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Abstract The genes contributing to childhood obesity are

categorized into three different types based on distinct

genetic and phenotypic characteristics. These types of

childhood obesity are represented by rare monogenic forms

of syndromic or non-syndromic childhood obesity, and

common polygenic childhood obesity. In some cases,

genetic susceptibility to these forms of childhood obesity

may result from different variations of the same gene.

Although the prevalence for rare monogenic forms of

childhood obesity has not increased in recent times, the

prevalence of common childhood obesity has increased in

the United States and developing countries throughout the

world during the past few decades. A number of recent

genome-wide association studies and mouse model studies

have established the identification of susceptibility genes

contributing to common childhood obesity. Accumulating

evidence suggests that this type of childhood obesity rep-

resents a complex metabolic disease resulting from an

interaction with environmental factors, including dietary

macronutrients. The objective of this article is to provide a

review on the origins, mechanisms, and health conse-

quences of obesity susceptibility genes and interaction with

dietary macronutrients that predispose to childhood obes-

ity. It is proposed that increased knowledge of these obesity

susceptibility genes and interaction with dietary macronu-

trients will provide valuable insight for individual, family,

and community preventative lifestyle intervention, and

eventually targeted nutritional and medicinal therapies.
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Introduction

Childhood obesity is a major health problem in the United

States and developing countries throughout the world. The

most recent National Health and Nutrition Examination

Surveys (NHANES) indicate that childhood obesity in the

United States has approximately doubled during the past

three decades and adolescent obesity has more than tripled

during the same period (Ogden et al. 2010, 2012). These

studies also report that although the prevalence of child-

hood and adolescent obesity has not changed since

2007–2008, the prevalence of obesity among 2–5-year-olds

(12.1 %), 6–11-year-olds (18.0 %), and 12–19-year-olds

(18.4 %) remains at the highest recorded levels since

establishment of the NHANES (Ogden et al. 2002). How-

ever, it should be noted that some epidemiological studies

indicate that the prevalence of childhood obesity is

continuing to increase in certain sex, age, ethnic, and

socioeconomic status groups within the United States and

that the current childhood obesity epidemic will contribute
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to an increase in the number of obese adults (Serdula et al.

1993; Wang et al. 2012). It was reported that *80 % of

overweight children between 10 and 15 years of age

become obese adults by 25 years of age and that overweight

children before 8 years of age usually result in more severe

adult obesity (Whitaker et al. 1997). With respect to the

global prevalence of childhood obesity, it was estimated

that 43 million preschool children (6.7 %) were overweight

or obese in 2010 and projected to reach *60 million pre-

school children (9.1 %) in 2020 (de Onis et al. 2010). A

graph showing the increasing percentage of overweight

children in different countries with the highest known

prevalence of childhood obesity is provided (Fig. 1).

The childhood obesity epidemic is also anticipated to cul-

minate in a large number of weight-associated complications

affecting the neurological, cardiovascular, endocrine, mus-

culoskeletal, renal, gastrointestinal, and pulmonary systems in

addition to psychosocial problems (Fig. 2). These medical

complications will further burden an already fragile national

healthcare system as children progress through adulthood

(Yach et al. 2006). It is projected that these complications will

ultimately decrease the life expectancy of people in the United

States by 2–5 years for the first time in modern history

(Olshansky et al. 2005). To address and hopefully lessen the

impact of this major health problem, experts from diverse

fields of study are attempting to understand the etiology of

childhood obesity. It is well accepted that the timing of this

epidemic parallels an increased availability of calorie-dense

foods and a more sedentary lifestyle in what is referred to as an

‘‘obesogenic environment’’ (Chaput et al. 2011). However,

the cause of this epidemic is obscured because not all indi-

viduals become overweight or obese while living in the same

environment. Therefore, variability among individuals is

suspected to result from heritability of obesity susceptibility

genes that interact with known and unknown components in

the obesogenic environment to promote positive energy bal-

ance responsible for weight gain (Wardle et al. 2008b; Hofker

and Wijmenga 2010).

The objective of this article is to provide a review on the

origins, mechanisms, and health consequences of obesity

susceptibility genes and the interaction with dietary ma-

cronutrients that predispose to childhood obesity. It is

proposed that increased knowledge of these obesity sus-

ceptibility genes and interaction with dietary macronutri-

ents will provide valuable insight for individual, family,

and community preventative lifestyle intervention and

eventually targeted nutritional and medicinal therapies.

Definition of energy balance

The ultimate cause of weight gain is usually considered in

terms of altered energy balance, the basic components of

which include energy consumption, energy expenditure,

and the storage of excess energy in the form of triacyl-

glycerol within tissues, primarily adipose (Hill et al. 2012).

For instance, when energy in the form of calories derived

from food and drink exceeds energy expenditure involving

the combination of resting metabolic rate, energy necessary

for absorption and metabolism of dietary macronutrients,

and energy expended during physical activity, a state of

positive energy balance occurs characterized by the storage

of this energy (*60 to 80 %) within adipose tissue. In

contrast, when energy consumption is less than the energy

expenditure, a state of negative energy balance occurs

characterized by the mobilization of energy (*60 to 80 %)

from adipose tissue. Therefore, any genetic or environ-

mental factor that alters body weight must involve the basic

components of energy balance over a period of time (Hill

et al. 2003).

Heritability of body weight and interaction

with environmental factors

It has been recognized for several decades that obesity is a

heritable disorder. The Hereditary Abilities Study initiated

in 1952 was a comprehensive study performed in the

United States to investigate heritability of physical traits,

including measures of adiposity (birth weight, body weight,

and waist circumference) among monozygous and dizy-

gous twins, which demonstrated that the greater part of

variance for these traits was genetically determined (Clark

1956). These findings were consistent with other studies

reported over 20 years later indicating a high heritability of

body weight among monozygous and dizygous twins

(Brook et al. 1975; Borjeson 1976; Feinleib et al. 1977).

However, it became apparent that genetic susceptibility

interacts with undefined environmental factors to increase

adiposity and body weight, in what has formally become

known as a ‘‘gene–environment interaction’’ and defined as
Fig. 1 The increasing percentage of overweight children in eight

countries with the highest prevalence of childhood obesity

272 Genes Nutr (2013) 8:271–287

123



‘‘a response or adaptation to an environmental agent, a

behavior, or a change in behavior conditional on the

genotype of the individual’’ (Bouchard 2009). An early

study clearly demonstrating a gene–environment interac-

tion in relation to weight gain was performed using 12

monozygotic twins who consumed a 1,000 kcal/day sur-

plus of calories for a period of 100 days while maintaining

a sedentary lifestyle (Bouchard et al. 1990). The results

from this study showed a significant within twin-pair

resemblance in adaptation to the excess calories (3 times

more variance in response between twin-pairs than within

twin-pairs in relation to increased body weight) suggesting

that genetic susceptibility influenced the amount of stored

fat. A study designed to assess genetic and environmental

influences using 114 monozygotic twins, 81 dizygotic

twins, and 98 virtual twins (same age but unrelated sib-

lings) indicated that genetic variation contributed *65 %

to heritability of body mass index (BMI) while undefined

environmental factors contributed to the remaining balance

(Segal and Allison 2002). The heritability of childhood

obesity was more closely examined and confirmed in a

study using 8,234 children, which demonstrated a fourfold

increased risk of childhood obesity if one parent was obese

and a 10-fold increased risk of childhood obesity if both

parents were obese (Reilly et al. 2005). Another study

using 672 twin pairs indicated that genetic variation con-

tributed 84–88 % to heritability of body weight when

measured at 5 months and 5 years of age (Dubois et al.

2007). Therefore, it has been estimated that obesity sus-

ceptibility genes contribute an estimated 40–70 % to var-

iation in BMI within populations (Day and Loos 2011). It

should also be emphasized that heritability estimates have

been shown to increase from early childhood through

adolescence due to genetic susceptibility genes interacting

more strongly with environmental factors (Lajunen et al.

2009; Dubois et al. 2012).

Missing or hidden heritability of common diseases

The ‘‘common disease, common variant’’ hypothesis states

that genetic risk for common diseases is due to alleles of

high frequency (Pritchard 2001; Reich and Lander 2001). It

was once believed that common variants of high frequency

would explain common disease heritability, defined as the

proportion of phenotypic variance in a population due to

additive genetic factors. However, after identifying hun-

dreds of different variants associated with common dis-

eases, the variants in combination accounted for only a

small proportion of the estimated disease heritability

(Hindorff et al. 2009). For example, the estimated herita-

bility for BMI within populations has been reported to be

40–70 %, yet only a few percent of the estimated herita-

bility has been accounted for by the combined phenotypic

effect size or penetrance of gene reference variants

(Li et al. 2010; Speliotes et al. 2010). The identification of

‘‘missing heritability’’ is now an essential step for deter-

mining how allelic variants contribute to common diseases

such as obesity and translating this genetic information into

clinical practice (Maher 2008; McCarthy et al. 2008). The

missing heritability of common diseases may be the result

of differences in allelic architecture not detected using

Fig. 2 The major

complications associated with

childhood obesity

Genes Nutr (2013) 8:271–287 273

123



genome-wide association studies (GWAS), in which case it

may be more appropriately referred to as ‘‘hidden herita-

bility’’ (Gibson 2010). Accumulating evidence now sug-

gests that low-frequency alleles not detected by GWAS and

also alleles with insufficient phenotypic effect size not

detected by gene-linkage analysis represent ‘‘causal vari-

ants’’ responsible for hidden heritability of common dis-

eases (Manolio et al. 2009). In other words, there is now

evidence to suggest that partial linkage disequilibrium

between reference variants and low-frequency causal vari-

ants with a minor allele frequency between 0.5 and 5.0 %

and intermediate phenotypic effect sizes can fully account

for hidden heritability of common diseases, where linkage

disequilibrium is defined as a measure of the non-random

association of alleles at two or more loci (Slatkin 2008). To

date, several causal variants of intermediate effect size for

common diseases have been found to exist in partial linkage

disequilibrium (r2 \ 0.5) with reference variants (Zhu et al.

2012). This same study also provides evidence that the

minor allele frequency for causal variants may range from

*0.5 % (rare) to *5.0 % (low frequency), more than one

causal variant may be in partial linkage disequilibrium with

the reference variant, and that causal variants likely repre-

sent deleterious mutations that adversely affect encoded

protein function and metabolism (Zhu et al. 2012).

Epigenetics and interaction with environmental factors

It should be noted that heritability of body weight and

interaction with environmental factors may occur through a

different mechanism. This mechanism is referred to as

‘‘epigenetics’’ and generally defined as the study of heri-

table changes which effect gene expression or function

without modifying the DNA sequence (Bird 2007). Recent

studies suggest that epigenetic adaptation through

increased or decreased methylation of nucleotide bases

(primarily cytosine) in addition to more generalized histone

modification can alter the transcription of genes involved in

regulating energy balance (Russo et al. 2010; Herrera et al.

2011). To date, the methylation status for a number of

genes involved in metabolic or endocrine function has been

identified that results from dietary changes during prenatal

or early postnatal life and associated with childhood or

adulthood adiposity (Tobi et al. 2009; Godfrey et al. 2011).

However, it should be noted that the definitive role of

epigenetic–environment interactions in relation to obesity

remains controversial due to difficulties in discriminating

the cause and effect for these DNA modifications (does

epigenetic modification cause obesity or does obesity cause

epigenetic modification) and the central importance of

DNA sequence at particular loci (Martin et al. 2011;

Youngson and Morris 2012). As a result, it is believed that

meaningful clinical application of epigenetics in the pre-

vention or treatment of obesity will remain a vision until

further research is performed (Franks and Ling 2010).

Thrifty gene hypothesis

A presentation of gene–environment interactions should

include the concept of ‘‘thrifty genes’’ first introduced and

later modified by the American geneticist Neel (1962,

1999). In brief, the thrifty gene hypothesis states that cer-

tain groups of people with hunter-gatherer evolutionary

lifestyles may have experienced repeated periods of feast

and famine, which through adaptation, resulted in the

natural selection of thrifty genes, thereby eventually pre-

disposing these groups to chronic diseases of civilization

such as obesity and diabetes. The thrifty genes encode

proteins directly or indirectly involved in maintaining

energy balance, such as the conversion of food calories into

fat when food supplies are plentiful (feasting period).

These genes were proposed to contain certain variants that

were believed to enhance this conversion. The increased

storage of fat was proposed to be used as an energy source

when food calories become limited (fasting period). A key

feature of the thrifty gene hypothesis is that selective

advantage of these gene variants become a disadvantage

(susceptibility to obesity and diabetes) for individuals liv-

ing in an obesogenic environment. It must be emphasized

that this particular feature suggests that thrifty genes rep-

resent gene variants present at a frequency greater than 1 %

in a population due to natural selection, in contrast to gene

variants present at lower frequency and responsible for rare

monogenic forms of syndromic and non-syndromic obesity

(Kagawa et al. 2002).

The thrifty gene hypothesis is consistent with higher

frequency gene variants interacting with environmental

factors to promote weight gain among certain populations.

The most studied and documented population referenced in

relation to thrifty genes includes the Pima Indians of Ari-

zona. This population at one time had a subsistence life-

style but is now predisposed to weight gain and diabetes as

a result of a modern obesogenic lifestyle (Knowler et al.

1983, 1991). Moreover, a number of well-designed studies

using both monozygotic and dizygotic twins have provided

strong evidence demonstrating that children with obesity

susceptibility genes living in an obesogenic environment

(adopted family) are at increased risk of developing

childhood obesity (Borjeson 1976; Silventoinen and Kaprio

2009; Silventoinen et al. 2010). These results are consistent

with recent anthropological studies verifying that gene–

environment interactions are responsible for marked dif-

ferences among populations genetically susceptible to

weight gain (Casazza et al. 2011).
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It should be noted, however, that the thrifty gene

hypothesis remains controversial due to suggestions that

famines were neither long nor severe enough to select for

thrifty genes and that no evidence exists for excessive

weight gain between famines or during the feast periods

(Prentice et al. 2008; Speakman 2008). In addition, it has

been shown that the average daily energy expenditure is

similar for modern hunter-gatherers and Westerners after

controlling for body size, in contrast to previous assump-

tions that early hunter-gatherers had an increased daily

energy expenditure (Pontzer et al. 2012). Other studies

have also found no evidence for the natural selection of

obesity and diabetes susceptibility genes identified using

GWAS and that such genes are unlikely to exist in a stable

polymorphic state (Southam et al. 2009; Baig et al. 2011).

An alternative explanation that is gaining recognition for

the current obesity epidemic involves a nonadaptive

approach referred to as the ‘‘predation release’’ or ‘‘drifty

hypothesis’’, which suggests that adiposity may result from

random genetic mutations and drift that interact with

environmental factors (Speakman 2008; Speakman and

O’Rahilly 2012). Regardless of the evolutionary mecha-

nism, it is clear that obesity susceptibility genes interact

with known and unknown environmental factors that result

in positive energy balance responsible for weight gain

(Fig. 3).

The high-fat diet as a major component

in the obesogenic environment

The obesogenic environment consists of a complex inter-

play of contributing factors that influence behavior thereby

effecting dietary choice, physical activity, or metabolism

responsible for maintaining energy balance (Patrick et al.

2004). A number of recent studies suggest that both sed-

entary behavior (viewing television, playing video games,

doing cognitive work, and listening to music) and reduced

overall physical activity along with shorter sleep duration

promote the overconsumption of dietary macronutrients,

particularly fats and refined carbohydrates (Stroebele and

de Castro 2006; Graves et al. 2007; Temple et al. 2007;

Chaput et al. 2008; Westerlund et al. 2009). The increased

consumption of a high-fat diet, particularly a high-fat diet

enriched with saturated fatty acids, has been found to be

strongly associated with increased adiposity in overweight

and obese children (Aeberli et al. 2006, 2008). Moreover,

another recent study performed with 810 participants

indicated a highly significant association of saturated fatty

acid consumption (but not plant protein, carbohydrates, or

other types of fat) at 6 months with body weight at

18 months of age (Lin et al. 2012). Consistent with these

results, studies indicate that obesity susceptibility genes

tend to preferentially interact with saturated fatty acids, but

not monounsaturated fatty acids or polyunsaturated fatty

acids, to promote weight gain (Razquin et al. 2010; Corella

et al. 2011). For these reasons, it is widely accepted that

high-fat diets, characterized by enhanced palatability and

high energy density, may be primarily responsible for the

current obesity epidemic. However, it should be noted that

studies suggest that increased consumption of carbohy-

drates, particularly refined carbohydrates and sugar-

sweetened beverages, during the past 30 years better

parallels the increased prevalence of obesity (Gross et al.

2004; Malik et al. 2006, 2010).

The importance of gene–diet interactions believed

responsible for chronic nutrition-related diseases, such as

obesity and type 2 diabetes, has prompted the develop-

ment of a relatively new scientific discipline referred to

as ‘‘nutritional genetics’’ and ‘‘nutritional genomics’’

(Ordovas and Corella 2004). Although current childhood

obesity intervention programs have traditionally focused

only on generalized population guidelines, further inves-

tigation and insight into gene–diet interactions may serve

an important role in both the prevention and treatment of

childhood obesity (Papoutsakis and Dedoussis 2007;

Hetherington and Cecil 2010). This will be possible by

enhancing our knowledge surrounding the etiology and

pathophysiology of childhood obesity and developing

methods to prevent the onset and improve treatment of

childhood obesity using targeted nutritional and medicinal

therapies.

Childhood obesity susceptibility genes

During the course of a decade (1996–2005), an extensive

amount of work was performed to identify candidate

obesity susceptibility genes responsible for heritability of

obesity phenotypes. The culmination of these studies

resulted in the identification of 127 candidate obesity sus-

ceptibility genes (Rankinen et al. 2006). However, only a

limited number (*25 %) of these candidate genes have

been validated using independent studies. This small per-

centage of candidate obesity susceptibility genes in addi-

tion to many other genes recently identified using GWAS

now comprise a comprehensive list of approximately 69

obesity susceptibility genes (34 genes from candidate

studies and 35 genes from GWAS) that predispose to

increased body weight, BMI, or body fat percentage

(Hofker and Wijmenga 2010; Day and Loos 2011; Fer-

nandez et al. 2012). There are three different types of

childhood obesity (syndromic, non-syndromic, and com-

mon) based on distinct genetic and phenotypic character-

istics that will be described in the following sections

(Fig. 4).
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Syndromic childhood obesity

The first type of childhood obesity is represented by

approximately 30 unidentified susceptibility genes

responsible for rare monogenic forms of syndromic

obesity. The best-known examples of syndromic obesity

are represented by Prader–Willi, Bardet–Biedl, Alstrom,

Carpenter, Rubinstein–Taybi, and Cohen syndromes. In

general, children with syndromic obesity have extreme

adiposity, physical dysmorphology, and intellectual

Single nucleotide polymorphism in an
obesity susceptibility gene

Single nucleotide polymorphism

Positive energy balance responsible
for weight gain

Known and unknown environmental
factors

Dietary
Fats

Physical
Inactivity

Psychol-
ogical

Sociol-
ogical

Unknown
Factors

Dietary
Carbo-

hydrates

Fig. 3 The interaction of

obesity susceptibility genes with

single-nucleotide

polymorphisms or variants with

known and unknown

environmental factors that

predispose to weight gain

Syndromic Obesity

Monogenic ( ∼ 30 Genes)
Recessive Inheritance

Large Effect Size
Neurological

Common Obesity

Polygenic ( ∼ 35 Genes) 
Codominant Inheritance

Small / Modest Effect Size
Neurological and Visceral

Non-Syndromic Obesity

Monogenic ( ∼ 9 Genes)
Codominant Inheritance

Large Effect Size
Neurological

Fig. 4 The three different types of childhood obesity based on distinct genetic and phenotypic characteristics
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disabilities, some with undefined neuroendocrine abnor-

malities. It is the latter abnormality believed responsible

for adversely affecting function of the hypothalamus which

serves as the brain appetite center regulating energy bal-

ance through food consumption and energy expenditure

(Farooqi and O’Rahilly 2005; Mutch and Clement 2006;

Goldstone and Beales 2008; Schaefer et al. 2010). As a

result, children with syndromic obesity are usually char-

acterized with severe hyperphagia and diminished satiety

which promotes weight gain (Bray 1992; Sahoo et al. 2008;

Marshall et al. 2011). These particular disorders are

genetically complex and involve several overlapping and

undefined loci believed responsible for the altered regula-

tion of energy balance. With respect to a possible gene–diet

interaction responsible for the best characterized form of

syndromic obesity, in this case Prader–Willi syndrome, a

recent study has indicated that a strict low-fat and modified

carbohydrate diet (25 % protein, 20 % fat, and 55 %

modified carbohydrate) can successfully prevent or at least

reduce weight gain among patients with this disease

(Schmidt et al. 2008). The reason being is that children

with Prader–Willi syndrome have delayed gastric emptying

due to ineffective stomach contractions. The therapeutic

diet allows for increased and timely absorption of carbo-

hydrates, otherwise somewhat inhibited by a high-fat diet,

to prevent hypoglycemia and resultant food-craving

behavior marked by hyperphagia. However, it should be

noted that children with Prader–Willi syndrome receiving

this therapeutic diet were of significantly decreased stature

beginning at 2 years of age, suggesting that growth hor-

mone may be a useful additional treatment for these

patients. It is therefore suspected that this concern

prompted authors from including children without Prader–

Willi syndrome into the study.

Non-syndromic childhood obesity

The second type of childhood obesity is represented by

approximately 8 susceptibility genes responsible for rare

monogenic forms of non-syndromic obesity, defined by

weight gain in the absence of other clinical symptoms

(Choquet and Meyre 2010). The eight genes responsible for

non-syndromic obesity include brain-derived neurotrophic

factor (BDNF), leptin (LEP), leptin receptor (LEPR),

melanocortin-4 receptor (MC4R), neurotrophic tyrosine

kinase receptor type 2 (NTRK2), prohormone convertase 1

(PCSK1), proopiomelanocortin (POMC), and single-

minded homolog 1 (SIM1). These 8 obesity susceptibility

genes code for proteins which have a central role in the

integration of peripheral and neuronal signals through the

leptin/melanocortin pathway present in the hypothalamus

and therefore also responsible for maintaining energy bal-

ance through food consumption and energy expenditure

(Farooqi and O’Rahilly 2008). In the case of LEP, genetic

mutations result in leptin deficiency, and administering

leptin has been shown to have beneficial effects by

restoring satiety and promoting weight loss (Farooqi et al.

2002). Mutations in these genes also cause severe hyper-

phagia and a lack of satiety that ultimately manifests in

extreme forms of childhood obesity. To date, studies per-

formed with patients possessing the best characterized

form of non-syndromic obesity, in this case leptin defi-

ciency, have shown that although restriction of a high-fat

diet may partially or temporarily be successful, long-term

weight management is difficult and usually unsuccessful

(Erez et al. 2011).

Common childhood obesity

The third type of childhood obesity is represented by many

undefined susceptibility genes believed responsible for

contributing to common polygenic forms of childhood

obesity (Zhao et al. 2011; Zhao and Grant 2011). These

obesity susceptibility genes are associated with both com-

mon childhood and adult obesity, as shown in large pop-

ulation-based or case–control GWAS performed during the

past several years (Meyre et al. 2009; den Hoed et al. 2010;

Sandholt et al. 2010; Wu et al. 2010; Zhao et al. 2011)

(Table 1). It is interesting to note that among the obesity

susceptibility genes that have been identified using GWAS,

different variants of the same gene (FTO, MC4R, and

BNDF) may also be responsible for rare non-syndromic

forms of childhood obesity. However, unlike the genes

contributing to monogenic forms of childhood obesity

characterized by large phenotypic effect sizes, genes con-

tributing to common obesity have small to modest pheno-

typic effect sizes (*0.17 to 1.13 kg or 0.14–0.33 % body

fat per risk allele) (Speliotes et al. 2010; Kilpelainen et al.

2011). That being the case, common obesity susceptibility

genes function in an additive fashion and interact with

environmental factors to promote positive energy balance

resulting in substantial weight gain, consistent with com-

mon obesity being a complex genetic and metabolic dis-

order (Levin 2009; Sandholt et al. 2010). As indicated

earlier, the prevalence of common childhood obesity has

more than tripled during the past few decades and repre-

sents a major health problem as a result of numerous

complications.

Gene–diet interactions predisposing to common

childhood obesity

A list of 16 well-established obesity susceptibility genes

associated with common childhood obesity within American,

Chinese, and European populations identified using GWAS
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include brain-derived neurotrophic factor (BNDF), cardiac

troponin I-interacting kinase (TNNI3K), Fas apoptotic

inhibitory molecule 2 (FAIM2), homo sapiens hypothetical

protein FLJ35779 (FLJ35779), fat-mass and obesity asso-

ciated (FTO), glucosamine-6-phosphate deaminase 2

(GNPDA2), leucine-rich repeat neuronal 6C (LRRN6C),

melanocortin-4 receptor (MC4R), musculoaponeurotic

fibrosarcoma oncogene homolog (MAF), Niemann-Pick C1

(NPC1), neurexin-3-alpha (NRXN3), phosphotriesterase-

related (PTER), glutaminyl-peptide cyclotransferase-like

(QPCTL), Rab and DnaJ domain containing (RBJ), Sac-

charomyces cerevisiae 16 homolog B (SEC16B), and

transmembrane protein 18 (TMEM18). Five of these

obesity susceptibility genes (FTO, MC4R, MAF, NPC1,

and PTER) were identified in the first or second case–

control GWAS for early-onset (less than 6 years of age)

and morbid-adult obesity (BMI C 40 kg/m2) (Hinney et al.

2007; Meyre et al. 2009). More recent meta-analysis of

several case–control GWAS using *40,000 individuals

has determined that three of these obesity susceptibility

genes (FTO, MC4R, and NPC1) are also associated with

body fat percentage which serves as an accurate measure

for whole body adiposity (Kilpelainen et al. 2011; den

Hoed et al. 2012). It has been hypothesized that individuals

Table 1 A list of 35 obesity susceptibility genes, reference SNPs, susceptible subjects, and phenotypes identified using GWAS adapted from

Meyre et al. (2009), den Hoed et al. (2010), Sandholt et al. (2010), Wu et al. (2010), and Zhao et al. (2011)

Chromosome Nearest gene Reference SNP Subjects Phenotypes

1 NEGR1 rs2815752 Adults Weight, obesity, BMI

1 TNN13K rs1514175 Adults, children BMI

1 PTBP2 rs1555543 Adults BMI

1 SEC16B rs543874 Adults, children BMI

2 TMEM18 rs2867125 Adults, children Weight, obesity, BMI

2 RBJ rs713586 Adults, children BMI

2 FANCL rs887912 Adults BMI

2 LRP1B rs2890652 Adults BMI

3 CADM2 rs13078807 Adults BMI

3 ETV5 rs9816226 Adults Weight, obesity, BMI

4 GNPDA2 rs10938397 Adults, children Weight, obesity, BMI

4 SLC39A8 rs13107325 Adults BMI

5 FLJ35779 rs2112347 Adults, children BMI

5 ZNF608 rs4836133 Adults BMI

6 NUDT3 rs206936 Adults BMI

6 TFAP2B rs987237 Adults BMI

9 LRRN6C rs10968576 Adults, children BMI

10 PTER rs10508503 Adults, children BMI

11 RPL27A rs4929949 Adults BMI

11 BDNF rs10767664 Adults, children Weight, obesity, BMI

11 MTCH2 rs3817334 Adults BMI

12 FAIM2 rs7138803 Adults, children Weight, obesity, BMI

13 MTIF3 rs4771122 Adults BMI

14 PRKD1 rs11847697 Adults BMI

14 NRXN3 rs10150332 Adults, children BMI

15 MAP2K5 rs2241423 Adults BMI

16 GPRC5B rs12444979 Adults BMI

16 SH2B1 rs7359397 Adults Weight, obesity, BMI

16 MAF rs1424233 Adults, children BMI

16 FTO rs1558902 Adults, children Weight, obesity, BMI

18 MC4R rs571312 Adults, children Weight, obesity, BMI

18 NPC1 rs1805081 Adults, children BMI

19 KCTD15 rs299941 Adults BMI

19 QPCTL rs2287019 Adults, children BMI

19 TMEM160 rs3810291 Adults BMI
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possessing these obesity susceptibility genes associated

with extreme (early-onset and morbid-adult) obesity and

body fat percentage may either possess more than the

average number and/or enhance phenotypic expression of

other common obesity susceptibility genes (Meyre et al.

2009). The following sections will provide information

describing what is now understood about obesity suscep-

tibility genes interacting with either a high-fat diet or

sugar-sweetened beverages to promote weight gain.

Obesity susceptibility genes that interact with dietary

fats

The FTO gene is localized on chromosome 16q12.2 and

encodes a Fe II- and 2-oxoglutarate-dependent dioxygenase

that functions to catalyze demethylation of nucleotide

bases (Gerken et al. 2007). The same study also indicated

that the Fto gene in mice is expressed at high levels in the

appetite center (arcurate nucleus) of the hypothalamus and

regulated by periods of fasting/feeding. A direct Fto gene–

diet interaction in relation to weight gain was first estab-

lished in rats when fasting was shown to reduce the

amounts of Fto mRNA and promote food consumption,

while in contrast, feeding had the opposite result to

increase amounts of Fto mRNA and decrease food con-

sumption (Tung et al. 2010). These results provided the

first indication that expression and functional amounts of

the encoded FTO protein in the hypothalamus influenced

appetite. The common FTO gene variant (rs9939609) was

subsequently used in a population-based GWAS to identify

this gene as the first to be associated with common child-

hood obesity (Frayling et al. 2007). Consistent with this

result, a later case–control GWAS performed with lean and

extremely obese German children indicated that this par-

ticular FTO gene variant was associated with common

childhood obesity (Hinney et al. 2007). A number of other

studies performed with both children and adults indicated

that this FTO gene variant was associated with increased

and preferential consumption of energy-dense macronutri-

ents, particularly foods enriched with saturated fatty acids

(Cecil et al. 2008; Timpson et al. 2008; Bauer et al. 2009).

Studies have also provided evidence that weight gain

among children and adults with this FTO gene variant

results from an unusual eating behavior characterized by

loss-of-control eating episodes for high-fat foods (Wardle

et al. 2008a; den Hoed et al. 2009; Tanofsky-Kraff et al.

2009). Interestingly, the weight gain was found to be

independent of alterations in energy expenditure typically

associated with hypothalamic abnormalities and was unlike

any other eating behavior previously reported in the gen-

eral population (Speakman et al. 2008; Haupt et al. 2009;

Jonassaint et al. 2011). At the same time, studies performed

using two different Fto mouse models characterized by

complete inactivation and a dominant point mutation of the

Fto gene revealed a complex and contradictory phenotype

compared to humans possessing the common FTO gene

variant (Church et al. 2009; Fischer et al. 2009). In brief,

these Fto mouse models were shown to be lean and pro-

tected from obesity despite being fed a basal or high-fat

diet and having consumed increased amounts of these diets

after adjustment for body weight. Consistent with the

decreased relative amounts or function of the encoded FTO

protein being associated with a lean phenotype for these

mice, a subsequent study performed using a mouse model

characterized by overexpression of the Fto gene marked by

increased amounts of encoded FTO protein indicated a

dose-dependent increase in adiposity, weight gain, and

glucose intolerance resulting from increased food con-

sumption when adjusted for body weight (Church et al.

2010). Therefore, the common FTO gene variant in the

human population is a gain-of-function mutation that

interacts with a high-fat diet to promote common childhood

obesity through an unusual behavioral response character-

ized by an increased consumption of high-fat diets.

The MC4R gene is localized on chromosome 18q21.32

and encodes a complex plasma membrane protein that

belongs to the seven transmembrane G protein-coupled

receptor family that activates adenylate cyclase to produce

cyclic adenosine monophosphate (cAMP) during signal

transduction (Magenis et al. 1994; Yang et al. 2000). The

first evidence indicating that the MC4R gene was associ-

ated with regulating energy balance resulted from mice

possessing a targeted disruption of the Mc4r gene (Bultman

et al. 1992; Huszar et al. 1997). These studies demonstrated

that Mc4r heterozygous (Mc4r?/-) mice were susceptible

to intermediate weight gain compared to Mc4r normal

(Mc4r?/?) and Mc4r homozygous (Mc4r-/-) mice, sug-

gesting a codominant mode of inheritance for the pheno-

type. Moreover, in comparison with Mc4r?/? mice fed a

high-fat diet, the Mc4r-/- mice were found to have

hyperphagia and altered energy expenditure characterized

by decreased diet-induced activity and thermogenesis

(Butler et al. 2001; Weide et al. 2003). Consistent with

these results, the Mc4r-/- mice developed hyperphagia

when fed a high-fat diet, but not when fed a low-fat diet,

providing evidence for a gene–diet interaction in relation to

weight gain (Butler and Cone 2003; Sutton et al. 2006). An

additional study performed using adenovirus to preferen-

tially knockdown expression of the Mc4r gene in hypo-

thalamus of rats revealed that a high-fat diet induces

hyperphagia and weight gain (Garza et al. 2008). With

respect to studies that have been performed investigating

the MC4R gene in relation to weight gain in humans, a

frameshift mutation in the MC4R gene provided the first

compelling evidence that this gene was associated with

extreme childhood obesity (Vaisse et al. 1998; Yeo et al.
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1998). In support of these studies, additional studies found

that individuals possessing MC4R gene variants were at

increased risk of obesity and that binge eating was a major

phenotype responsible for weight gain (Branson et al.

2003; Farooqi et al. 2003). These results were confirmed in

a GWAS performed to identify chromosomal regions

contributing to increased consumption of dietary compo-

nents among 1,030 Hispanic children. This study found that

MC4R gene variants have a key role in regulating body

weight through both increased energy consumption and

decreased energy expenditure (Cai et al. 2006; Cole et al.

2010). A more recent study suggests that individuals pos-

sessing MC4R gene variants consume increased amounts of

food enriched with total and saturated fatty acids (Bauer

et al. 2009). Therefore, similar to children with FTO gene

variants, children possessing MC4R gene variants have an

increased preference for calorie-dense foods enriched with

fat, in addition to a decreased propensity for energy

expenditure, both of which promote weight gain.

Finally, the NPC1 gene is localized on chromosome

18q11.2 and encodes a complex multi-spanning trans-

membrane protein that possesses structural homology with

members of the resistance-nodulation-division family of

prokaryotic permeases (Carstea et al. 1997; Davies et al.

2000). Studies have demonstrated that the NPC1 protein

has a central role in regulating the transport of lipoprotein-

derived lipids, such as cholesterol and fatty acids, from late

endosomes/lysosomes to other cellular compartments

(Garver et al. 2002; Chen et al. 2005). Although the NPC1

gene has been primarily investigated in relation to an

autosomal-recessive lipid-storage disorder characterized by

hepatosplenomegaly and neurological degeneration, four

independent GWAS have now reported that a variant of the

NPC1 gene (rs1805081 encoding H215R) is associated

with measures of common childhood obesity (BMI and

body fat percentage) among European and Chinese popu-

lations (Meyre et al. 2009; Wu et al. 2010; Kilpelainen

et al. 2011; den Hoed et al. 2012). In addition, a study

performed using an Npc1 mouse model indicated that Npc1

heterozygous (Npc1?/-) mice are predisposed to weight

gain when fed a high-fat diet, but not when fed a low-fat

diet, consistent with a gene–diet interaction responsible for

promoting weight gain (Jelinek et al. 2009). These studies

were confirmed using a different strain of mice that became

obese and developed metabolic features associated with

insulin resistance (Jelinek et al. 2010). Together, reanalysis

of the combined data derived from both studies revealed

that the Npc1 gene interacts with both modifying genes and

a high-fat diet to promote weight gain, features that are

consistent with common and complex diseases such as

obesity (Jelinek et al. 2011). However, unlike the Fto and

Mc4r genes, these mouse studies clearly indicate that the

Npc1 gene does not promote weight gain through increased

consumption of food or decreased energy expenditure,

thereby excluding potential involvement of the hypothal-

amus. It is interesting to note that a number of earlier

studies performed using both NPC1 human fibroblasts and

the Npc1 mouse model provided information suggesting

potential involvement of the NPC1 protein in regulating

energy balance. For instance, NPC1 heterozygous

(NPC1?/-) human fibroblasts have increased expression of

caveolin-1, which serves as a protein marker for obesity

and diabetes (Garver et al. 1997b; Catalán et al. 2008).

These results were confirmed and extended using Npc1

heterozygous (Npc1?/-) mice, which compared to Npc1

normal (Npc1?/?) and Npc1 homozyous (Npc1-/-) mice,

had livers with an increased expression of caveolin-1 and

concentration of triacylglycerol, both of which serve as

markers for obesity and diabetes (Garver et al. 1997a,

1999, 2007). More recent studies indicate that the Npc1

gene is downregulated by dietary fatty acids, but not die-

tary cholesterol, through feedback inhibition of the sterol

regulatory element-binding protein (SREBP) pathway (Je-

linek et al. 2012). Therefore, additional studies must be

performed to further characterize the NPC1 gene in relation

to common childhood obesity.

Obesity susceptibility genes that interact with dietary

carbohydrates

It has been reported that three candidate obesity suscepti-

bility genes, beta-2 adrenergic receptor (ADRB2), perilipin

1 (PLIN1), and peroxisome proliferator-activated receptor

gamma (PPARG), which have not been found to be asso-

ciated with either childhood or adult obesity using GWAS,

interact with dietary carbohydrates to promote measures of

obesity (Marti et al. 2002; Martinez et al. 2003; Smith et al.

2008). Moreover, a recent study performed using three

different adult cohorts (Nurses’ Health Study, Health Pro-

fessionals Follow-up Study, and Women’s Genome Health

Study) indicated that six of 32 obesity susceptibility genes

identified using GWAS interact with dietary carbohydrates

(sugar-sweetened beverages including colas, fruit drinks/

punches, and lemonades) to increase BMI when one or

more servings are consumed per day (Qi et al. 2012). In

this study, the obesity susceptibility genes found to interact

with dietary carbohydrates to increase BMI included the

FAIM2, FLJ35779, FTO, LRRN6C, RBJ, and SEC16B

genes.

Preventative lifestyle intervention for common

childhood obesity

The American Academy of Pediatrics proposed that pre-

vention should be the first step in addressing the childhood
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obesity epidemic (Krebs and Jacobson 2003). However,

systematic review of the literature provides conflicting

results as to effectiveness of preventative lifestyle inter-

ventions for childhood obesity. For instance, a recent sys-

temic review with meta-analysis for 33 studies indicated

significant immediate and post-treatment improvements in

weight and cardio-metabolic outcomes for childhood

obesity, but suggested that further research was needed to

determine the optimal length, intensity, and long-term

effectiveness of these interventions (Ho et al. 2012).

Moreover, another recent systematic review based on 37

independent studies with 27,946 children (mostly

6–12 years of age) provides evidence that intensive school-

based programs serve as the most promising type of

preventative lifestyle intervention (Waters et al. 2011).

However, this same systematic review and others provide

evidence indicating that obesity prevention programs for

older preschool children and adolescents (13–19 years of

age) are less effective (Bond et al. 2009; Hesketh and

Campbell 2010; Waters et al. 2011). Consistent with these

later systematic reviews, a number of studies have reported

that the cornerstone for preventative lifestyle intervention,

namely modification of dietary and exercise habits, has

been largely ineffective (Miller 1999; Birch and Ventura

2009). A recent meta-analysis of randomized controlled

trials determined that school-based physical activity inter-

ventions did not improve BMI compared to pre-existing

physical education activity, thereby suggesting that man-

dated increased physical activity does not have a significant

effect on preventing childhood obesity (Harris et al. 2009).

This result is consistent with a more recent non-interven-

tion prospective study examining children between 7 and

10 years of age suggesting that physical inactivity is the

result rather than the cause of childhood obesity (Metcalf

et al. 2011). While many obesity interventions have

focused only on behavioral change in relation to more

appropriate eating and exercise habits, few interventions

have taken into consideration the emerging role of obesity

susceptibility genes and interaction with environmental

factors. There is now a crucial need to understand the

molecular basis responsible for childhood obesity to pro-

vide more effective preventative lifestyle intervention and

clinical care. A decade ago John R. Speakman, a leading

obesity expert, stated that ‘‘addressing the genetic side of

this (gene–environment) interaction is potentially a far

more tractable problem than addressing the environmental

component by reengineering society, because the level at

which interventions might ultimately be made is the indi-

vidual rather than the society as a whole. There is a clear

need, therefore, to understand the genetic basis of food

intake, energy expenditure and hence, energy balance

variations’’ (Speakman 2004). These recommendations

have only recently gained momentum due to the limited

success of conventional preventative lifestyle intervention

methods in the face of our growing knowledge concerning

gene–environment interactions and targeted intervention

for genetically predisposed individuals, families, and

communities (Khoury et al. 2005; Gluckman et al. 2011).

One way in which individual preventative lifestyle

interventions could utilize genetic information is by pro-

viding individuals with personalized information to influ-

ence behavior. Many behavioral change strategies aim to

increase the perception of risk in individuals to improve

motivation. The genetic information would expand on the

risk perception model to provide individualized risk

information, as well as personalize the harms of the health

condition. If individuals are aware that they have the

possibility of becoming obese and developing chronic

complications, they may be more likely to adhere to

behavioral change intervention (McBride et al. 2002). It

has been determined that the availability of genetic infor-

mation results in better compliance and longer-term weight

reduction when using personalized diet plans to treat

patients with a history of failed weight reduction

(Arkadianos et al. 2007). A more recent study demon-

strated that genetic testing for the FTO gene variant serves

as a useful preventative and clinical tool when combined

with other information by providing an explanation for

increased body weight (Meisel et al. 2011). On the other

hand, there may be a problem in using this model, because

if tested individuals are found not to have an obesity sus-

ceptibility gene variant the effect is a perception for

decreased risk of obesity. This may actually defeat the

original purpose for providing a technologically advanced

intervention in that individuals may be less likely to change

behaviors if they have a perceived decreased risk of

obesity. In addition to personalizing medical information

for patients, genetic information could also be used to

stratify individuals based on increased risk. By doing this,

individuals who have obesity susceptibility gene variants

would be categorized as ‘‘high risk’’ and therefore provided

more intensive preventative lifestyle intervention strategies

than individuals categorized as ‘‘low risk’’. In this way,

children who are genetically predisposed could be more

closely monitored and potential preventative lifestyle

interventions would become more cost-effective by tar-

geting individuals at high risk (Johnson et al. 2005).

Unfortunately, although current individual preventative

lifestyle interventions have only limited effectiveness, the

benefits can be even less within a pediatric population. The

reason is because most children have little control over

their food choices and behaviors, and these choices impact

weight status (Faith et al. 2004). A more logical place to

intervene is at the family level. Family preventative life-

style intervention strategies could have multiple positive

effects as families not only control feeding practices of
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children, but often share cultural, environmental, and

genetic predisposition for diseases such as obesity (Johnson

et al. 2005). Interventions that target susceptible families

could benefit the children at high risk for obesity while also

benefiting close family members. This benefit could occur

through targeting group-focused health promotion strate-

gies that aim to affect social norms, increase social support,

and strengthen familial bonds (Teufel-Shone 2006).

Finally, as more information is obtained concerning the

unique distribution of specific obesity susceptibility gene

variants among diverse populations, community preventa-

tive lifestyle intervention strategies can be applied to lessen

the impact of childhood obesity. It must be noted that

targeted individuals in the community who do not possess

suspected obesity susceptibility gene variants will likewise

benefit from such interventions, as environmental factors

still have a role in the etiology of childhood obesity.

Nutritional and medicinal intervention for genetically

predisposed children

The goal for successful nutritional and medicinal inter-

vention of common childhood obesity depends on under-

standing the molecular basis or mechanism for how gene

variants predispose to weight gain. For instance, the FTO

and MC4R gene variants tend to increase preference for

calorie-dense foods enriched with fat and decrease satiety.

A nutritional or medicinal therapy may soon be identified

that stimulate regions of the brain (arcurate nucleus of the

hypothalamus) to promote satiety. Although only recently

approved by the Food and Drug Administration (FDA), the

medicinal therapies lorcaserin hydrochloride (Belviq) and

the combination of phenteramine/topiramate (Qsymia) may

prove useful in this regard. Similar therapies may also be

developed that regulate tissue and whole body lipid

metabolism (decrease lipogenesis or increase lipolysis

within select lipid-storage tissues) as suspected for children

with NPC1 gene variations.

Conclusion and perspectives

The current epidemic of common childhood obesity rep-

resents a complex metabolic disease characterized by the

interaction of obesity susceptibility gene variants with

certain dietary macronutrients (saturated fatty acids or

refined carbohydrates) and a sedentary lifestyle. The con-

tinued investigation of gene–diet interactions responsible

for this health problem will be important for several

reasons. First, diseases such as obesity and associated

complications result from an undefined and complex

interaction between susceptibility gene variants and

various environmental components (Perusse and Bouchard

2000). The obesity susceptibility gene variants described in

this article interact with the diet to either increase con-

sumption of saturated fat and refined carbohydrates,

decrease energy expenditure, or alter regulation of lipid

metabolism to increase weight gain and adiposity (Bauer

et al. 2009; Garver 2011). Second, the identification of

gene–diet interactions should be at the forefront in attempts

to understand the etiology and pathophysiology of nutrition-

related diseases, particularly common childhood obesity

(Levin 2009). Third, the interaction of specific gene variants

with known dietary macronutrients will allow for more

effective individual, family, and community preventative

lifestyle intervention and eventually the development of

targeted nutritional or medicinal therapies (Yang and

Khoury 1997; Khoury et al. 2005). The overarching goal for

investigating gene–diet interactions is to provide a plausible

mechanism-based approach to personalized nutritional or

medicinal therapy that will more effectively address the

current epidemic of common childhood obesity.
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