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Role of genetic variants in ADIPOQ in human eating behavior
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Abstract The beneficial effects of adiponectin and its

negative correlation with BMI are well described. Adipo-

nectin serum levels are altered in eating disorders such as

anorexia nervosa, bulimia nervosa or binge eating. Here,

we tested the hypothesis that (1) adiponectin serum levels

correlate with human eating behavior factors and (2) that

genetic variants of the ADIPOQ locus influence both serum

levels and eating behavior. We analyzed 11 SNPs within

ADIPOQ and in the 50 UTR and measured serum adipo-

nectin levels in 1,036 individuals from the German Sorbs

population. The German version of the three-factor eating

questionnaire (FEV) was completed by 548 Sorbs. For

replication purposes, we included an independent

replication cohort from Germany (N = 350). In the Sorbs,

we observed positive correlations of restraint with adipo-

nectin serum levels (P = 0.001; r = 0.148) which, how-

ever, did not withstand adjustment for covariates

(P = 0.083; r = 0.077). In addition, four SNPs were

nominally associated with serum adiponectin levels (all

P \ 0.05). Of these, two variants (rs3774261; rs1501229,

all P \ 0.05) were also related to disinhibition. Further-

more, three variants were exclusively associated with

hunger (rs2036373, P = 0.049) and disinhibition

(rs822396; rs864265, all P \ 0.05). However, none of

these associations withstood Bonferroni corrections for

multiple testing (all P [ 9.3 9 10-4). In our replication

cohort, we observed similar effect directions at rs1501229

for disinhibition and hunger. A meta-analysis resulted in

nominal statistical significance P = 0.036 (Z score 2.086)

and P = 0.017 (Z score 2.366), respectively. Given the

observed relationship of the SNPs with adiponectin levels

and eating behavior, our data support a potential role of

adiponectin in human eating behavior. Whether the rela-

tionship with eating behavior is mediated by the effects of

circulating adiponectin warrants further investigations.

Keywords Adiponectin serum levels � Genetics � Eating

behavior � Human studies

Introduction

Human circulating adiponectin is a well-described adipo-

cytokine exerting anti-inflammatory (Yokota et al. 2000)

and insulin-sensitizing effects (Yamauchi et al. 2001; Berg

et al. 2001). An inverse relationship to obesity and BMI

with beneficial effects for insulin sensitivity was shown

(Arita et al. 1999; Cnop et al. 2003). Adiponectin serum
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levels may be influenced by nutritional compounds as well

as physical activity, environmental components and gender

(Henneman et al. 2010; Antoniades et al. 2009; Mantzoros

et al. 2006). In particular, a 1.5-fold higher concentration in

women compared to men was described (Heid 2006).

Besides several other loci such as ARL15 (ADP-ribosyla-

tion factor-like 15 gene locus) (Richards et al. 2009), the

strongest genetic determinants influencing circulating

adiponectin concentrations were identified within the

ADIPOQ locus (adiponectin gene locus) (Ling et al. 2009;

Heid et al. 2010; Richards et al. 2009).

Physiologic effects of adiponectin are mainly mediated

by binding to one of its two receptor isoforms (AdipoR1

and AdipoR2) (Zhao et al. 2005) consequently activating

signaling cascades such as adenosine monophosphate-

activated protein kinase (AMPK) (Yamauchi et al. 2002),

and PPARa transcription factor (peroxisome proliferator-

activated receptor alpha) or NF-jB (nuclear factor ‘kappa-

light-chain-enhancer’ of activated B cells) (Thundyil et al.

2012). AdipoR1 is most abundantly expressed in skeletal

muscle and highly affine for globular adiponectin, while

AdipoR2 binds full-length and globular adiponectin and is

predominantly expressed in liver (Yamauchi et al. 2003).

AdipoR1 and AdipoR2 are also expressed in human adi-

pocytes (Rasmussen et al. 2006; Fasshauer et al. 2004; Li

et al. 2007). Circulating adiponectin was shown to be

involved in enhanced glucose uptake via GLUT4 (glucose

transporter 4) (Ceddia et al. 2005; Mao et al. 2006), as well

as in enhanced fatty acid uptake and oxidation in skeletal

muscle in animal models (Tomas et al. 2002; Yoon 2006).

Adiponectin-dependent AMPK activation may demonstrate

a link to beneficial effects of this adipokine on metabolic

and cardiovascular systems (Kahn et al. 2005). However,

beside these important aspects of adiponectin in peripheral

tissues, less is known about its central effects in brain. One

study demonstrated that adiponectin administration stimu-

lated the AMPK activation in the arcuate hypothalamus

influencing food uptake and energy expenditure (Kubota

et al. 2007). While elevated adiponectin levels were present

in serum and cerebrospinal fluid during fasting state in

mice, these levels were normalized after refeeding, sug-

gesting that adiponectin might influence food intake via

central mechanism in the brain (Kubota et al. 2007). One

may argue whether similar central effects exist in humans

(Pan et al. 2006; Kos et al. 2006). Consistent with potential

central effects, human adiponectin levels were also shown

to be altered in eating disorders such as anorexia nervosa,

binge eating disorder and bulimia nervosa (reviewed in,

e.g., Bou Khalil and El Hachem 2014). In particular, many

studies demonstrated elevated adiponectin serum levels in

female patients affected with anorexia nervosa (Modan-

Moses et al. 2007; Pannacciulli et al. 2003; Terra et al.

2013), while binge eating disorder was related to decreased

circulating adiponectin (Monteleone et al. 2003; Carnier

et al. 2012). It is worth noting that inconsistent data exist

for patients suffering from bulimia nervosa (Housova et al.

2005; Tagami et al. 2004; Monteleone et al. 2003). Taken

together, besides its well-known effects in terms of obesity,

type 2 diabetes and related metabolic conditions adipo-

nectin seems to be involved in food intake and energy

expenditure as well as in the pathophysiology of eating

disorders.

Here, we tested the hypothesis that adiponectin serum

levels correlate with human eating behavior factors mea-

sured by the German version of the three-factor eating

questionnaire (Fragebogen zum Essverhalten—FEV). Fur-

ther, we analyzed whether genetic variation in the ADIPOQ

locus influences adiponectin serum levels and the eating

behavior factors restraint, disinhibition and hunger.

Materials and methods

Subjects

The Sorbs cohort is a self-contained population from

eastern Germany which was extensively phenotyped for a

wide range of anthropometric and metabolic phenotypes

including weight, height, waist-to-hip-ratio (WHR) and a

75-g oral glucose tolerance test (OGTT) and standardized

questionnaires for individual medical history and family

histories (Veeramah et al. 2011). A total of 1,036 subjects

with mean age of 48 ± 16 years and mean BMI

26.9 ± 4.9 kg/m2 were included. A total of 548 Sorbs

completed the FEV (Pudel and Westenhöfer 1989), the

German version of the TFEQ (Stunkard and Messick 1985)

as described elsewhere (Gast et al. 2013). Total adiponectin

serum levels were measured in the Sorbs population. All

subjects gave written informed consent, and the study was

approved by the ethics committee of the University of

Leipzig. The main characteristics of the Sorbs are sum-

marized in Table 1.

The replication cohort is an independent German

population described elsewhere (Gast et al. 2013). A total

of 350 individuals were included in the analysis (mean age

of 27 ± 5 years and mean BMI of 27.0 ± 6.2 kg/m2;

Table 1). Phenotyping included anthropometric measure-

ments (BMI, weight, height) and human eating behavior

factors measured using the FEV (Pudel and Westenhöfer

1989). The local ethics committee of the University of

Leipzig approved the study.

Genetic analysis of the ADIPOQ locus

Eleven ADIPOQ SNPs (single nucleotide polymorphisms)

within the ADIPOQ gene and the 50 UTR (50 untranslated
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region) were analyzed. Of these, genotypes for seven SNPs

(rs864265; rs182052; rs16861205; rs17366568; rs2241767;

rs3821799; rs3774261) were extracted from Affymetrix

Genome-Wide Human SNP data (Affymetrix Inc., Santa

Clara, CA, USA) earlier described by Tönjes et al. (2009).

Four additional tagging variants (rs822396; rs1501229;

rs2036373; rs17366743) were selected from the HapMap

database (r2 [ 0.8, minor allele frequency (MAF) \ 0.05)

and individually genotyped (Fig. 1). De novo genotyping

of rs822396; rs1501229; rs2036373; and rs17366743 was

performed using TaqMan� SNP Genotyping Assay

(Applied Biosystems by Life-Technologies Carlsbad, CA,

USA). Fluorescence was detected by an ABI 7500 Real-

Time PCR system. All SNPs were in Hardy–Weinberg

equilibrium (all P [ 0.05) except rs822396 in the Sorbs.

To avoid genotyping errors, a random selection (*5 %) of

the sample was re-genotyped; all genotypes matched the

initially designated genotypes. Water was used as a no

template control (NTC).

Measurement of circulating serum adiponectin

Total adiponectin serum levels in the Sorbs were measured

using a high-sensitivity human adiponectin ELISA (Bio-

Vendor; Heidelberg; Germany) using antibodies specific for

human adiponectin according to manufacturers’ instruc-

tions. Serum samples were collected after an overnight fast.

Statistics

Non-normally distributed data were logarithmically trans-

formed to approximate a normal distribution. Linear

Table 1 Main characteristics of the study populations

Sorbs Replication cohort

Total Male Female Total Male Female

N total 1,036 418 618 350 189 152

Age 48 ± 16 48 ± 17 48 ± 16 27 ± 5 27 ± 5 27 ± 5

BMI (kg/m2) 26.9 ± 4.9 27.2 ± 4.0 26.8 ± 5.5 27.0 ± 6.2 26.9 ± 5.8 27.1 ± 6.7

Serum adiponectin (lg/ml) 16.6 ± 5.5 14.5 ± 5.1 18.0 ± 5.3 n.a. n.a. n.a.

Data are presented as mean ± SD

Fig. 1 Gene structure of the

ADIPOQ gene (not scaled) and

its location on Chromosome 3.

Filled boxes present coding

exons, unfilled indicate non-

coding exons. ATG: translation

start; asterisk SNPs de novo

genotyped in this study.

Genotype data for the other

SNPs were extracted from

previous analysis (Tönjes et al.

2009). Underlined SNPs were

significantly associated with

adiponectin serum levels in the

Sorbs. Circle SNPs remain

significant with disinhibition

and hunger after meta-analysis
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regression models adjusted for age, gender and BMI

(except for BMI) were employed to test for genetic asso-

ciation with BMI, eating behavior factors (restraint, disin-

hibition and hunger) and serum adiponectin levels.

Additive model of inheritance was tested. Individuals with

type 2 diabetes (T2D) were excluded from the genetic

association analysis for eating behavior factors and

adiponectin serum levels. Linear regression analyses

adjusted for age, gender and BMI were used to assess the

relationship between eating behavior and serum adipo-

nectin levels. To correct for multiple testing, we applied

Bonferroni correction as suggested at: http://www.quanti

tativeskills.com/sisa/calculations/bonfer.htm (alpha niveau

0.05; number of tests/phenotypes = 55) and lowered the

significance threshold to P \ 9.3 9 10-4. All P val-

ues [ 9.3 9 10-4 but B 0.05 were considered to be of

nominal statistical significance. All P values are provided

without the Bonferroni correction. SPSS statistics version

20.0.1 (SPSS, Inc.; Chicago, IL) was used for all statistical

analyses. Meta-analyses were performed using METAL

(Willer et al. 2010).

Results

Circulating adiponectin levels in the Sorbs

As expected, adiponectin serum levels were negatively

correlated with BMI (P = 4.5 9 10-5; r = -0.141,

Table 2). A strong positive correlation of serum adipo-

nectin with the eating behavior factor restraint was

observed (P = 0.001, r = 0.148), which, however, did not

withstand adjustment for covariates such as age, gender

and BMI (P = 0.083; r = 0.077).

ADIPOQ SNPs associated with adiponectin serum

levels and human eating behavior phenotypes

We observed nominal associations between four intra-

genic SNPs (rs1501229; rs17366743; rs17366568; and

rs3774261) and circulating adiponectin levels in the Sorbs

(all P \ 0.05, Table 3). The strongest relationship was

detected at rs3774261 (Table 3), an intronic variant with

minor allele carriers conferring increased serum adipo-

nectin levels (P = 0.006; b = 0.693).

Of these four variants, two SNPs were also nominally

related to disinhibition (rs1501229 and rs3774261,

Table 3). Minor allele carriers of these two variants

showed both elevated serum adiponectin levels and

increased disinhibition scores. In addition, we observed a

third SNP (rs2036373) exerting a nominal association

with hunger (Table 3). Two further variants, rs822396

and rs864265, were exclusively related to disinhibition.

However, none of these associations withstood Bonfer-

roni corrections for multiple testing (all P [ 9.3 9 10-4).

No relationship between the variants and BMI was

observed.

Replication analysis in an independent German cohort

Two variants (rs3774261 and rs1501229) conferring the

strongest relationships to both, adiponectin serum levels

and the eating behavior factor disinhibition in the Sorbs,

were taken forward to replication analyses in an indepen-

dent German cohort. None of the variants were related to

eating behavior factors (Table 4, all P [ 0.05). Nonethe-

less, we observed similar effect directions for rs1501229 as

in the Sorbs showing elevated disinhibition scores in minor

allele carriers. We did not find similar effect directions

between the Sorbs and the replication cohort for

rs3774261.

Meta-analyses

A sample size-weighted meta-analysis for rs1501229 and

rs3774261 including the results from the two study popu-

lations (Sorbs and German cohort) resulted in nominal

statistical significance at rs1501229 with disinhibition and

hunger (combined Pdisinhibition = 0.0369 (Z score 2.086);

Phunger = 0.01798 (Z score 2.366) Table 5).

Table 2 Adiponectin serum levels in T2D and obesity in the Sorbs

T2D Obesity

Yes No Lean Overweight Obese

N total 103 845 360 369 220

Serum adiponectin (lg/ml) 15.5 ± 5.9 16.6 ± 5.1 17.5 ± 5.0 15.8 ± 5.1 16.1 ± 5.4

P value 0.047a (adjusted for BMI: 0.330) 4.2 3 1028b; 0.001c

Circulating adiponectin levels in lg/ml are presented as mean ± SD. P values were calculated using unpaired t tests
a T2D yes versus no; b lean versus overweight; c lean versus obese
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Table 3 Association analysis of ADIPOQ genetic variants with adiponectin levels and eating behavior factors in the Sorbs

SNP Genotype Gender BMI Adiponectin Restraint Disinhibition Hunger

N M/F kg/m2 lg/ml N = 548 N = 548 N = 547

rs864265 T/T N = 12 6/6 27.2 ± 4.2 16.44 ± 4.74 7.38 ± 4.08 2.63 ± 2.00 2.94 ± 1.48

T/G N = 178 70/108 26.8 ± 4.7 16.75 ± 5.17 8.09 ± 4.48 4.01 ± 2.70 3.58 ± 2.77

G/G N = 642 256/386 26.4 ± 4.7 16.56 ± 5.13 7.84 ± 5.03 4.45 ± 3.05 4.03 ± 2.82

P value n.s. n.s. n.s. 0.015a n.s.

rs182052 A/A N = 154 62/92 26.9 ± 4.7 16.18 ± 4.99 7.75 ± 4.75 3.88 ± 2.81 3.59 ± 2.50

A/G N = 396 160/236 26.3 ± 4.7 16.88 ± 5.12 7.67 ± 4.83 4.47 ± 3.18 4.12 ± 3.00

G/G N = 284 113/171 26.5 ± 4.6 16.43 ± 5.22 8.22 ± 5.04 4.30 ± 2.77 3.76 ± 2.63

P value n.s. n.s. n.s. n.s. n.s.

rs16861205 A/A N = 3 1/2 28.2 ± 11.8 17.62 ± 3.40 10.00 ± 0.00 5.00 ± 0.00 0.00 ± 0.00

A/G N = 135 50/85 26.9 ± 5.3 16.00 ± 5.02 7.75 ± 4.83 4.55 ± 3.25 3.90 ± 3.22

G/G N = 697 283/414 26.4 ± 4.5 16.70 ± 5.15 7.90 ± 4.92 4.27 ± 2.93 3.92 ± 2.71

P value n.s. n.s. n.s. n.s. n.s.

rs17366568 A/A N = 12 3/9 22.5 ± 3.4 17.52 ± 4.52 6.61 ± 4.26 3.67 ± 3.71 3.94 ± 2.46

A/G N = 175 73/102 26.5 ± 4.6 15.81 ± 5.28 7.61 ± 4.83 4.32 ± 3.22 3.61 ± 2.90

G/G N = 649 259/390 26.6 ± 4.7 16.78 ± 5.08 7.98 ± 4.93 4.32 ± 2.89 3.98 ± 2.77

P value n.s. 0.027a n.s. n.s. n.s.

rs2241767 G/G N = 2 0/2 27.2 ± 2.6 18.71 ± 5.08 12.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00

G/A N = 86 37/49 26.0 ± 4.3 16.84 ± 5.89 8.37 ± 4.52 4.69 ± 3.20 3.76 ± 2.59

A/A N = 747 298/449 26.6 ± 4.8 16.57 ± 5.03 7.81 ± 4.94 4.26 ± 2.94 3.91 ± 2.80

P value n.s. n.s. n.s. n.s. n.s.

rs3821799 T/T N = 138 54/84 26.2 ± 5.1 17.23 ± 5.53 6.99 ± 4.75 4.92 ± 2.95 4.31 ± 3.04

T/C N = 408 172/236 26.4 ± 4.4 16.49 ± 4.88 8.17 ± 5.09 4.14 ± 2.88 3.79 ± 2.69

C/C N = 289 110/179 26.9 ± 4.9 16.41 ± 5.27 7.87 ± 4.64 4.27 ± 3.09 3.90 ± 2.78

P value n.s. n.s. n.s. n.s. n.s.

rs3774261 A/A N = 94 36/58 26.0 ± 5.0 17.85 ± 5.20 7.46 ± 5.04 4.89 ± 2.92 4.17 ± 2.92

A/G N = 396 164/232 26.4 ± 4.4 16.61 ± 5.00 8.07 ± 5.16 4.34 ± 2.87 3.92 ± 2.81

G/G N = 347 136/211 26.8 ± 5.0 16.22 ± 5.21 7.80 ± 4.56 4.10 ± 3.09 3.81 ± 2.74

P value n.s. 0.006a n.s. 0.019a n.s.

rs822396 G/G N = 56 21/35 26.40 ± 4.67 17.57 ± 4.95 7.89 ± 4.4 3.49 ± 2.6 3.61 ± 2.6

A/G N = 288 117/171 26.95 ± 4.77 16.71 ± 4.81 8.06 ± 5.0 4.19 ± 2.9 3.86 ± 2.8

A/A N = 553 218/335 26.21 ± 4.58 16.48 ± 5.27 7.84 ± 4.9 4.52 ± 3.1 3.61 ± 2.6

P value n.s. n.s. n.s. 0.036a n.s.

rs1501229 T/T N = 70 30/40 25.60 ± 4.63 17.70 ± 5.12 7.24 ± 5.35 4.81 ± 2.70 3.78 ± 2.68

G/T N = 387 154/233 26.55 ± 4.51 16.80 ± 4.90 8.13 ± 5.10 4.51 ± 2.95 3.96 ± 2.95

G/G N = 434 172/262 26.52 ± 4.76 16.31 ± 5.29 7.88 ± 4.61 4.13 ± 3.10 4.52 ± 2.92

P value n.s. 0.010a n.s. 0.016a n.s.

rs2036373 G/G N = 2 1/1 32.30 ± 12.45 17.83 ± 2.53 8.00 ± 7.1 4.25 ± 3.18 2.00 ± 0.00

G/T N = 75 38/37 26.87 ± 4.42 16.50 ± 5.99 7.87 ± 4.8 4.87 ± 3.03 4.67 ± 3.09

T/T N = 811 313/498 26.43 ± 4.64 16.65 ± 5.01 7.92 ± 4. 4.32 ± 3.01 3.85 ± 2.79

P value n.s. n.s. n.s. n.s. 0.049a

rs17366743 C/C N = 0

C/T N = 39 18/21 27.30 ± 3.27 14.96 ± 4.84 8.91 ± 5.72 4.77 ± 3.52 3.59 ± 2.58

T/T N = 855 339/516 26.43 ± 4.71 16.71 ± 5.12 7.88 ± 4.86 4.31 ± 2.98 3.92 ± 2.81

P value n.s. 0.036a n.s. n.s. n.s.

Data are presented as mean ± SD

n.s. non-significant (P [ 0.05)
a P values (additive model of inheritance) were calculated using linear regression analysis, adjusted for age, gender and ln BMI
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Discussion

The present study mainly supports the well-known rela-

tionship between genetic variants in the ADIPOQ gene

locus and adiponectin serum levels. Beyond this, we

observed two variants conferring increased adiponectin

levels along with increased eating behavior scores which,

however, did not withstand correction for multiple testing.

Moreover, we found circulating adiponectin correlated with

the eating behavior factor restraint in the German Sorbs.

ADIPOQ locus and adiponectin serum levels

In the Sorbs, we found mean circulating adiponectin levels

of 16.62 ± 5.10 lg/ml. In line with others describing sig-

nificant differences between male and female adiponectin

serum levels (Heid 2006) which is most likely caused by

enriched testosterone levels in men inhibiting the secretion

of high molecular weight (HMW) adiponectin from

adipocytes (Xu et al. 2005; Wang et al. 2008), we found

*19 % higher serum levels in women compared to men.

Many studies described genetic variants in the ADIPOQ

locus to be associated with reduced adiponectin levels in

T2D, obesity and impaired insulin sensitivity (Vasseur

2002; Comuzzie et al. 2001; Ramya et al. 2013; Peters

et al. 2013; Kadowaki 2006). Consistently, in the Sorbs,

adiponectin serum levels are negatively correlated with

BMI. The ADIPOQ gene locus was shown to be a major

locus influencing plasma adiponectin levels with genome-

wide significance (Heid 2006; Ling et al. 2009). Several

studies identified rs17366568 upstream the transcription

start site showing strongest associations to adiponectin

serum concentration (Heid 2006; Peters et al. 2013; Cohen

et al. 2011; Mather et al. 2012). In line with this, the same

variant was nominally associated with circulating adipo-

nectin in the Sorbs (P value = 0.027). Consistently with

other studies, we observed three other markers influencing

adiponectin serum levels (Ramya et al. 2013).

Table 4 Replication analyses in an independent German cohort

SNP Genotype Gender Age BMI Restraint Disinhibition Hunger

N M/F years kg/m2

rs1501229 T/T N = 36 23/13 26 ± 4.0 28.3 ± 6.7 7.51 ± 5.02 6.47 ± 2.86 6.03 ± 3.50

G/T N = 121 65/56 27 ± 5.3 27.0 ± 6.6 5.46 ± 4.13 6.17 ± 3.21 5.82 ± 3.32

G/G N = 156 87/69 27 ± 5.0 26.8 ± 5.8 6.37 ± 4.56 6.09 ± 3.21 5.14 ± 3.38

P value n.s. n.s. n.s. n.s. n.s.

rs3774261 A/A N = 56 33/23 26 ± 4.3 28.0 ± 6.9 7.53 ± 4.59 6.20 ± 2.73 5.82 ± 3.54

A/G N = 133 74/59 27 ± 5.5 26.8 ± 6.2 5.43 ± 4.23 6.02 ± 3.22 5.62 ± 3.34

G/G N = 123 67/56 26.5 ± 4.8 27.0 ± 5.9 6.36 ± 4.65 6.38 ± 3.32 5.34 ± 3.46

P value n.s. n.s. n.s. n.s. n.s.

Data are presented as mean ± SD. P values (additive model of inheritance) were calculated using linear regression analysis, adjusted for age,

gender and ln BMI.

n.s. non-significant (P [ 0.05)

Table 5 Meta-analysis for Sorbs and German replication cohort

SNP Minor allele Sorbs German cohort Combined

P value b SE P value b SE P value Z score Direction

Disinhibition

rs1501229 T 0.016 0.429 0.178 0.781 0.067 0.239 0.03696 2.086 ??

rs3774261 A 0.019 0.412 0.175 0.431 -0.177 0.225 0.1762 1.352 ?-

Restraint

rs1501229 T 0.800 -0.078 0.307 0.852 0.069 0.369 0.9275 -0.091 -?

rs3774261 A 0.893 -0.041 0.307 0.360 0.318 0.347 0.6483 0.456 -?

Hunger

rs1501229 T 0.097 0.296 0.178 0.084 0.487 0.281 0.01798 2.366 ??

rs3774261 A 0.389 0.152 0.176 0.378 0.236 0.267 0.2217 1.222 ??

P values were calculated based on effect sizes from linear regression model using additive inheritance model. Significant P values \ 0.05 are

presented in bold. All data are adjusted for age, gender and ln BMI. All analyses were standardized to the minor allele
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ADIPOQ locus and eating behavior

Beside its well-described role in endocrine metabolism

and cardiovascular function in peripheral tissues as well as

the reported autocrine effects on adipocytes (Wu et al.

2003), adiponectin confers also central effects on energy

expenditure or food intake (Kubota et al. 2007; Qi et al.

2004; Kadowaki et al. 2008). It was recently shown that

adiponectin is also expressed in brain (Rodriguez-Pacheco

et al. 2007; Psilopanagioti et al. 2009) and is functionally

active (Rodriguez-Pacheco et al. 2007). In addition, sev-

eral studies reported intracerebral injection (Hoyda et al.

2009a; Iwama et al. 2009; Park et al. 2011) and most

importantly expression of adiponectin receptors in the

brain (Hoyda et al. 2009b; Dadson et al. 2011). Further, it

was shown that peripherally administered adiponectin is

able to cross the blood–brain barrier and binds similarly to

leptin neuronal targets in the hypothalamus (Thundyil

et al. 2012; Qi et al. 2004; Kubota et al. 2007). In the

present study, we observed several SNPs in the ADIPOQ

gene locus which were nominally associated with human

eating behavior factors such as disinhibition and hunger

(Pudel and Westenhöfer 1989) as well as with adiponectin

levels themselves. Minor allele carrier shows elevated

adiponectin serum levels along with increased disinhibi-

tion scores which indicate the tendency to frequently

overeat. It is of note, however, that none of these nominal

associations withstands correction for multiple testing.

Moreover, although we observed a positive correlation of

restraint with adiponectin serum levels, no significant

relationship of eating behavior factors and adiponectin

concentrations was observed. Comparing low versus high

adiponectin level groups results in significantly higher

restraint scores in the high adiponectin group; however,

these data do not withstand adjustment for gender (data

not shown). Nevertheless, albeit non-significant, our data

are in line with the hypothesis that adiponectin activates

AMPK-mediated signaling via adiponectin receptor bind-

ing in the hypothalamus as demonstrated in animal models

(Kubota et al. 2007; Minokoshi et al. 2008). This may

result in overeating or increased hunger feelings. Since

adiponectin levels can be further influenced by nutritional

compounds, increased food intake may in turn serve as a

positive feedback process (Mantzoros et al. 2006). How-

ever, this mechanism seems to be accompanied by

decreased energy expenditure that may ultimately lead

together with overeating to increased body weight (Kubota

et al. 2007; Minokoshi et al. 2008). In contrast, Qi et al.

(2004) reported a temporary loss in body weight after

adiponectin injection into lateral-cerebral ventricles with-

out decreased food intake in mice. The authors concluded

that higher energy expenditure resulted in the weight loss,

which was further supported by increased brown adipose

tissue UCP-1 (uncoupling protein-1) mRNA expression. It

is still not yet clarified how adiponectin acts in the human

brain, because animal studies are not fully comparable

with humans and adiponectin in human cerebrospinal fluid

is 1000-fold lower than serum levels (Pan et al. 2006; Kos

et al. 2006). Further studies are warranted to better

understand whether adiponectin acts directly through

beneficial effects in peripheral tissues or indirectly by

activating AMPK that may lead to altered food intake or

energy expenditure.

Our study is limited at several aspects. In particular, in

regard to our association results for eating behavior factors,

it needs to be acknowledged that the TFEQ from Stunkard

and Messick (1985) provides several restrictions. While the

questionnaire identifies the three factors restraint, disinhi-

bition and hunger, the subscale disinhibition was most

consistently reported to be related with increased BMI and

obesity as well as with higher energy intake (Bryant et al.

2008). It was demonstrated (Dykes et al. 2003; French et al.

1994) that disinhibition is strongly related to overeating

without hunger feelings in certain situational circumstances

which otherwise correlates with a high amount of food

intake. Conflicting results, however, were reported for the

relationship between restraint and BMI (Dykes et al. 2003;

French et al. 1994), while in individuals with high restraint

scores both increased and decreased energy intakes were

observed (Bellisle et al. 2004; French et al. 1994). More-

over, since the questionnaire does not allow to drawing any

conclusions in terms of energy intake, our data can only be

interpreted in terms of eating behavior dimensions which

are related to energy intake.

Therefore, our data need to be interpreted with caution.

Despite the fact that the identified associations did not

withstand Bonferroni correction, in concert with the well-

known effects of SNPs on adiponectin concentrations, we

suggest that genetic variants in ADIPOQ may potentially

play a role in eating behavior which may be mediated via

influencing the serum adiponectin levels. However, we are

well aware that our data would not allow drawing these

conclusions without including larger studies necessary to

confirm the observed effects. Moreover, the sample size of

the independent replication cohort is small, which is most

likely one reason for the non-significant association results.

Moreover, the small sample size may also lead to false-

positive results. Since effects of gender and age on eating

behavior are well recognized (Hays and Roberts 2008;

Provencher et al. 2003; Jastreboff et al. 2014; Dakanalis

et al. 2013), the large difference in age between the two

cohorts in concert with the differential gender ratio may be

one reason to explain the observed discrepancies in eating

behavior scores. In addition to the reported other limita-

tions, differences in eating behavior scores may have pre-

vented us from identifying statistically significant SNP
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effects. Further, we have no serum adiponectin levels

available in the replication cohort.

Taken together, in addition to the known relationship

between genetic variation in the ADIPOQ gene locus and

adiponectin serum levels, our data suggest a potential

correlation with human eating behavior factors. This may

indicate potentially regulatory mechanisms in the brain in

regard to beneficial effects of adiponectin. Whether the

association with eating behavior is mediated by adiponec-

tin levels or vice versa warrants further investigations.
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