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Abstract Advanced glycation end-products (AGEs)

stimulate reactive oxygen species (ROS) generation and

represent a risk factor for atherosclerosis, while their for-

mation seems to be prevented by zinc. Metallothioneins

(MT), zinc-binding proteins exert an antioxidant function

by regulating intracellular zinc availability and protecting

cells from ROS damages. ?1245 A/G MT1A polymor-

phism was implicated in type 2 diabetes and in cardio-

vascular disease development as well as in the modulation

of antioxidant response. The purpose of this study was to

investigate the influence of ?1245 A/G MT1A polymor-

phism on AGEs and ROS production and to verify the

effect of zinc supplementation on plasma AGEs, zinc status

parameters and antioxidant enzyme activity in relation to

this SNP. One hundred and ten healthy subjects

(72 ± 6 years) from the ZincAge study were supplied with

zinc aspartate (10 mg/day for 7 weeks) and screened for

?1245 MT1A polymorphism. ?1245 MT1A G? (Argi-

nine) genotype showed higher plasma AGEs and ROS

production in peripheral blood mononuclear cells (PBMCs)

than G- (Lysine) one at the baseline. No significant

changes after zinc supplementation were observed for

AGEs, ROS and MT levels as well as for enzyme antiox-

idant activity in relation to the genotype. Among zinc

status parameters, major increases were observed for the

intracellular labile zinc (iZnL) and the NO-induced release

of zinc in PBMCs, in G? genotype as compared to G-
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one. In summary, ?1245 G? carriers showed increased

plasma AGEs and ROS production in PBMCs at baseline

and a higher improvement in iZnL after zinc intervention

with respect to G- individuals.

Keywords MT1A polymorphism � Advanced glycation

end-products (AGEs) � Zinc supplementation � Aging �
Intracellular free zinc

Introduction

Non-enzymatic modification of proteins by reducing sugars

leads to the formation of newly modified molecular species

known as ‘‘advanced glycation end-products’’ (AGEs).

These reactions take part during aging and substantially

accelerate during diabetes, and atherosclerosis generating

and accumulating AGEs at many sites of the body

including the heart and large blood vessels as a result of

chronic hyperglycemia and enhanced oxidative stress

(Basta et al. 2004). AGEs trigger proinflammatory, prof-

ibrotic and procoagulant cellular responses that are capable

of damaging tissues, leading to vascular dysfunction, pro-

moting atherosclerosis and cardiovascular disease (Daroux

et al. 2010; Jandeleit-Dahm and Cooper 2008).

Some authors demonstrated an inhibitory effect of zinc

on in vitro albumin glycation (Tupe and Agte 2010;

Seneviratne et al. 2011), suggesting this oligoelement as a

potent agent in reducing AGE formation. A more recent

study reports the effect of zinc treatment in restoring NO

production through eNOS expression and reactivation, and

in suppressing NF-jB activation in AGE-pretreated endo-

thelial cells (Zhuang et al. 2012). Therefore, zinc protects

from endothelial dysfunction as well as from oxidative

stress and regulates the inflammatory response (Giacconi

et al. 2012; Bao et al. 2010; Wong et al. 2013). A growing

body of evidence suggests that an abnormal zinc homeo-

stasis may be involved in the pathogenesis of atheroscle-

rosis and type 2 diabetes (DM-2) (Miao et al. 2013; Jansen

et al. 2012; Mocchegiani et al. 2008a).

The intracellular zinc buffering and the modulation of

transient changes in cytosolic zinc ion concentration is tightly

controlled by metallothioneins (MT) (Colvin et al. 2010),

which are low molecular antioxidant zinc-binding proteins

(Mocchegiani et al. 2008a). During aging, the increased

reactive oxygen species (ROS) production and the chronic

inflammation may lead to MT dysfunction with consequent

zinc dyshomeostasis and cardiovascular disease (CVD)

appearance (Giacconi et al. 2010; Barbato et al. 2007).

Polymorphisms of these genes have been associated

with reduced intracellular zinc ion availability and with

DM-2 or CVD development (Giacconi et al. 2008, 2010;

Yang et al. 2008).

?1245 A/G MT1A polymorphism (rs 8052394) is

implicated in DM-2 onset, and it influences serum SOD

activity in diabetic Chinese patients (Yang et al. 2008),

while our evidence show an increased susceptibility of the

MT1 ACG haplotype to CVD in the Greek population

(Giacconi et al. 2010).

Zinc supplementation trials have demonstrated benefi-

cial effects of zinc in restoring metal cation homeostasis,

the enzyme antioxidant activity and the immune-inflam-

matory response (Mocchegiani et al. 2008b; Mariani et al.

2008a; Bao et al. 2010) and suggested an important role for

the gene nutrient interaction (Mariani et al. 2008b; Mocc-

hegiani et al. 2012).

On this basis, the aim of the present study was to

investigate the influence of ?1245 A/G MT1A polymor-

phism on AGEs and ROS production and to verify the

benefit of zinc supplementation in vivo on plasma AGEs,

zinc status, antioxidant enzyme activity [superoxide dis-

mutase (pSOD), glutathione peroxidase (GPx), catalase

(CAT)] and lipid profile in relation to this SNP.

Materials and methods

Subject population

The study included 110 healthy randomly selected subjects

(57 men and 53 women; mean age 72 ± 6 years, range

65–85) enrolled in the ZincAge project. Subjects were

recruited by five European centers located in Italy, Greece,

Poland, France and Germany (Mocchegiani et al. 2008b).

All subjects were in good health condition and without

functional impairment, according to the inclusion criteria

of the ZincAge protocol. In particular, healthy elderly non-

institutionalized men and women were selected on the

basis of the SENIEUR protocol for immuno-gerontological

studies. The participants of the study had to be free of

medication such as steroids, diuretics, anticonvulsants,

anti-depressive drugs, antibiotics, antimetabolites, nonste-

roid anti-inflammatory drugs and micronutrient supple-

mentation. Subjects were excluded if they had

autoimmune, neurodegenerative, cardiovascular, kidney or

liver diseases, diabetes, infections, cancer, chronic

inflammatory bowel disease or acrodermatitis enteropath-

ica, sickle cell anemia, chronic skin ulcerations and

endocrine disorders.

Healthy status was evaluated by a specific questionnaire

on health and morbidity planned for the study. Ethical

approval was obtained by all centers performing the

recruitment and all subjects signed an informed consent

form.

Zinc supplementation was performed with 10 mg/day of

zinc aspartate (Unizink 50, KÖ HLER PHARMA Corp.,
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Alsbach-Hähnlein, Germany) in Italy, Germany, France

and Greece. In Poland, zinc supplementation was carried

out with 10 mg/day of an identical form of zinc aspartate

(Zincas, Zakład Chemiczno-Farmaceutyczny FARM-

APOL, Poznan, Poland) approved by the respective local

University Health Authorities. The supplementation period

was 48 ± 2 days.

Laboratory measurements and biological sample

separation

Venous peripheral blood samples, collected after an over-

night fast, underwent basal biochemical laboratory deter-

minations. Leucocytes and hemoglobin counts were

performed by standard automated procedures (Sysmex XE-

2100). The aspartate aminotransferase (AST) and alanine

aminotransferase (ALT) were measured by an UV test

according to a standardized method on Roche automated

clinical chemistry analyzers; the rate of the photometrically

determined coenzyme nicotinamide adenine dinucleotide

(NADH) decrease is directly proportional to the rate of

formation of pyruvate or oxaloacetate and thus, respec-

tively, the ALT or AST activity. The total cholesterol,

HDL-cholesterol, triglycerides, fasting glucose and albu-

min were measured by an enzymatic colorimetric test on

automated clinical chemistry analyzers (Roche-Hitachi).

Serum concentration of high sensitive C-reactive protein

(hs-CRP) was determined by amplified immunonephel-

ometry assay (CardioPhase hsCRP-Dade Behring Inc

Deerfield, IL). Serum, plasma, granulocytes, PBMCs and

buffy coats were separated, aliquoted and stored frozen at

-80 �C in the Biological Bank of INRCA until analysis.

Assessment of dietary zinc intake

A qualitative food frequency questionnaire, designed for

the needs of ZincAge project, was used for the assessment

of dietary zinc intake in healthy elderly subjects. The

consumption of 53 food items was recorded and, based

upon these data, a ‘‘zinc score’’ for each volunteer was

determined. To provide a continuous variable, representa-

tive of zinc dietary habits, frequency, quantity estimation

and zinc content of foods consumed were all considered for

the ‘‘zinc score’’ calculation (zinc score = fre-

quency 9 quantity 9 zinc content). A validation study of

the ‘‘zinc score’’ has been previously reported (Kanoni

et al. 2010).

AGEs measurements

For the measurement of the AGE autofluorescence in the

plasma samples, plasma was diluted 1:150 in PBS. 200 lL

of the diluted plasma samples were in triplicate brought on

a 96-well microtiterplate. The AGE intrinsic fluorescence

(360 nm excitation and 440 nm emission) was measured

with a plate reader (FluoStarOptima). For calculation of the

concentration of the AGE modification, in vitro-modified

human plasma was used as standard (0.001, 0.003, 0.01,

0.03, 0.11, 0.33, 1, 3, 10 lg modified plasma protein/mL).

The measured fluorescence was normalized to the plasma

total protein concentration (Simm et al. 2007).

Determination of total reactive oxygen species

production

Total cellular reactive oxygen species (ROS) production in

thawed PBMCs were analyzed by flow cytometry after

loading of cells with a highly sensitive fluorescent probe [5

and 6 chloromethyl-20,70-dichlorodihydrofluorescein diac-

etate, acetyl ester (CM-H2DCFDA)].

About 250,000 cells were incubated at 37 �C for 30 min

in the dark with 2 lM of probe in PBS buffer. CM-H2-

DCFDA is cleaved by intracellular esterases and trans-

formed into a fluorescent dye when oxidized. Cells were

then washed with PBS and analyzed by flow cytometry

(Coulter Epics XL).

The mean fluorescence intensity (MFI) of 5,000 cells

(corrected for autofluorescence) for each subject before and

after zinc supplementation was taken as a measure for the

total ROS load.

Genotyping of ?1245 A/G MT1A polymorphism

Genomic DNA of PBMC was extracted by the phenol

chloroform method, according to the standard procedure.

We screened the ?1245 A/G SNP in the coding region

of MT1A, corresponding to a Lys51Arg amino acid

change. PCR restriction fragment length analysis (PCR–

RFLP) was performed, as previously described (Giacconi

et al. 2008).

Multiple alignment of MT proteins in Vertebrata

Subphylum

Sequence alignments were performed using protein

BLAST database (http://www.ncbi.nlm.nih.gov/BLAST/

Blast.cgi?PAGE=Proteins) to verify whether the mutated

allele (Arg51) is located in a conserved region of the MT

protein (Electronic Supplementary Material, Table 5).

Analysis of tridimensional structure of MT1A

Lys51Arg variants

We used I-TASSER online Structure & Function Predic-

tion server (http://zhanglab.ccmb.med.umich.edu/I-TAS

SER/) for protein 3D structure prediction (Electronic
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Supplementary Material, I-TASSER results for MT1A

Lys51 and MT1A Arg51 variants).

Zinc, concentrations in plasma, and granulocytes

Zinc concentrations in plasma and granulocyte samples

were determined with Thermo XII Series ICP-MS (Thermo

Electron Corporation, Waltham, MA, USA), following the

manufacturer’s instructions (AN_EO604) with slight

modifications (Malavolta et al. 2010). Plasma samples

were diluted 1:10 and granulocytes 1:26 with a diluent,

containing 0.1 % triton, to maintain a stable emulsion with

the diluted sample and 0.15 % HNO3, to ensure solubility

of the trace elements, in order to achieve washout of these

elements between samples. External calibration solutions

containing Zn (blank to 2,000 ppb) were prepared by serial

dilution of a parent multi-element solution (1,000 ppm for

Zn) (VHG Labs, Manchester, USA), using the same diluent

as for the samples. Rhodium (Rh) at 200 ng/mL was used

as internal standard. Data were acquired for 66Zn. Quality

of the analysis was assured by assessment of ‘‘quality

standard samples’’ (SERONORMTM TRACE ELEMENT

SERUM, Sero AS, Billingstad, Norway). Zinc levels of the

quality standard samples were within 10 % of the certified

levels, as previously reported (Malavolta et al. 2010).

Limits of detection estimated with the post-column

calibration were 5 ppb for 66Zn. The instrument was

operated with a Peltier cooled impact bead spray chamber,

single piece quartz torch (1.5 mm i.d. injector) together

with Xi interface cones and a Cetac-ASX 100 autosampler

(CETAC Technologies, Omaha, NE, USA). A Burgener

Trace nebulizer was used as this device does not block

during aspiration of clinical samples. The instrument was

operated in standard mode (non-CCT), using 1,400 W RF

power, 1.10 L/min nebulizer gas flow, 0.70 L/min auxil-

iary gas flow, 13.0 L/min cool gas flow, 70 ms dwell time,

30 s sample uptake 35 s wash time (2 repeats per sample).

Flow cytometric analysis of zinc ion availability

and NO-induced release of zinc

Zinc Ion Availability and NO-induced release of zinc

(iZnR) were tested as previously reported (Malavolta et al.

2006).

Briefly, thawed PBMC were divided into three equal

aliquots of 2 9 105 cells, incubated with 20 lM Zinpyr-1

(ZP-1) (Neurobiotex, Galveston, TX, USA) for 30 min at

37 �C, 5 % CO2 in HEPES-buffered zinc-free RPMI

medium containing 1 mM EDTA, as an extracellular che-

lator, of free zinc, which remained in the medium and/or

was adsorbed to the cell membrane. In the second aliquot,

was added 50 lM N,N0,N0-tetrakis (2-pyridylmethyl) eth-

ylenediamine (TPEN) (Sigma-Aldrich), to detect the

autofluorescence of the zinc-free ZP-1 probe, which rep-

resented the minimum of mean fluorescence intensity

(MFImin) for ZP-1 fluorescence. The last aliquot was

incubated in the same condition plus 500 lM diethylamine

NOnoate acetoxymethylated (AcOM-DEA/NO) (Calbio-

chem, VWR International s.r.l., MI, Italy) to detect the

release of intracellular free zinc from MT (iZnR).

Table 1 Laboratory and biochemical parameters of study subjects

Males

n = 57

Females

n = 53

p value

Age (years) 72.2 ± 6.5 71.9 ± 6.9 NS

WBC (103/lL) 6.3 ± 1.7 6.4 ± 1.3 0.02

Lymphocytes (%) 29.6 ± 7.6 32.3 ± 6.7 0.044

Neutrophils (%) 58.4 ± 8.1 53.7 ± 5.8 0.002

Monocytes (%) 7.2 ± 1.5 7.0 ± 1.8 NS

Erythrocytes (106/lL) 4.9 ± 0.4 4.5 ± 0.4 0.001

Hemoglobin (g/dL) 15.2 ± 1.2 14.1 ± 1.2 0.001

AST (U/L) 25.0 ± 6.8 21.8 ± 8.4 0.036

ALT (U/L) 33.0 ± 11.9 30.3 ± 13.1 NS

Creatinine (mg/dL) 1.02 ± 0.18 0.88 ± 0.2 0.001

CRP (pg/mL) 0.48 ± 0.69 0.36 ± 0.31 NS

Albumin (g/dL) 4.1 ± 0.24 4.0 ± 0.22 0.047

Glycemia (mg/dL) 96.8 ± 11.0 96.4 ± 14.6 NS

TG (mg/dL) 119.4 ± 59.6 131.9 ± 55.2 NS

TC (mg/dL) 211.4 ± 28.2 233.5 ± 45.6 0.001

HDL-C (mg/dL) 48.5 ± 28.2 55.5 ± 16.4 0.008

AGEs (ng/mL) 1.51 ± 0.63 1.34 ± 0.56 0.166

ROS (MFI) 15.3 ± 12.6 12.0 ± 11.8 0.201

pSOD (U/mL) 21.74 ± 3.34 21.13 ± 2.60 0.367

GPx (nmol NADPH/

min/mL)

0.099 ± 0.004 0.100 ± 0.007 0.930

CAT (lmol/min/mg

prot)

21.47 ± 2.61 21.07 ± 2.97 0.528

Zn plasma levels (lM) 10.67 ± 2.39 10.85 ± 2.45 0.734

Zn granulocytes (nmol/

mg protein)

0.21 ± 0.13 0.20 ± 0.11 0.718

MT (MFI) 98.2 ± 40.8 82.5 ± 31.2 0.161

iZnL 1.24 ± 0.10 1.29 ± 0.10 0.035;

0.070a

iZnR 0.17 ± 0.04 0.18 ± 0.09 0.410

Zinc score 130 ± 57 121 ± 51 0.020;

0.030a

Data are mean ± SD

WBC white blood cells, AST aspartate aminotransferase, ALT alanine

aminotransferase, CRP C-reactive protein, TG triglycerides, TC total

cholesterol, HDL-C high-density lipoprotein cholesterol, AGEs

advanced glycation end-products, ROS reactive oxygen species,

pSOD plasma superoxide dismutase, GPx glutathione peroxidase,

CAT catalase, MT metallothioneins, iZnL intracellular labile zinc, NO-

iZnR-induced release of zinc
a Comparisons between males and females were performed by

ANCOVA analysis adjusting for age and country and lipid profile
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Data of zinc ion availability (iZnL) were reported as

normalized fluorescence intensity (MFI/MFImin), while

iZnR was calculated as the difference between MFI

(?NO)/MFImin and MFI/MFImin.

Metallothionein determination

Thawed PBMCs (2 9 105) were treated with 0.3 % para-

formaldehyde and stored at 4 �C for 2 days before pro-

cessing. MT determination was performed using the

monoclonal mouse anti-horse Metallothionein clone E9

antibody (Dakocytomation, Denmark). Results are

expressed as MFI (Giacconi et al. 2014).

Antioxidant enzyme activity determinations

SOD3 (pSOD) (U/mL), CAT (lmol/min/mg protein) and

GPx (nmol NADPH/min/mL) activities in plasma were

measured, according to the methods previously reported

(Mariani et al. 2006).

Statistical analysis

The differences in allele distribution of ?1245 A/G MT1A

polymorphism from Hardy–Weinberg’s equilibrium

elderly subjects were compared by Pearson’s Chi-squared

test. The effect of polymorphism on continuous variables

was investigated by analysis of covariance (ANCOVA)

adjusting for confounding factors, such as age, gender and

country. Statistical significance was defined as p \ 0.05.

All the analyses were performed using the SPSS/Win

program (version 15.0; SPSS Inc., Chicago, IL, USA).

Results

Clinical and biochemical parameters of the subjects

The study population characteristics are reported in

Table 1. Comparisons were performed in relation to gender

considering the higher dietary zinc intake in males than

females (p \ 0.05). No differences were observed for the

age of the subjects.

No significant differences between men and women

were found in the percentage of monocytes ALT, CRP,

fasting glucose and triglyceride levels.

Conversely neutrophils, erythrocytes, hemoglobin, AST,

creatinine and albumin levels were higher in men than

women (p \ 0.05, p \ 0.01). An increment in the white

blood cell count, the percentage of lymphocytes, HDL and

total cholesterol serum levels were observed in women as

compared to men (p \ 0.05, p \ 0.01). Among biochem-

ical variables, no significant differences were found in

AGEs, ROS and MT levels, as well as in the antioxidant

enzyme activity. With regard to zinc status parameters

(zinc plasma levels, zinc concentrations in granulocytes,

iZnL, iZnR), higher levels of intracellular labile zinc were

observed in women than men, but this difference became

not significant after lipid profile correction in the

ANCOVA analysis, evidencing an association between low

Table 2 MT1A ?1245 A/G genotypic and allelic frequencies in

elderly study subjects according to gender

Males

n = 57

Females

n = 53

All subjects

n = 110

Genotypes

1245 AA (Lys/Lys) 70.2 % (40) 83 % (44) 76.4 % (84)

1267 AG (Lys/Arg) 28 % (16) 17 % (9) 22.7 % (25)

1267 GG (Arg/Arg) 1.8 % (1) 0 % (0) 0.9 % (1)

Alleles

A allele 0.84 0.92 0.88

G allele 0.16 0.08 0.12

Pearson v2 = 3.009, df = 2, p = 0.22 (genotypic frequency)

Pearson v2 = 2.718, df = 1, p = 0.09 (allelic frequency)

Lys Lysine, Arg Arginine

Table 3 Influence of ?1245 MT1A A/G SNP on clinical and bio-

chemical parameters

G- genotype

Baseline

G? genotype

Baseline

p value

CRP (mg/dL) 0.55 ± 1.46 0.42 ± 0.58 0.91

Albumin (g/dL) 4.1 ± 0.2 4.0 ± 0.2 0.41

Glycemia (mg/dL) 96.7 ± 13.8 96.1 ± 9.1 0.53

Total cholesterol

(mg/dL)

223.2 ± 41.8 219.2 ± 34.3 0.70

HDL-cholesterol

(mg/dL)

53.1 ± 14.2 49.2 ± 16.2 0.28

Triglycerides (mg/dL) 122.1 ± 52.8 133.7 ± 72.5 0.24

AGEs (ng/mL) 1.31 ± 0.50 1.66 ± 0.62 0.036

ROS (MFI) 4.1 ± 2.1 24.0 ± 18.3 0.01

pSOD (U/mL) 21.53 ± 2.85 21.18 ± 3.26 0.65

GPx (nmol NADPH/min/

mL)

0.100 ± 0.006 0.099 ± 0.006 0.37

CAT (lmol/min/mg prot) 20.80 ± 2.67 21.40 ± 2.92 0.35

Zn plasma levels (lM) 10.58 ± 2.21 11.12 ± 2.24 0.22

Zn granulocytes

(nmol/mg protein)

0.21 ± 0.12 0.20 ± 0.12 0.92

MT (MFI) 87.52 ± 32.13 89.21 ± 38.78 0.88

iZnL 1.27 ± 0.12 1.24 ± 0.09 0.44

iZnR 0.18 ± 0.07 0.17 ± 0.06 0.47

Data are mean ± SD

Comparisons between G1 (AG?GG) and G- (AA) genotype were

performed by ANCOVA analysis correcting for age, gender and

country

Bold values indicate a significant difference
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iZnL levels and higher total cholesterol as previously

reported in obese subjects (Costarelli et al. 2010).

?1245 A/G MT1A genotype and allele frequency

distribution

Allele and genotype distribution of ?1245 A/G MT1A

polymorphism in the studied population is summarized in

Table 2. The observed frequencies of this SNP were

compared with the expected frequencies and did not

deviate from the Hardy–Weinberg equilibrium (p [ 0.05).

No significant differences were observed in the genotype

and allele frequency distribution between males and

females.

Association analysis of ?1245 MT1A A/G

polymorphism with laboratory and biochemical

parameters at baseline

?1245 MT1A A/G polymorphism did not affect baseline

clinical parameters such as CRP, albumin, fasting glucose

levels and lipid profile (Table 3).

?1245 MT1A A/G polymorphism has a significant

influence on baseline AGEs and ROS production. In par-

ticular, G? carriers showed higher plasma AGEs associ-

ated with increased ROS production in PBMCs than G-

carriers (Table 3, p \ 0.05, p \ 0.01).

pSOD, GPx and CAT activity were not influenced by

MT1A genotypes (Table 3). No significant differences

were observed for zinc status parameters (zinc plasma

levels, zinc concentrations in granulocytes, iZnL, iZnR)

and MT levels (Table 3).

Changes on clinical and biochemical parameters

after zinc supplementation according to ?1245 MT1A

A/G genotypes

The changes in clinical and biochemical parameters after

7 weeks of zinc supplementation were compared between

genotypes with adjustment for age, gender and country.

After correction for multiple testing, the effect of zinc

intervention on clinical parameters was not different

between G- and G? genotypes (Table 4).

A slight trend for a down-regulation of AGEs and ROS

levels was observed in G? carriers after zinc supplemen-

tation (Table 4). No changes on pSOD, GPx and CAT

activity and MT were observed between genotypes after

zinc supplementation (Table 4).

Among zinc status parameters (zinc plasma levels, zinc

concentrations in granulocytes, iZnL, iZnR), significant

differences were observed for the intracellular labile zinc

and the iZnR in PBMCs, which increased in G? genotype

as compared to G- one (Table 4, p \ 0.05).

Multiple alignment of MT proteins in Vertebrata

Subphylum and analysis of the three-dimensional

of MT1A Lys51Arg variants

?1245 MT1A polymorphism yields a Lys51Arg amino

acid ex-change. Results from multiple alignment of MT

proteins in Vertebrata Subphylum show that Lysine is

phylogenetically conserved at position 51, in several clas-

ses and orders of vertebrates (Electronic Supplementary

Material, Table 5), with the exception of Amphibia, where

Lysine is replaced with Glutamic acid.

Therefore, Lys 51 is located in a conserved region of the

MT alpha domain, between two cysteine residues, sug-

gesting a critical role for protein stability and folding.

Both Arginine and Lysine are positively charged basic

amino acids and are mostly exposed to protein surface (see

SA: Predicted solvent accessibility in Tables 7 and 8 of

Electronic Supplementary Material), playing important

roles in protein stability by forming electrostatic interac-

tions. However, Arginine forms a higher number of elec-

trostatic interactions compared with Lysine by means the

guanidinium group. Due to different steric and electrostatic

effects, these two amino acids may also influence the sta-

bility of cysteine clusters and consequently the zinc-bind-

ing affinity (Sokalingam et al. 2012; Munoz et al. 2000).

We have also calculated predicted 3D structure of MT1A

Table 4 Changes on clinical and biochemical parameters after zinc

supplementation according to ?1245 MT1A A/G genotypes

G- genotype G? genotype p value

CRP (mg/dL) 62.8 ± 25.9 -1.4 ± 11.1 0.35

Albumin (g/dL) 2.5 ± 0.95 5.2 ± 2.2 0.28

Glycemia (mg/dL) -1.75 ± 1.9 -1.0 ± 2.8 0.95

Total cholesterol (mg/dL) -0.1 ± 1.4 1.3 ± 3.0 0.82

HDL-cholesterol (mg/dL) 6.4 ± 1.7 4.3 ± 2.1 0.81

AGEs (ng/mL) 8.3 ± 7.0 -19.8 ± 15.6 0.12

ROS (MFI) 8.2 ± 6.9 -22.4 ± 19.3 0.14

pSOD (U/mL) 14.9 ± 1.2 18.4 ± 2.6 0.28

GPx (nmol NADPH/min/
mL)

-0.76 ± 0.22 0.11 ± 0.45 0.086

CAT (lmol/min/mg prot) -8.9 ± 1.1 -9.4 ± 2.3 0.64

Zn plasma levels (lM) 9.3 ± 2.1 4.5 ± 2.9 0.50

Zn granulocytes (nmol/
mg protein)

83.3 ± 21.7 163.9 ± 43.3 0.14

MT (MFI) 64.5 ± 28.4 31.9 ± 67.4 0.58

iZnL 7.0 ± 2.3 19.8 ± 5.6 0.020

iZnR 14.5 ± 7.5 60.3 ± 14.6 0.031

Data are mean of % changes ± SE

Comparisons between G? (AG?GG) and G- (AA) genotype were
performed by ANCOVA analysis correcting for age, gender and
country

Bold values indicate a significant difference
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variants from amino acid sequence using I-TASSER online

Structure & Function Prediction (http://zhanglab.ccmb.

med.umich.edu/I-TASSER/) (Roy et al. 2010).

The results demonstrate some changes in the predicted

secondary structure and in the predicted solvent accessi-

bility of the cysteine (Cys) residues (Electronic Supple-

mentary Material, Tables 7, 8).

In particular, Cys21 pass from a random coil (in MT1A

Lys51) to a beta-strand (in MT1A Arg51), while Cys26 and

Cys57 are buried in Lys51 variant and exposed in Arg51

variant.

These data further suggest that Lys51Arg variation in

MT1A protein can influence the stability of cysteine clus-

ters and consequently the zinc-binding affinity.

I-TASSER server develops four models of predicted 3D

structures in MT1A Lys51 variant and three models of

predicted 3D structures in MT1A Arg51 variant. These

models are reported in the supplementary material (Elec-

tronic Supplementary Material, I-TASSER results1;

I-TASSER results1; Figs. 1A B, C, D, 2A, B, 3C). How-

ever, the model 1 for both MT1A isoforms shows higher

accuracy than other models [on the basis of the lower value

of residue-specific quality (RSQ1) of the model, which is

defined as the estimated deviation of the residue on the

model from the native structure of the protein] (Electronic

Supplementary Material, Figs. 1A, 2A, Tables 7, 8).

Discussion

Oxidative stress triggers the development and progression

of atherosclerosis. MT are ROS scavengers that regulating

zinc homeostasis, protect cells from the stress condition

(Maret and Krezel 2007), including apoptosis induced by

AGEs (Lim et al. 2008). MT genetic variants have been

associated with a modulation of intracellular zinc in

PBMCs and with the onset of diabetes and cardiovascular

complications (Giacconi et al. 2008, 2010). ?1245 A/G

MT1A polymorphism influences the antioxidant enzyme

activity in diabetic Chinese patients and Greek CVD

patients (Yang et al. 2008; Giacconi et al. 2010).

In elderly has been reported an increased incidence of a

moderate zinc deficiency (Prasad et al. 2007; Mocchegiani

et al. 2008b), and this condition may predispose to ath-

erosclerosis development (Beattie et al. 2012; Giacconi

et al. 2007).

Zinc supplementation exerts anti-atherogenic effects

reducing inflammatory markers such as C-reactive protein

(CRP), interleukin-6 (IL-6), macrophage chemoattractant

protein 1 (MCP-1), vascular cell adhesion molecule 1

(VCAM-1) in elderly (Bao et al. 2010). Zinc-supplemented

subjects show also improvements in oxidative stress

parameters (lipid peroxidation products, DNA oxidation

products) (Bao et al. 2008). However, some intervention

studies found no effect of zinc on oxidative stress markers

in elderly or diabetic patients (Andriollo-Sanchez et al.

2008; Seet et al. 2011). It is possible that the heterogeneity

between studies on the effect of zinc supplementation may

be due to confounding factors, such as environmental

factors or the genetic background. By discovering key

genes influencing zinc homeostasis, we may identify peo-

ple who most likely would benefit from a nutritional

intervention. Previous researches have evidenced different

immune-inflammatory response to zinc supply both in vitro

than in vivo according to MT genetic variants (Mazzatti

et al. 2008; Mariani et al. 2008b), which are in strong

linkage disequilibrium with ?1245 MT locus (Giacconi

et al. 2008).

In the present investigation, we have evaluated the

antioxidant effect of zinc supplementation in relation to

?1245 A/G MT1A polymorphism.

?1245 G? carriers displayed enhanced baseline AGE

production and oxidative stress with respect to G- carriers

suggesting a major susceptibility to atherogenesis.

In fact, AGEs have been shown to play an important role

in atherosclerosis, contributing to endothelial dysfunction

(Ando et al. 2013), even in non-diabetic subjects (Yamagishi

et al. 2007a), and they are positively correlated with car-

diovascular mortality (Kilhovd et al. 2005; de Vos et al.

2014). Besides, dietary AGE intake has been associated with

systemic inflammation, such as C-reactive protein, in a large

group of healthy subjects (Uribarri et al. 2005). These

compounds are also implicated in lipid dysmetabolism.

Glycation of apoA-I, the major protein component of HDL,

is strongly associated to produce dysfunctional HDL, which

can accelerate cellular senescence and atherosclerosis (Park

et al. 2010). All these findings suggest that the increased

AGEs levels in G? carriers could be associated with dys-

functional HDL and may predispose to atherosclerosis

development as previously demonstrated in Greek CVD

patients (Giacconi et al. 2010).

Some recent evidence report an inhibitory effect of zinc

on in vitro AGE formation (Tupe and Agte 2010; Sene-

viratne et al. 2011). Our study shows that zinc supple-

mentation tended to decrease AGE plasma concentrations

and ROS levels in G? carriers with; however, no signifi-

cant improvement also when the changes were analyzed in

all 110 subjects (data not shown), according to a previous

report (Andriollo-Sanchez et al. 2008).

The significant beneficial effects of zinc intervention on

antioxidant enzyme activity, MT and intracellular zinc

homeostasis (iZnL, iZnR in PBMCs, Zinc content in

granulocytes) have been previously demonstrated in the

same group of subjects, independently of the genetic

background (Mocchegiani et al. 2008b; Mariani et al.

2008a).
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Here, we found no changes on antioxidant response and

MT production after zinc supplementation between G-

(Lys 51) or G? (Arg51) carriers. Among intracellular and

extracellular zinc parameters only iZnL and iZnR showed

significant higher increments in G? subjects than G- ones.

These results might depend on a major zinc uptake or

cytosolic zinc buffering in PBMCs in relation to the ?1245

MT1A genotype. Indeed, here, we have demonstrated that

Lys 51 is located in a conserved region of the MT alpha

domain, between two cysteine residues, and Arg51 sub-

stitution determines some changes in the secondary and

tertiary protein structure in correspondence of Cys21,

Cys26 and Cys57 residues.

These findings demonstrate that Lys51Arg variation in

MT1A protein can influence the stability of cysteine clus-

ters and consequently the zinc-binding affinity.

On the other hand, the higher increment of zinc ion

availability in G? carriers after zinc supplementation,

suggests a prompt response of cells exposed to increased

oxidative stress condition at the baseline, in incorporating

zinc which will bind to zinc-dependent transcription factors

involved in the expression of antioxidant genes (Maret

2011). In fact, it has been demonstrated that increments of

intracellular zinc, released by NO donors, induce Gluta-

thione (GSH) synthesis, protecting endothelial cells from

oxidative stress (Cortese-Krott et al. 2009). Although we

found only a trend for ROS decrement in G? supple-

mented subjects, zinc intervention may be useful for the

improvement of enzyme antioxidant activity (Mariani et al.

2008a) and other oxidative stress parameters (Bao et al.

2008).

Moreover, considering that lowering of dietary, AGEs

suppresses the neointimal formation in apolipoprotein

E-deficient mice, and reduces inflammation in non-diabetic

population (Lin et al. 2002; Yamagishi et al. 2007a; b;

Uribarri et al. 2005) a decreased intake of food-derived

AGEs could represent a novel target for therapeutic inter-

vention in AT or DM-2 patients, especially those who are

genetically more predisposed to increased AGE production

(such as G? carriers). Limitations of this investigation

could be the unbalanced number of G? and G- partici-

pants to zinc supplementation trial and the presence of

possible environmental differences in our multi-centric

study, therefore may be useful to confirm our findings in a

larger and homogeneous population study. We have not

included a control group, since it is reasonable to assume

that the ‘‘placebo effect’’ is similar in G? and G- carriers;

in this case, the presence of a placebo group could be not

necessary as reported also by other authors in trials eval-

uating the effect of gene nutrient interaction (Meplan et al.

2008).

In conclusion, ?1245 MT1A polymorphism modulates

plasma AGEs and ROS production in PBMCs. Zinc

supplementation tended to decrease AGE plasma levels in

G? carriers with higher improvement in intracellular zinc

ion availability, in G? zinc-supplemented individuals, than

G- ones.
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