could, therefore, affect

a number of neuronal functions, including the ability of

cells to respond to environmental stimuli as well as the

ability of cells to successfully propagate and transmit

signals.

Table 1 Effects of dietary polyunsaturated fatty acids on cholinergic parameters

Model PUFA Duration Effect References

SHRSP rats, 6 weeks old DHA 1% or 5% (w/w) of diet 14 weeks Increased ACh in hippocampus and

cortex

[41]

Wistar rat, 18 months 75 mg DHA/ 100 g diet 3 months Increased basal and evoked ACh in

hippocampus

[22]

Wistar rat, weanling 2 or 3 g DHA/kg diet 2–3 months Higher maximal ACh release, lower

basal release in hippocampus

No effect on AChE

[23]

CFY rats, weanling Coconut, mustard, groundnut,

safflower oil 20% (w/w) of diet

16 weeks Safflower and mustard oil lowered

AChE activity in synaptosomes of

cerebrum, cerebellum, brainstem

[33]

Wistar rats, 10 weeks old 300 mg DHA/ kg body weight 12 weeks No change in cortical synaptic plasma

membrane AChE activity

[34]

Sprague–Dawley rats, young adult Safflower oil 38% kcal of diet; fish

oil 36% kcal of diet

8 weeks Safflower oil decreased M2/M4

receptor expression in striatum and

hippocampus

[26]
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ACh release

As integral constituents of neuronal plasma membranes,

PUFAs might be expected to affect the formation and

exocytosis of synaptic vesicles containing neurotransmit-

ter. Indeed, Lesa et al. have demonstrated that successful

cholinergic transmission in C. elegans depends on the

presence of long-chain PUFAs. The deletion of the enzyme

responsible for the conversion of ALA to DHA led to a

depletion of synaptic vesicles and loss of cholinergic tone

at neuromuscular junctions. Addition of DHA to the

growth media was able to rescue this phenotype in

C. elegans [21]. In terms of diet, DHA has also been shown

to impact cholinergic transmission in animal models,

although these effects appear to be sensitive to the dietary

source of DHA. In aged animals, supplementation with

DHA in the form of egg phospholipids or pig brain was

able to restore the age-related decline in membrane DHA

composition. Animals were maintained on a balanced diet

containing ALA and LA from birth to 18 months, during

which time spontaneous ACh release steadily declined in

the hippocampus. While the egg phospholipid diet restored

both the DHA and AA content of neuronal membranes and

ACh release in the hippocampus, the pig brain diet had no

effect on membrane composition, but was able to restore

ACh release, albeit to a lesser extent than the egg

phospholipid diet [22]. In a similar study, rats were fed

with diets supplemented with increasing levels of DHA

derived from either egg phospholipids or tuna oil. In ani-

mals fed with[2 g DHA/kg diet, basal release of ACh was

actually lower in the hippocampus although evoked release

of ACh was higher in animals supplemented with 2 or 3 g

DHA/kg diet [23]. The beneficial effects of PUFAs on

neuronal function have traditionally been assumed to be

mediated via fatty acid enrichment of neuronal membranes

and alterations in membrane biophysical properties [19].

However, one study demonstrated an increase in ACh

release despite no changes in membrane PUFA content

[22] indicating that the effects of fatty acids on cholinergic

transmission may, therefore, not be mediated exclusively

by alterations in membrane composition.

In addition to affecting ACh release, PUFAs have also

been shown to impact ACh receptors, both nicotinic and

muscarinic. In Xenopus oocytes transfected with nicotinic

ACh receptors, addition of either ALA or LA resulted in a

biphasic effect of ACh receptor currents: short-term

depression followed by long-term enhancement of cholin-

ergic transmission [24]. The long-term enhancement was

mediated through phosphokinase C activation and phos-

phorylation of the receptor. PUFAs were also shown to

modulate the muscarinic receptor, which has been impli-

cated in the establishment and maintenance of long-term

potentiation in the hippocampus, a cellular mechanism of

synaptic plasticity underlying memory formation [25]. In

animals fed with an n-6 supplemented diet for 8 weeks,

M2/M4 receptor expression was reduced in the striatum

and hippocampus, M1/M4 receptor binding was not

affected by n-6 PUFA administration, and n-3 PUFA

supplementation did not affect the expression of either

receptor subtype [26]. The decrease in M2/M4 receptors

could reflect an adaptation secondary to the enhancement

of ACh release to the hippocampus: more neurotransmitter

leads to fewer receptors. In fact, one study by Almeida

et al. [27] demonstrated a link between muscarinic receptor

stimulation and ACh release in the hippocampus. In hip-

pocampal slice cultures, muscarinic stimulation led to AA

release, which in turn enhanced ACh release from hippo-

campal nerve terminals. Since AA is formed from LA in

the diet, it is possible that dietary LA could provide a pool

of AA to act as a retrograde messenger to increase ACh

release and strengthen synaptic connectivity in the aging

hippocampus.

AChE inhibition

Dietary fats have been shown to modulate membrane-

bound enzymes on erythrocytes as early as 1973 [28], when

it was noted that AChE activity was correlated with

changes in membrane biophysical properties. Subsequent

studies demonstrated that various oils administered through

the diet could affect erythrocyte AChE activity, with the

highest level of AChE inhibition seen in animals con-

suming mustard oil, containing primarily monounsaturated

fatty acids (MUFAs) as well as the PUFAs ALA and LA

[29]. ALA and LA were further implicated as AChE

inhibitors when erythrocyte enzyme activity was investi-

gated in rats fed diets of varying ratios of ALA and LA. It

was found that a diet containing a ratio of LA:ALA of 8:1

induced more potent inhibition of erythrocyte AChE than a

diet of LA:ALA of 40:1 [30].

This data on erythrocyte AChE activity, along with the

expansion of the cholinergic hypothesis of aging, led to the

investigation of the potential for dietary fatty acids to

function as AChE inhibitors in the basal forebrain–hippo-

campal system in the brain. An initial study investigated the

effects of dietary soybean oil, sunflower oil, and soybean

phosphatidylcholine on synaptosomal AChE activity in

young rats [31]. Animals consuming sunflower oil, which

contains primarily LA, exhibited an increase in the activity

of AChE in isolated synaptosomes as compared to synap-

tosomes isolated from animals consuming a soybean oil diet

containing both LA and ALA [31]. A subsequent study

found no differences in AChE activity in the brains of

animals fed either ALA-rich perilla oil or safflower oil,

which is high in LA [32]. In contrast, Srinivasarao et al. [33]
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demonstrated that safflower oil supplementation at 20% of

the diet resulted in lower AChE activity in synaptosomal

membranes of cortex, cerebellum, and brainstem of young

male rats. The aforementioned study compared the synap-

tosomal AChE activity in animals fed either safflower oil

(high in LA), peanut oil (high in MUFAs but containing

approximately 40% LA and 2% ALA), mustard oil (pri-

marily composed of MUFAs, but containing ALA and LA

at approximately equal amounts), and coconut oil, which is

high in saturated fatty acids, but does contain a small

amount of LA. In terms of AChE activity, coconut and

peanut oil fed groups exhibited significantly higher AChE

activity than either safflower or mustard oil fed animals

[33]. These results primarily implicate ALA as a dietary

source of AChE inhibition. In addition, this study demon-

strates that the effects of dietary oils on AChE activity may

be complex and difficult to predict: whereas an oil with

primarily MUFAs and 38% LA increased AChE activity,

safflower oil containing a majority of fats as PUFAs

and approximately 79% LA lowered AChE activity in

synaptosomes.

Although LA and ALA have been shown to modulate

AChE activity in the brain, DHA has thus far not proven as

effective as an AChE inhibitor. When adult male rats were

given DHA for 12 weeks, the DHA content of cell mem-

branes was increased with a concomitant increase in the

fluidity of the membrane, but AChE activity in the cortex

was unchanged by DHA supplementation [34]. These dif-

ferences in the effects of PUFAs on AChE activity may be

due to the extent of incorporation of specific PUFAs into

the cell membrane. DHA supplementation could increase

disorganization of the membrane lipid core [35], thereby

leaving the fluidity of the cell surface untouched and the

activity of cell surface-attached AChE unaffected. It is also

possible that AChE modulation is a function exclusive of

ALA or LA and not associated with DHA.

Dietary fatty acids and age-related cognitive decline

Although several studies have demonstrated that DHA

supplementation can restore membrane content and

enhance ACh release [22, 23], few studies have reported a

beneficial effect of DHA, EPA or fish oil on cognitive

behavior in aged animals [36, 37]. DHA supplementation

was found to be ineffective at improving overall Morris

water maze performance when given at 9.4 g/kg diet to

aged mice throughout life [36], 11.2% of dietary fatty acids

to aged rats for 4 weeks [38], or 3.5 g/kg diet to aged APP/

PS1 mice [39]. When diets supplemented with DHA-rich

fish oil were provided to APP/PS1 mice, the mice did spend

significantly more time in the correct quadrant of the maze

during the probe trial, but the amount of time spent in the

correct quadrant was not better than chance [39]. In other

behavioral tasks and at higher dietary concentrations, DHA

has been shown to improve maze performance in aged

animals. 9-month-old mice consuming a diet supplemented

with 20% DHA in the form of Chlorella vulgaris for

8 weeks made fewer total and fewer working memory

errors in the 8-arm radial arm maze [40]. In stroke-prone

spontaneously hypertensive rats, dietary DHA administra-

tion from 6 to 20 months was able to normalize hippo-

campal ACh levels and improve performance on passive

avoidance learning [41]. Similarly, in a footshock-

motivated T-maze, 10-month-old senescence-accelerated

SAMP8 mice fed a high DHA diet (14% DHA) for 8 weeks

exhibited improved acquisition and retention of the learn-

ing task when compared with animals maintained on a low

DHA (0.3%) diet [42]. In other studies, DHA supplemen-

tation was only found to improve cognitive performance in

aged animals only when compared with diets deficient in

key nutrients [43] or diets enriched in saturated fats [44,

45]. Several studies have investigated the effects of perilla

oil (approximately 13% LA, 60% ALA) and safflower oil

(approximately 75% LA, 0.1% ALA) on learning in aged

animals; these studies have generally demonstrated

improved brightness discrimination learning in 19-month-

old rats fed throughout life [46], 7-month-old senescence-

accelerated SAMP8 mice fed from birth [47], and

15-month-old senescence-resistant SAMR1 mice fed from

birth [48]. Other than the previously mentioned oil sup-

plementation studies, few reports exist on the effects of

ALA and LA on cognitive function in aged animals. Our

most recent work with dietary PUFAs demonstrated that

supplementation of aged animals with 6% walnut extract in

the diet improved performance on cognitive and motor

tasks [49]. Walnuts contain approximately 9 g of ALA and

38 g of LA per 100 g of walnuts, the richest whole food

Fig. 1 Walnut supplementation significantly decreases acetylcholin-

esterase activity in the aged striatum, but not in the hippocampus.
AChE activity was determined using Ellman’s colorimetric method

(data presented as mean ± SEM; control n = 5, 6% n = 7, 9%

n = 6; *P \ 0.05)
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source of ALA [50]. For animal studies, this translates to

5.4 g of ALA and 22.9 g of LA per kg of the 6% diet and

8.2 g of ALA and 34.28 g of LA per kg of 9% diet. As one

potential explanation for the beneficial effects of walnuts

on cognition, we subsequently found that walnut con-

sumption was associated with significantly lower AChE

activity in one brain region of aged animals (Fig. 1). These

results are in concert with the previously mentioned studies

of fatty acid supplementation and reveal a compelling

benefit of walnut consumption which is undergoing further

investigation.

Summary and conclusions

In conclusion, a number of studies have demonstrated that

natural substances and dietary components can impact the

cholinergic system of the brain. Of these, PUFAs from the

diet may represent one source of cholinergic modulators.

Although this area of research is in its infancy, studies have

revealed that the consumption of essential fatty acids can

affect ACh release, cholinergic receptor expression, and

activity and ACh hydrolysis. Coupled with numerous other

experiments showing that berry fruits such as blueberries,

blackberries, and strawberries can reverse motor and cog-

nitive deficits in aging, findings revealing that PUFAs can

affect the cholinergic system suggest once more that diet

can be a powerful modifier of the course of behavioral

decline and perhaps increase the health span in aging.
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