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Biomarkers for nutrient intake with focus
on alternative sampling techniques
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Abstract

Biomarkers of nutrient intake or nutrient status are important objective measures of foods/nutrients as one of the most
important environmental factors people are exposed to. It is very difficult to obtain accurate data on individual food
intake, and there is a large variation of nutrient composition of foods consumed in a population. Thus, it is difficult to
obtain precise measures of exposure to different nutrients and thereby be able to understand the relationship between
diet, health, and disease. This is the background for investing considerable resources in studying biomarkers of nutrients
believed to be important in our foods. Modern technology with high sensitivity and specificity concerning many nutrient
biomarkers has allowed an interesting development with analyses of very small amounts of blood or tissue material. In
combination with non-professional collection of blood by finger-pricking and collection on filters or sticks, this may make
collection of samples and analyses of biomarkers much more available for scientists as well as health professionals and
even lay people in particular in relation to the marked trend of self-monitoring of body functions linked to mobile phone
technology. Assuming standard operating procedures are used for collection, drying, transport, extraction, and analysis of
samples, it turns out that many analytes of nutritional interest can be measured like metabolites, drugs, lipids, vitamins,
minerals, and many types of peptides and proteins. The advantage of this alternative sampling technology is that
non-professionals can collect, dry, and mail the samples; the samples can often be stored under room temperature in a
dry atmosphere, requiring small amounts of blood. Another promising area is the potential relation between the
microbiome and biomarkers that may be measured in feces as well as in blood.
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Background
Reliable knowledge about the relationship between food
intake and nutritional status is very important for im-
proving the quality of nutritional research. Most data
generated in large epidemiological studies in humans are
based on memorizing or monitoring food intake from
the participants [1, 2]. These methods are inaccurate
and represent challenges concerning under- as well as
over-reporting of certain foods [3]. Based on these facts,
there is an urgent need for biomarkers of objectively
describing both intake and nutritional status. Different
omics analyses can be applied on all types of tissues and
biological liquids to improve dietary assessments [4].
However, the use of objective biochemical variables is
complicated by confounding factors. The amount and
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composition of a biomarker in tissues or blood depend
on multiple processes such as digestion and absorption
in the gastrointestinal tract, transport in the blood, up-
take, distribution, and metabolism in a variety of cells,
and excretion via the kidney and gastrointestinal tract.
All these processes involve multiple gene products with
polymorphisms potentially creating large individual
variations [5]. Moreover, different physiological states
like fasting feeding, cold, warm, resting, exercising, sex,
menstrual cycle, pregnancy, lactation, and age might
have effects on the lipid spectrum. Finally, the nutrient
composition of ingested food, endogenous production of
different molecules, flux into and out of various
compartments in the body, and sampling time points,
must be considered when omics data are interpreted. All
these considerations make it likely to suggest that the
rapid development of biomarker measurements to be
discussed in this review will represent an important
addition to the information obtain by classical methods
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for registration of food intake simply because the two
approaches intend to monitor different variables (food
intake with all its inaccuracies) and a resultant of many
biological processes (biomarker measurement).

Definition of biomarkers
In the current context, we will apply the concept of bio-
markers as a way to characterize objectively nutrient in-
take and or nutritional status. There is a distinction
between nutrient intake and nutritional status as exempli-
fied in the case of vitamin D. The best way to evaluate
vitamin D intake objectively would be to measure vitamin
D2 and D3 in blood. However, the concentration of these
vitamins is so low in blood that it is not feasible to meas-
ure these molecules by available technology. It turns out
that a hydroxylated derivative of vitamin D (25-hydroxy
vitamin D, formed in the liver) is a sensitive marker of
how much vitamin D is found in the body based on the
two main sources, diet and sun exposure over a period of
months [6]. Another example of the distinction between
intake and status can be polyunsaturated fatty acids
(PUFAs). The best way to evaluate intake of especially
PUFAs is to isolate the triglyceride-rich chylomicrons in
the time interval of 2–6 h after the meal. Although it is
difficult to monitor the amount of fatty acids consumed, it
is possible to have good estimates on the quality of fatty
acids by gas liquid chromatography (GLC) in combination
with flame ionization detection (FID) [7]. The status of
PUFA in the body is obtained best by having samples of
tissues with slower turnover than plasma lipoproteins, like
red blood cells, as can be obtained in whole blood samples
and thus on dried blood spots (DBS).
The ideal biomarker is:

a) Sensitive and specific for the nutrient or food it is
supposed to monitor.

b) Reflecting the period of interest concerning health
or disease. Often in biomedicine, the long-term
exposure is the most important.

c) Unaffected by diseases or conditions of importance
for metabolism of the actual nutrient. An example
is plasma concentration of LDL-cholesterol, which
is a risk factor for myocardial infarction, at the same
time as a myocardial infarct by itself will reduce
plasma LDL-cholesterol during the first days after
infarction [8].

d) Unaffected by other environmental or genetic factors.
Often this is impossible to avoid, but the actual
factors should be characterized and adjusted for.

e) Inexpensive and reproducible to measure.

Many variables influence biomarker concentrations
It is important to note that the concentrations of bio-
markers in body tissues are influenced by many factors
like digestion, absorption, distribution, transport, stor-
age, metabolism, and export, as well as dietary character-
istics like matrix differences, physical activity, the
microbiome, environmental temperature, the use of
drugs, and the presence of diseases. All these pheno-
typic, genetic, and environmental factors may give other
results than what are obtained in traditional dietary
studies based on 24 h recalls or food frequency ques-
tionnaires (FFQ). Thus, it is essential to be aware that in
addition to provide objective data on nutrient intake or
status, measurements of biomarkers represent many
more biological processes than just food intake.

Hypothesis-driven and data-driven search for biomarkers
The methods used to discover novel biomarkers can be
divided into two categories: hypothesis-driven and data-
driven [9]. Using the hypothesis-driven approach, prior
knowledge might be obtained from food composition
databases such as FooDB before methods are developed
to measure the biomarker candidates of interest [9]. An
example of the hypothesis-driven approach is the identi-
fication of pentadecanoic acid as a marker of dairy fat
intake. Pentadecanoic acid is a saturated fatty acid with
odd numbers of carbon atoms (15:0) and cannot be syn-
thesized in the human body. However, pentadecanoic
acid can be synthesized by the bacterial flora of the
rumen of ruminants. Wolk et al. showed that the level of
pentadecanoic acid in subcutaneous adipose tissue can
serve as a marker of long-term milk fat intake [10]. Re-
cently, the plasma phospholipid levels of pentadecanoic
acid have been shown to associate with consumption of
dairy fat and butter in adults [11]. The plasma or serum
level of pentadecanoic acid represents a short-term
marker for intake [12] and is inversely associated with
type 2 diabetes [13]. The finding of a relationship be-
tween the plasma phospholipid levels of the trans-fatty
acid elaidic acid (18:1, n-9) and intake of highly proc-
essed foods is another example of the hypothesis-driven
approach [14]. Elaidic acid is generated during partial
hydrogenation of vegetable oils and is used for the
formulation of processed foods.
In the data-driven approach, there is no prior know-

ledge of the biomarkers. This makes the investigators
measure as many lipids as possible, with the main limita-
tion being the capacity of the analytical procedure. The
recent study of Hanhineva et al. [15], studying the
Nordic diet, is a good example of a successful data-
driven approach. Using non-targeted LC-MS plasma me-
tabolite profiling, in a randomized controlled trial with
106 participants assigned to three dietary interventions
for 12 weeks, they identified several lipid species as po-
tential biomarkers for fatty fish intake. The suggested
biomarkers for fish intake included EPA, DHA, lyso-
phosphatidylcholine (22:6 and 20:5), lysophosphatidyl-
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ethanolamine (22:6 and 20:5), and the furan fatty acid
3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid
(CMPF). CMPF was clearly changed and positively as-
sociated with increased consumption of fish, and
using a stepwise linear regression model, they ob-
served that plasma CMPF is an even stronger inde-
pendent marker of fish intake than plasma EPA [15].

DBS technology
With modern technology, it is possible to measure ac-
curately thousands of metabolites, as well as nutrients,
in small biological samples. It is also possible to monitor
hormones, peptides, and proteins to enhance the quality
of nutritional evaluation. We will describe the principles
for metabolomics, including lipidomics, in addition to
measurements of different nutrient-relevant proteins
and minerals.
With enhanced sensitivity for measurements of very

small amounts of nutrients and other molecules, it is ob-
vious that we do not need large biological samples but
can obtain high-quality measurements based on small
samples (microliters) collected by non-professional sub-
jects, who are able to follow simple instructions. This
will allow a marked reduction in costs and will make it
much easier to collect samples from thousands of sub-
jects, e.g., in remote study-fields.
DBS sampling has been used to screen newborn ba-

bies for metabolic diseases for more than 50 years [16].
A spot of blood from a heel stick is applied on a filter
paper and allowed to air dry. A circular punch (about
3 mm) is removed, eluted, and analyzed for metabolic
markers. More than 50 separate analytes can be mea-
sured from a quarter of a blood spot [17, 18], mainly
due to adoption within the last decades of the high sen-
sitivity of liquid chromatography (LC) combined with
mass spectrometry (MS) (http://vitas.no/services/dried-
blood-spots).

Advantages of DBS
As an important part of alternative sampling tech-
niques, we will focus on DBS and similar alternatives
because:

a) Sampling can be performed by non-professionals
following simple instructions.

b) Sampling can be performed anywhere: in the field,
classroom, gym, workplace, and before, during and
after sports competitions.

c) DBS is close to being non-invasive.
d) DBS requires much less material (uL compared to

mL) due to the improved sensitivity obtained with
modern chromatography in combination with use
of sensitive detectors like mass spectrometry,
fluorescence, and flame ionization [19–21].
e) Sampling is much cheaper than classical blood
sampling and does not require participation of
health professionals.

f ) Sample stability is often very good for DBS but has
to be validated for each analyte.

g) Transport of samples is easier, is less expensive, and
represents minimum biohazard compared to
classical blood/plasma samples.

h) Samples are easy to store in tissue banks due to
stability and small volume.

i) There is often no need for laborious blood
processing before analyses.

Disadvantages of DBS
Due to the fact that the DBS technology is relatively
new, much less experience is accumulated than for clas-
sical measurements in plasma or serum:

a) Less information is available on metabolites,
nutrients, and proteins in the whole blood compared
to classical plasma/serum samples.

b) Measurements of every new analyte collected by
DBS have to be validated—i.e., accuracy, reference
values, pathological values, and reproducibility
should be established before the measurements can
be fully interpretable.

c) Whole blood is much more heterogeneous than
plasma/serum, including all components of plasma
in addition to platelets and several cell types.

d) Some analytes are differentially distributed between
plasma and blood cells. Potassium is a classical
example of an intracellular mineral with 15–50-fold
higher concentration in red blood cells than in
plasma [22].

e) Small volumes of blood are available making it
difficult to measure analytes with very low blood
concentrations.

f ) The quality of DBS can be poor because sample
donors do not follow instructions concerning
sampling, drying, and mailing.

g) Some donors are hesitant to perform their own
finger-prick sampling.

h) The exact volume of blood might be difficult to
obtain because the blood sample might be unevenly
distributed on the filter paper.

Applications of DBS
The DBS technology has been used for clinical and
pre-clinical pharmacokinetic studies, taking advantage of
smaller samples and simplified sample collection and
handling. DBS sampling has also been used for disease
surveillance in developing countries [23], at home, in the
pharmacy, in the gym, in sports competitions, and in
large epidemiological studies [24–28].

http://vitas.no/services/dried-blood-spots
http://vitas.no/services/dried-blood-spots
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Validation of DBS technology
The best way to obtain high-quality measurements is to
be aware of the pitfalls in the procedure and carefully
standardize all steps in the use of DBS technology [29].
Blood sampling
Cleaning of the finger, earlobe, or heel can be done with
soap and clean water before the sampling place is dried.
The sampling place (finger or heel most often) should be
warmed in hot water (~40 °C) to enhance the capillary
blood-flow and make sampling easier. It is also import-
ant to increase the pulse pressure by standing up during
blood sampling. A safety lancet in the form of a needle
or blade is used to penetrate the skin with a depth of 1–
2 mm thereby cutting one or several capillary blood ves-
sel. The initial drop of blood is dried off with a clean
gauze pad because it may be contaminated with intersti-
tial fluid [30, 31]. The free dripping blood drops are ap-
plied on the filter paper and should not be squeezed out
blood by milking movements to avoid tissue fluid and
hemolysis. Clotting, layering, or supersaturating the filter
should be prevented. The predefined circle on the filter
should be homogenously and symmetrically filled and
both sides of the card/paper must show the same red
color. Samples indicating contamination or hemolysis
or with insufficient volume collected are not suitable
[18, 29, 32] depending on the type of analysis.
In every procedure, we depend on a device to cut into

the skin a few millimeters to get access to capillaries.
There are many protected types of lancets available,
which are released when pressure is applied on the
lancet resting on the skin, thus providing blood drops for
sticks or filter papers. Proper application of blood to the
filter paper requires care to reduce artifacts due to uneven
sample coverage; touching the paper, too large or too
small blood drop, or too much time between the
blood drops can make a sample unsuitable for ana-
lysis. These difficulties may limit the ability of non-
professionals to self-collect samples from home or a
remote location. However, in a large internet-based
dietary intervention study named Food4Me, it was
possible to collect thousands of samples by and from
Fig. 1 Different devices for collecting capillary blood samples in small quan
non-professionals with acceptable quality provided the
instructions were properly communicated [33].

Sampling matrix
The filter paper should be standardized in terms of par-
ticle retention, pore size, thickness, and weight (grams
per square meter). Most filter papers are cellulose filters,
and the recommended filters have a CE mark from the
European Union (EU). Typically a 1.2-cm-diameter cir-
cle holds 30–100 uL per spot. It is important to collect
enough blood to fill a circle in one go to obtain an even
distribution of blood with an even thickness. One of the
authors (TEG) has extensive experience with the stan-
dardized Whatman DBS filter paper 903 (Guthrie paper)
from General Electric (GE). Since the 1960s and until
recently, the only devices available have been different
versions of the Guthrie card, a cellulose-based paper
card with a clean and reproducible surface allowing even
distribution of the blood on the paper. However, in the
last 6–8 years, a number of new DBS devices have been
developed. Some of these devices are shown in Fig. 1.
The newly developed devices include different types of
material like strips, sticks, and pens.
The Mitra sticks (Fig. 1) seem to be especially promis-

ing because they have a clearly defined volume of blood
adsorbed on the gel matrix representing exactly 10.2 uL.
The whole collected sample is used in analyses, without
relying on punching out a representative area that could
contain an amount of blood that is not as expected from
the punched area. Another advantage is that it is easy to
load the Mitra sticks into a machine for robotic handling
of the whole analytical procedure. HemaSpot (Fig. 1) is a
cartridge containing an absorbent paper and desiccant.
Once blood drops are applied, the cartridge is closed
and the desiccant rapidly dries the sample. Thus, long
exposure to air during drying, with possible airborne
contamination, is avoided.
Strips (Fig. 1) are designed to overcome non-specific

binding limitations of classical dried blood spot cards;
special low retention absorbing material is used, which
in turn, readily releases proteins, enzymes, antibodies,
DNA, and nutrient biomarkers. Strips may have an ad-
vantage because less samples may be wasted, and drying
tities by non-professionals
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time is shorter than for classical DBS. In particular,
strips have been used for sampling of blood for glucose
measurements among subjects with diabetes [34]. Still,
strips have for some reason been less used in recent
times for new and more demanding analyses.
Pens can be used for finger-pricking, sample collection,

and processing, and be integrated with commercially avail-
able paper-based assays [35]. This approach ensures safety
and can be used by untrained end users in multiple settings.
The pen format may provide low cost, high degree of safety,
and robotization.

Sample drying
Drying the samples in air is quite important to improve the
stability of most metabolites, nutrients, and proteins. Most
biological molecules are often stable under dry conditions.
Required drying time is 1–4 h at room temperature of fil-
ters loaded with blood to make the analytes stable. Glucose
can be metabolized in wet samples for weeks after collec-
tion of samples, whereas dry samples keep a much more
stable glucose concentration. It is important to keep the
samples dry also during transport (see below). Current
methods require that the blood spotted onto filter papers
should be dried in open air for a few hours prior to ship-
ping or storage. This exposes the sample to potential
contamination from circulating air and from foreign sur-
faces. Dried DBS samples in this manner may be stored at
room temperature for many weeks, months, or years [36],
depending on the analyte stability. However, samples
containing unstable compounds should be stored at a lower
temperature (≤−80 °C); [37, 38] to enhance the stability.
Moreover, the drying rate can be variable based on ambient
humidity; a sample will dry much more quickly in an arid
atmosphere (e.g., Arizona) than a humid area (e.g.,
Amazon). Samples have greater stability with rapid drying
and storage in low humidity conditions [20].
Packaging, transport, and stability
Once the samples have been dried (usually 2 h at room
temperature is sufficient), they should be placed in an
airtight small aluminum envelope, with a small amount
of dry silica to keep the humidity low during transporta-
tion. The small aluminum envelope can be placed in a
regular postal envelope and sent by regular mail to the
analytical laboratory for advanced analyses. Requirement
for all analytes is that the stability should be evaluated
during regular mailing/storage for up to 10 days, to
make sure that the analyses are performed on high-
quality samples.

Sample extraction
For water-soluble analytes, the most common solvent is
water, whereas different organic solvents like methanol,
isopropanol, and chloroform are used for lipid extrac-
tion. For lipidomics of fatty acids, transmethylation is
often performed in parallel with the extraction [26]. For
extraction of peptides or proteins from DBS, enzyme-
linked immunosorbent assays (ELISA) are mostly used
with special buffers designed for optimal detection by
the actual antibody, whereas a lysis buffer is used as a
solvent when HbA1c is measured.

Quality control
Many studies show that DBS sampling is compatible
with, and equivalent to, current tests performed with
fresh blood samples [39–43]. The accuracy and precision
of a DBS LC-MS/MS method should be evaluated using
quality control samples prepared at least at three differ-
ent concentration levels (low, mid, and high), and ana-
lyzed along with a set of non-zero calibration standards
in three separate validation runs. The lower limit of
quantification (LLOQ) of samples must be assessed at
least in one of the three validation batches. The intra-
and inter-day accuracy, the bias (%) from the nominal
concentration values, should be within ±15 % for all
quality control samples except the LLOQs, for which a
bias of within ±20 % is acceptable. The intra- and inter-
day precision, assessed by the standard deviation divided
by the mean coefficient of variation (CV%) from the rep-
licate analyses, should be ≤15 % for the results of all
quality controls except the LLOQs, for which a ≤20 %
CV is considered acceptable [44].
Hematocrit is usually 0.41–0.51 for men and 0.37–

0.47 for women [45]. The percentage might be out of
the above ranges in certain populations, e.g., 0.28–0.67
for neonates (0–1 year old) and 0.35–0.42 for children
(2–12 years old). Capillary blood tends to have a higher
hematocrit (e.g., 0.61) than venous blood [46]. With high
hematocrit, the viscosity of blood is enhanced and the
diffusion of sample in the filter will be reduced, and the
layer of blood will be thicker and the concentration of
31 amino acids and acylcarnitines was higher in the sam-
ples with highest hematocrit [47]. However, other studies
do not show marked effect of hematocrit on 25-hydroxy
vitamin D [48] or cyclosporine A [45]. Alternatively, MS
signal for each lipid species can be standardized to the
summed intensities of selected signals, providing a
relative quantitation independent of blood volume
and hematocrit level, as demonstrated by DBS studies
of 3 months old infants compared with 12 months
old children [49, 50].
The volume of the blood spot may also influence ana-

lytical results [44]. For every new analyte, there should
be performed quality controls where the relationship be-
tween DBS area/weight and the amount of blood spotted
on the paper should be examined by spotting increasing
volumes of blood on the paper, and measuring the areas



Holen et al. Genes & Nutrition  (2016) 11:12 Page 6 of 20
of the obtained spots [51], or weighing the obtained
spots [52].
Chromatographic effects may also cause skewed distri-

bution of blood and/or analytes on the filter paper. This
is another factor that might cause significant differences
in the measured analyte concentrations between central
and peripheral areas within a spot. Different results have
been reported depending on the analytes [47, 53].
During assay method development, it should be assessed
whether the same analyte concentration could be
measured from punches in different locations of the
filter at different concentrations. Analyte classes with
successful recovery and analysis from DBS include many
metabolites (Table 1).
DBS differs from blood plasma or serum samples

mainly with respect to the presence of white and red
blood cells. White blood cells make up only 1 % of the
blood, whereas the red blood cells can vary between 30
and 70 % of the blood. The red color of blood is caused
by the heme-iron complex and will interfere with many
of the classical clinical chemistry methods using specific
reagents in colored reactions detected by colorimetry.
Thus, most analytical methods for DBS rely on separ-
ation of the analytes to be measured by means of
chromatography, mass spectrometry, or antibody-based
extraction. There is also a possibility of forming com-
plexes with color that do not interfere with the heme
complex or they may have fluorescent properties.
LC-MS/MS may be used for several types of analyses to

measure the concentration of many metabolites like
prostaglandins [28]. Solid-phase extraction (SPE) and
liquid chromatography/tandem mass spectrometry
(LC/MS/MS) may be used for the extraction, separ-
ation, and detection of 8-epi-PGF2α in DBS. Li and
Tse [44] reviewed several aspects of DBS sampling in
combination with LC-MS/MS, in particular focusing
on lipid analyses and several lipophilic drugs.
In sandwich ELISA, a primary antibody is immobilized

to the bottom of the sample container and the bio-
marker of interest is bound, whereas other constituents
including the red color of heme are washed out. A
Table 1 Many types of metabolites, peptides, and proteins can
be measured using DBS technology [29]. Examples of analytes
measurable by the dried blood spot technique

Analytes class Typical analytes

Small molecules Amino acids, drugs, hormones, peptides, lipids,
vitamins, minerals

Nucleic acids DNA, miRNA, mRNA, RNA, virus

Proteins Hemoglobin, cytokines, adipokines, myokines,
thyroglobulin

Drugs Anitepileptics, chloroquine, cyclosporin,
gentamycin, paracetamol
secondary antibody is added that binds to the bio-
markers and provides a chromophore, which can be
measured by UV absorbance, fluorescence, or chemilu-
minescence. Many proteins, and some smaller mole-
cules, can be measured by ELISA, which exhibits better
specificity towards proteins than small metabolites like
amino acids or drugs [54, 55].
Once a DBS sample has arrived in the laboratory for

testing, a small punch (3–6-mm diameter) is taken from
the card, eluted in a relevant solvent, and analyzed by a
proper analytical method. The blood spot must be exam-
ined carefully to ensure that the sample punch is taken
from a representative area. Uneven sample coverage due
to poor application, variable hematocrit levels, or chro-
matographic effects may cause variable analytical results.
Although the vast majority of analytical methods can be
used with DBS, analyses requiring whole cells or volatile
analytes are incompatible with DBS.

Lipid profiling using classical lipidomics
Lipids include several classes of metabolites defined as
substances extracted by organic solvents. They have sev-
eral structural functions in cell membranes, lipid drop-
lets, and lipoproteins [56]. Moreover, functional roles of
lipids include membrane fluidity and microenvironment,
signaling via eicosanoids and lipokines, ligands for tran-
scription factors, and interaction with proteins based on
hydrophobic as well as covalent bonds, and they often
are important energy sources [5]. Whereas most lipids
can be synthesized in the body, some fat-soluble vita-
mins and polyunsaturated fatty acids are essential, such
as vitamin A, D, E, and K, and linoleic (omega-6) and
alpha-linoleic acids (omega-3). These nutrients have to
be obtained from the diet for mammals. One classifica-
tion system divides the lipids into eight classes: fatty
acyls, glycerolipids, glycerophospholipids, sphingolipids,
sterol lipids, prenol lipids, saccharolipids, and polyke-
tides [57]. Lipidomics represent the large-scale study of
lipids present in a given cell, tissue, or organism at a
defined time-point. It can be used to relate variation in
lipid composition in biological samples to consumption
of specific lipids, foods, or diets [4, 15, 58, 59].

Dietary lipid biomarkers in tissues, plasma, and sera
A variety of tissues and plasma/sera specimens have
been studied in search of biomarkers for intake of diet-
ary lipids [60–62]. Adipose tissue and plasma are the
most studied biological samples concerning biomarkers
for dietary fatty acid intake, and they are considered the
biological samples to choose for the study of relative
intake of PUFA [63]. The composition of fatty acids in
adipose tissue is to some extent determined by the habit-
ual fatty acid intake [64, 65]. This is due to the slow
turnover of fatty acids in the adipose tissue as well as in
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red blood cells. The half-life of fatty acids in adipose tissue
is estimated to be between 6 months and 2 years [66–68].
Direct measurement of lipid age in subcutaneous fat using
a 14C method, showed a mean lipid age of 1.6 years, which
is consistent with a half-life of approximately 400 days
[66–69]. Whereas the fatty acid composition of stored
triglycerides is influenced by diet, the structural lipids in
adipose tissue seem to be less influenced because of
special functional requirements [64]. The fatty acid pat-
tern of plasma phospholipids and cholesteryl esters is
mostly reflecting the dietary intake of the past few weeks
[70]. After 14 to 20 h of fasting, the plasma free fatty acids
(also called non-esterified fatty acids) composition is dom-
inated by the release of fatty acids from adipose tissue
[71]. Thus, the free fatty acid composition of plasma from
a fasting individual may serve as a surrogate for the fatty
acid composition in adipose tissue. As an example, Leaf
et al. [65] found correlation coefficients of 0.94 and 0.83
between adipose tissue and plasma phospholipid fractions
of eicosapentaenoic acid (EPA) and docosahexaeonic acid
(DHA), respectively. The red blood cells (RBC) may be a
useful long-term marker of fatty acid intake, as the RBC
turnover is 120 days [72]. Thus, when dietary information
is collected to be compared with lipid composition in bio-
logical samples, the time frame must be considered [59].

Exogenous fatty acids as biomarkers
Exogenous fatty acids (not de novo synthesized) serve as
the best candidates for dietary biomarkers. Although bio-
markers representing dietary intake of total fat and satu-
rated fatty acid (SFA) have demonstrated conflicting
results [73], PUFA and monounsaturated fatty acids
(MUFA) measured in adipose tissue and plasma appear to
be more valid [63]. The fact that the total pool of fatty
acids in circulation represents both de novo synthesized
(endogenous) and dietary (exogenous) fatty acids has
made it difficult to find biomarkers for total fat intake
[63]. However, one study showed that the combined
changes of a group of fatty acids in RBC, plasma phospho-
lipids, and cholesterol esters, in response to a low-fat or
moderate-fat diet almost perfectly discerned between the
total fat consumptions [72]. The same authors reported
systematic increase in many endogenous fatty acids in re-
sponse to a low-fat diet, despite reduced consumption of
these fatty acids [72]. It has also been shown that high
carbohydrate diets promote increased de novo synthesis
of palmitic acid [74]. A recent study showed that the level
of pentadeconic acid (15:0) in plasma and RBC reflected
saturated fatty acid intake within an 8 weeks period [75].
Interestingly, there was no change in pentadeconic acid
content in adipose tissue triglycerides [75]. Thus, future
studies investigating changes in dietary intake of saturated
fatty acids for up to 2 months might concentrate on
plasma or RBC, as can be obtained in DBS.
Dietary interventions and observational studies
The pattern of dietary PUFAs correlates with the fatty
acid pattern in plasma and adipose tissue in dietary in-
terventions as well as observational studies [58, 65, 76].
Already in 1966, Dayton and colleagues showed in a
group of 393 institutionalized men, that increasing diet-
ary intake of linoleic acid from 11 % to almost 40 % of
total fatty acids, enhanced percentage of linoleic acid in
serum as well as adipose tissue [58]. The content of
linoleic acid in lipids from adipose tissue increased
from 11 to 32 % after 5 years with the diet high in lino-
leic acid [58]. Supplementing the diet with marine n-3
fatty acids for more than 12 months caused enhanced
incorporation of EPA and DHA into adipose tissue fatty
acids [65]. In a study comparing Greenland Inuits and
white Danes, it was shown that the Inuits had a higher
concentration of EPA in plasma, probably reflecting
their much higher consumption of very-long-chain n-3
[76]. Andersen and colleagues observed a correlation
coefficient of 0.51 and 0.49 between dietary intake of
EPA and DHA and corresponding plasma phospho-
lipids, respectively [4]. Finally, the sum of EPA and
DHA in RBC membranes is often called the Omega-3
Index. This index has been shown to discern between
different dietary intake of EPA and DHA [77]. How-
ever, the omega-3 index might not be better than
measuring EPA and DHA in plasma phospholipids or
whole blood [77].
Fatty acid profiles based on DBS
The search for efficient biomarkers has been ham-
pered by the fact that most studies are relatively
small scale. For the last 10 years, the lipid profiling
assay developed by Marangoni and coworkers has
been extensively tested in field studies [78]. The
Marangoni-assay includes drying a blood drop on a
filter paper strip containing the antioxidant butylated
hydroxytoluene (BTH). The paper strip can be stored,
then subjected to transmethylation (HCl and metha-
nol) at high temperature, which will methylate fatty
acids for GLC-MS. Large-scale cross-sectional studies
with several thousand participants have been per-
formed [79, 80], as have studies under field condi-
tions in Cambodia and Tibet [81, 82] with several
supplement interventions and validations (Table 2).
Furthermore, method development has revealed and

resolved several methodological challenges [39–42],
providing a more robust method for future nutrient
analyses. Recently, a breakthrough paper described
DBS stabilization by chelators, which seemed to elim-
inate iron-promoted oxidation of PUFA, resulting in
an excellent correlation (r = 0.97) between venous
blood samples and DBS samples [43].



Table 2 Overview of studies measuring FA lipid profile by dried blood spot technique

Author Subjects Objective

Marangoni (2004) [78] 100 (46M, 54F) Founder paper establishing method

Agostoni (2005) [91] 39 (22M, 17F) + 95 controls Study infants of smoking mothers

Agostoni (2007) [81] 191 (100M, 91F) + 21 Italian controls Intervention Cambodian infants (12 months)

Marangoni (2007a) [83] 10 (5M, 5F) Walnut intervention (3 weeks)

Marangoni (2007b) [86] 108 (47M, 61F) - 10 (5M, 5F) Cross-sectional study PUFA intervention (21 days)

Agostoni (2008) [90] 106 + 53 controls Study infants of smoking mothers (follow-up of
Agostini (2005) [89])

Risé (2008) [82] 13 (13M, 0F) + 14 Italian controls Diet and FA profile study of Tibetians

Agostoni (2011) 16 pairs Study of whole blood FA in infant, cord and mother

Saga (2012) [80] 3476 (1463M, 2013F) Cross-sectional study of FA profile in Scandinavian
population

Risé (2013) [79] 1835 total Cross-sectional study of PUFA

- 81 infants

- 728 children

- 434 adults

- 592 elderly

Hinriksdottir (2015) [92] 52 (19M, 33F) + 25 controls PUFA enriched fish meal intervention
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Small scale nutritional studies by DBS
Four walnuts per day, containing 1.2 g ALA and 4.4 g
LA, for 3 weeks, favorably affected the n-3 LC-PUFA
status of volunteers (n = 10) [83]. Time course of mea-
surements included 2 weeks run-in period and a 2 weeks
washout period. However, the high EPA values are in
contrast to two other studies with larger doses of
walnuts [84, 85].
A cross-sectional study investigated the fatty acid

profiles in a drop of blood from a fingertip and correlated
with physiological, dietary, and lifestyle parameters in
volunteers. A total of 108 healthy volunteers (47 males, 61
females), including 8 pregnant women, were questioned
for dietary and lifestyle habits for the last 3 days and blood
collected. In addition, 10 volunteers ingested either cap-
sules (350 mg EPA, 300 mg DHA) or 200 g/week of
smoked salmon, for 3 weeks [86]. These early studies
indicated that the DBS method was suitable for cross-
sectional studies as well as supplementation studies.
Population screening by DBS
The Marangoni DBS technology was early used for
screening fatty acid profiles under field conditions in
less developed countries like Cambodia [81] and Tibet
[82]. The effects of supplementation of two micro-
nutrient powders on fatty acid status in Cambodian
infants (n = 204) were compared in a 12 months
intervention [81]. The fatty acid profiles of blood in a
Tibetanian population (n = 13, Italian controls n = 14)
were significantly correlated with dietary fatty acid
patterns from the same population [82].
In a large cross-sectional study on blood from Italian

infants, children, adults, and elderly, different patterns of
n-6 and n-3 PUFA levels were observed. Data from four
cohorts of Italians (n = 1835) were pooled in four age
groups: 4 days old, 2–9 years old, adults (40–59 years),
and elderly (60–79 ears) [79]. This study showed that
the Marangoni-assay could be used in a large cross-
sectional study. The study also showed that the DBS
assay may allow detection of distinct PUFA profiles in
new born infants. Large cross-sectional population stud-
ies in Norway and Sweden (n = 3476) have shown that
food supplements like cod liver oil are in common use
especially in middle-aged and older subjects, with
marked influence on the fatty acid profiles [80].

Ethics and lipid profiling of children
Samples of relatively small DBS from finger- or heel-
pricks represent an important development due to the
increased range of experiments that can be performed in
an ethical way, like screening of infants [79, 87], very old
patients [88] or disadvantaged, and cognitively challenged
small school children [89]. Agostoni and coworkers re-
ported a 24 % reduction in DHA (22:6) in children with
mothers smoking throughout pregnancy (n = 159) [90].
The study was a follow-up of a smaller study observing
the same effects (n = 19 smokers + 20 first trimester
smokers + 95 reference controls) [91]. In a recent cross-
sectional study 493 school children, aged 7–9 years,



Holen et al. Genes & Nutrition  (2016) 11:12 Page 9 of 20
provided blood fatty acids obtained from finger-prick sam-
ples; the results showed that low blood n-3 PUFAs was as-
sociated with poor cognitive performance and behavior
[89].

Commercial applications of DBS
The ease and flexibility of sampling blood using DBS
technology have revealed new commercial applications,
such as demonstrating the bioavailability of long-chain
n-3 PUFAs in fish oils. To fortify foods with PUFA from
marine sources has remained problematic, due to the
strong odor and taste. Hinriksdottir et al. added flavor-
neutral microencapsulated marine fish oil to meals and
compared with meals fortified with liquid fish oil and
placebo control meals. Icelandic individuals (n = 99)
were studied in a 4-week double-blinded dietary inter-
vention in three groups [92], demonstrating that bio-
availability of PUFA in encapsulated powder is very
similar to meals enriched with liquid fish oil.
The supplement industry has also used DBS technol-

ogy to demonstrate bioequivalence of different n-3 sup-
plements [40, 93]. In the latter study, the n-3 fatty acid
status of 50 young men was determined. In 10 individ-
uals, the effect of supplements was investigated with
time course from 2 to 24 h [93]. In times of increased
competition for consumers and increased demands for
new products, the demonstration of supplement efficacy
might be an important competitive advantage.

Cardiac disease studies using DBS
In a 3 g per day, PUFA supplement study of cardiac
patients, using DBS technology, no effect on atrial
fibrillation was seen after 6 months. The study was a
randomized, double-blind, multicenter study including
204 Italian patients [94].
In another Italian study of patients with a recent

myocardial infarction, matched case and control pairs
(n = 112) showed that whole blood n-6 and n-3 PUFA
levels were reduced. Using food frequency questionnaire
(FFQ) demonstrated for 86 cases and 72 controls signifi-
cant correlations between reported fatty acid intake and
measured fatty acid pattern from DBS [95]. In contrast,
another study applying DBS-based analyses showed no
difference between fatty acid profiles of patients with
arrhythmia without or with myocardial infarction and
controls at hospital admission [96].

Methodological challenges and refinement in
lipid profiling using DBS technology
High-throughput DBS analyses
DBS technology was originally used for screening of
genetic diseases and mailing the samples to core labora-
tories [97, 98]. Stabilization of PUFAs by butyl hydroxyl
toluene (BHT) has been successfully used [99]. Several
researchers have increased the throughput of the fatty
acid analyses using microwave oven transmethylation
[100, 101]. Improved methodology allowed more fre-
quent sampling and time series of fatty acid profiles in a
fish oil supplementation study (n = 16) over 4 weeks and
a washout period over 8 weeks [101]. In a study of sol-
diers (n = 287), fatty acid profiles were reported to be
available 1 h after finger-prick sample collection [102].

DBS method challenges and refinement
Some scientists have advocated BF3 use for transmethyla-
tion, but clear superior results using BF3 have not been
demonstrated [100]. The less strict necessity of fasting
blood samples is an important issue in self-administrated
tests. Stark and coworkers [103] reported excellent stabil-
ity of blood samples on paper immersed with BHT over
8 weeks at room temperature, although other scientists
observed lower stability, in particular for DHA [41].

The importance of chelators
Interestingly, Stark and coworkers [104] demonstrated a
striking difference between DBS samples stored with or
without BHT at −20 °C. In contrast, storage at room
temperature, 4 and −78 °C showed little or no effect,
which may suggest that ice crystal damage to membranes
and release of chemicals within cells has important conse-
quence for fatty acid stability. Metherel et al. in a follow-
up study demonstrated that loss of PUFA probably was
due to release of iron from heme in erythrocytes and advo-
cated glycerol addition for freeze-protection of RBC [42].
A recent study reported that adding chelators (such as

EDTA) to the DBS papers increased correlations be-
tween stored DBS samples and venous blood control
samples markedly (r > 0.97) [43]. Similar improvement
was also observed when ascorbic acid was added to DBS
filters and during extraction, to improve the stability of
vitamin A [105].

DBS profiling of vitamins A and D
Vitamin A deficiency has long been recognized as a
major cause for blindness among children in developing
countries and to increased risk of infectious diseases
[106, 107]. The use of DBS technology for population
screening and monitoring of vitamin A status is often
used in developing countries. The National Facility for
DBS Technology for Vitamin A Estimation (Hyderabad,
India) has carried out a vitamin A symptom study of
8777 pre-school children. A sub-group of 407 children
with symptoms had DBS samples analyzed, finding
vitamin A deficiency, particularly among rural children
3–5 years of age, and of lower socioeconomic class
[108]. In a study in West Bengal, of 9228 children, 590
children had vitamin A deficiency, with higher incidence
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among boys than girls, and increasing deficiency with
age [109].
A study in Guinea-Bissau of 1102 children (6–24 months

of age), using DBS combined with ELISA for retinol-
binding protein, observed a high prevalence of “vitamin A
deficiency” (defined as RBP concentration equivalent to
plasma retinol below 0.7 μmol/L) varying with season,
ethnicity, and vaccination status [110]. A higher preva-
lence of vitamin A deficiency was found in children with
infection, which is consistent with a study in Uganda of
661 children (6–59 months of age), demonstrating that
infection status (measured by C reactive protein (CRP))
influenced the ELISA values for retinol-binding protein.
Another interpretation is that dietary vitamin A deficiency
causes reduced immune function.
Commercial offers for measuring vitamin A status are

available [111–113]. However, there exists some contro-
versy on the efficacy of sampling and extraction tech-
niques [114]. A recent paper obtained a high correlation
(r = 0.97) between venous blood and DBS samples from
healthy subjects (n = 24) using acidic extraction [105].
Similar results were demonstrated 30 years ago, where
the loss of vitamin A in serum samples was eliminated
when adding ascorbic acid before extraction [115].
Vitamin D is linked to rickets, skeletal deformities,

and bone disease. More recently vitamin D deficiency
has been suggested to increase risk of many chronic
diseases such as certain types of cancer, autoimmune
diseases, cardiovascular diseases, and diabetes [116, 117],
although intervention studies do not support the results
based on observational, epidemiological studies [6].
An early study to optimize DBS technology for neo-

natal 25-hydroxy vitamin D status was performed by
Eyles et al. [118, 119]. In a study of 118 archive samples
stored up to 22 years, clear seasonal variations were de-
tected but no annual variation, suggesting that DBS
technology is reliable and promising for investigation
of archive material [118]. In a follow-up study, neo-
natal cord serum and matched DBS samples (n = 100)
were compared, finding them to be highly correlated
(r = 0.85) [119].
Validity and reliability of the DBS technique was further

investigated in plasma and matching DBS samples (n = 62)
[120]. Commercial kits for DBS for vitamin D are available
[121]. The feasibility of self-sampling of blood and saliva
on filters was studied in a Norwegian breast cancer
screening program (n = 381), reporting that postal service
transport was efficient and low cost [24].
There are rather few studies using DBS in studies of

older individuals [17]. Vitamin D status of seniors (>
60 years old, average age 72 years) was studied in 224
subjects in the ethnically diverse Older Adult Centre in
Toronto [122]. No major differences between ethnic
groups were found, although women had higher vitamin
D status than men. Supplements were identified as the
major factors responsible for the uniformly high vitamin
D status. The concentration of 25-hydroxy vitamin D in
blood has also been found to correlate negatively with
cortical thinning in the brain during normal aging [26].
The vitamin D status in older adults in Toronto [122]

contrasted starkly with a study of vitamin D status in
young adults (n = 351), which showed that subjects with
South Asian and East Asian ancestry had substantially
lower 25-hydroxy vitamin D concentrations than sub-
jects with European ancestry [123]. However, vitamin D
status in 185 pairs of adolescent twins (average age
16 years) was found to be highly heritable (0.86) [124].
In a global perspective, the socioeconomic factors of
vitamin D status evaluated by DBS sampling was em-
phasized in a cross-sectional study in rural Nepal,
where 280 healthy children (12–60 months of age)
were screened, reporting widespread (> 90 %) vitamin
D deficiency [25].

Water-soluble vitamins
B-vitamins
DBS has been used quite successfully for measurements
of folate [125], 5-methyltetrahydrofolic acid [126], as
well as a sensitive marker of vitamin B12 deficiency, me-
thyl malonic acid (MMA) [127]. Scolamiero et al. [128]
screened 35,000 newborns over 6 years using DBS.
Those showing altered propionyl carnitine (C3), 10 % of
the subjects, underwent second-tier testing of MMA,
finding 7 cases of acquired vitamin B12 deficiency.
Algorithms, combining input for several analytes and
genetic disease models, from very large data sets, have
been developed. For example, Weisfeld-Adams et al.
[129] reported on screening of 1,006,325 infants in New
York from 2005 to 2008, in which 10 cases of confirmed
cblC mutations causing vitamin B12 metabolism disorder
were found. DBS data were retrospectively studied to
validate the algorithm [129].

C-vitamin
Vitamin C, or a range of carotenoids and flavonoids, has
been widely used as general biomarkers of intake of fruit
and vegetables [9, 130]. We have not found any studies
using DBS to measure vitamin C.

Amino acids, proteins, minerals, and trace
elements
Biomarkers of protein intake
An assessment of protein intake has been used exten-
sively to determine nutritional status in subjects at risk
of undernutrition, as well as among various patient
groups, e.g., those with chronic renal disease, obesity, or
in need of energy restrictions [131, 132]. The classical
way to evaluate protein status has been to study nitrogen
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balance, in particular the urinary output of nitrogen.
Bingham [133] reviewed the use of urine nitrogen as a
biomarker for dietary protein intake and concluded that
the method was reliable and inexpensive. However, it is
a tedious and inaccurate procedure as it involves at least
one, but preferably several, 24 h samplings of urine, and
the study subjects should be in nitrogen balance. More-
over, measurement of urinary nitrogen tends to under-
estimate protein intake at high levels and overestimate
at low protein intakes.
Measurements of single protein molecules have been

used to assay whole protein intake and protein status.
Among the most widely studied are prealbumin and al-
bumin, which are produced endogenously by the liver.
Recent data have discredited the use of albumin, in
particular, as biomarker for protein intake, as it seems
to be markedly affected by coexistent morbidities,
especially in cancer and inflammatory disorders, as
reviewed by Lee et al. [134]. Creatinine, creatine, and
transferrin are other candidate biomarkers for protein
intake, but clinical studies have not shown reprodu-
cible results [135, 136].
Meat is among the protein rich foods, and several bio-

markers have been used to determine protein intake fol-
lowing meat consumption. Cross et al. [135] performed
a randomized crossover study feeding 17 adults with
various types of red meat for 15 days. Based on urinary
excretion, they concluded that 1-methylhistidine and 3-
methylhistidine were good biomarkers, which is in line
with the reviews provided by Dragsted [136] and
Scalbert et al. [9].
Petzke and Lemke [137] used a different approach to

estimate protein intake, namely by determining hair iso-
tope compositions. They studied if additional meat in-
take (200 g pork fillet/day) or omission of meat and
meat products had an impact on 15N and 13C within
4 weeks in hair and plasma of young women. They con-
cluded that hair protein 15N and 13C abundances take
more than 4 weeks to show animal protein intake, in
these women with a habitual daily protein consumption
of more than 1 g per kg body weight. Stable isotope ratio
analysis at natural abundance in human hair protein
offers a non-invasive method to reveal information about
long-term nutritional exposure to specific nutrients,
including proteins [137]. However, the use of isotopes in
hair as biomarkers of protein intake requires more
testing, in particular in randomized intervention studies.

Biomarkers of amino acid intake
Among the about 100 amino acids found in nature, 20
of them serve as building blocks and metabolites used
for energy and in signaling pathways in humans, 8 of
which are essential and have to be supplied in the diet.
Traditionally blood and urinary concentrations of amino
acids have been used as biomarkers of their intake. Re-
cent methodological advances have also made it possible
to assess local amino acid contents in hair [138] and lo-
cally in various organs, e.g., in neuronal tissues [139].
The advent of DBS to collect and store blood samples
has opened opportunities to assess biomarkers in vulner-
able populations, like premature infants and in popula-
tions in developing countries where access to freezers is
limited. High-performance liquid chromatography and
tandem mass spectrometry can be used to assess the
amino acid concentrations from DBS and with satisfac-
tory results [140].
Historically, the importance of amino acids has mostly

been related to disorders due to deficiencies in amino
acid metabolism such as maple syrup disease and
phenylketonuria. However, there is increased focus on
the use of amino acids including the claimed benefit of
branched amino acids (leucine and isoleucine) to en-
hance physical performance [141], as a risk factor for
cardiovascular disease (L-arginine) [142], and to improve
cognitive function (tyrosine) [143]. Given the multi-
tude of functions amino acids, more studies are war-
ranted to delineate how well blood concentrations of
amino acids and urine reflect subcellular levels of dif-
ferent amino acids.

Iron
Iron is part of the heme molecule, which is an integral
component of hemoglobin. In addition, iron is an im-
portant constituent of enzymes such as in the mitochon-
drial respiratory chain (cytochromes). According to the
World Health Organization iron deficiency anemia still
ranks among the top 5 causes of years lost to disability
globally (http://www.who.int/maternal_child_adolescent/
epidemiology/adolescence/en/) and continues to be a
problem among adolescent girls living in developed
regions [144].
The body stores of iron can be used as a proxy of

long-term iron intake and can be determined in various
ways. The classical way of estimating body iron content
is the assessment of iron in bone marrow using light
microscopy, although this approach yields only semi-
quantitative estimates. To evaluate iron overloading, in
particular in patients receiving frequent blood transfu-
sions, imaging techniques like magnetic resonance im-
aging (MRI) have been used [145]. However, these are
tedious procedures, and hence blood biomarkers are
much more frequently used. Serum levels of ferritin are
in most cases a reliable estimate of body iron stores,
although it is affected by a range of concomitant disor-
ders, in particular inflammations. Serum levels of ferritin
also increase with age. Complementary to ferritin is the
ratio between serum levels of iron and its transport pro-
tein transferrin, denoted iron-, or transferrin saturation.

http://www.who.int/maternal_child_adolescent/epidemiology/adolescence/en/
http://www.who.int/maternal_child_adolescent/epidemiology/adolescence/en/
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This is also affected by individual health status and preg-
nancy. It is debated whether serum ferritin levels and
transferrin saturation levels correlate [146]. To circum-
vent these pitfalls, the use of serum levels of soluble
transferrin receptor has gained increasing attention, as
this is mostly independent of coexistent disease. Cook
et al. [147] found excellent correlation between whole
body iron content (measured according to known
ferritin and hemoglobin levels after phlebotomy in
healthy subjects), and the ratio of soluble transferrin
receptor to ferritin; the latter two biomarkers being mea-
sured by ELISA.
Ferritin as well as transferrin receptor can also be

measured using DBS with accuracy comparable to whole
plasma values [148]; this facilitates measurements of iron
status in remote areas where anemia is frequent. For
example, the use of DBS to measure soluble transferrin
receptor and hemoglobin was successfully applied
among pastoral women of fertile age residing in rural
North-Kenya [149].

Selenium
This trace element is mostly found in enzymes involved
in the human antioxidant defense system. Deficiency of
selenium has been linked to many conditions including
cardiovascular diseases and different forms of cancer.
Many grain-based foods contain selenium, although its
availability depends on the concentration of selenium in
the soil. Vacchina et al. [150] recently described a
method to assess selenium using mass spectrometry fol-
lowing acidic digestion of the DBS. In addition to plasma
selenium, selenoprotein 1 and glutathione peroxidase ac-
tivity are responsive to changes in selenium intake. How-
ever, their use as biomarkers for selenium intake is
limited by inconsistent response to selenium intake
[151] and might be explained in part by ethnic differ-
ences [152]. Moreover, Ashton et al. [151] concluded
that there was insufficient evidence to assess the useful-
ness of other biomarkers of selenium status, including
urinary selenium, plasma triiodothyroxine/thyroxine ra-
tio, plasma thyroxine, plasma total homocysteine, hair
and toenail selenium, erythrocyte, and muscle glutathi-
one peroxidase activity. Currently, no biomarker is avail-
able reliably mirroring (i) variable selenium intake and
(ii) selenium intake in different subpopulations.

Zinc
Zinc exerts several functions, including stabilization of
membranes, co-factor of transcription proteins, and as
part of metalloproteinases. The plasma/serum levels of
zinc and the erythrocyte zinc content have traditionally
been the most common ways to evaluate zinc intake.
The WHO report from 2007 on intake required to pre-
vent zinc deficiency recommend serum levels of zinc as
a biochemical marker of zinc status [153]. However, re-
sults are conflicting regarding their sensitivity to low
and high zinc intake [154]; thus, new biomarkers for
zinc intake are needed. Recently, Reed et al. [155] used a
chicken model (Gallus gallus) to propose the erythrocyte
linoleic acid/dihomo-γ-linolenic acid ratio as a sensitive
biomarker of alterations in zinc intake. This was based
on previous findings that this broiler chicken is sensitive
to dietary intake of zinc [156]. In addition, a similar
membrane fatty acid composition has been reported in
mammals, which makes it possible to take advantage of
a link between the ratio of these two essential fatty acids
and mineral intake to evaluate zinc status [157]. The
DBS method developed by Vacchina et al. [150] can also
be used to assess zinc.

Magnesium
Magnesium is an important component of bone and
plays a role in energy metabolism and protein and nu-
cleic acid synthesis and is a co-factor for many proteins
and hormones. Magnesium is mostly located intracellu-
larly in spite of the fact that measurements of serum and
urine levels of magnesium are usually performed to
evaluate magnesium intake. Notably, ethnic variations
and concomitant intake of other trace elements like so-
dium and calcium may affect these measurements [158].
Another less studied biomarker of magnesium intake is
the content of magnesium in erythrocytes [159].
Witkowski et al. [160] performed a systematic review of
analyses of 20 biomarkers of magnesium intake and con-
cluded that the serum or plasma magnesium concentra-
tions, erythrocyte concentration, and urinary magnesium
excretion responded to dietary manipulation and could
be used as biomarkers. We have not been able to find
any scientific articles published concerning measure-
ment of magnesium applying DBS technology although
preliminary data show that whole blood analyses are
feasible.

Chromium
Chromium is important for the metabolism of glucose,
protein, and lipid by virtue of its action as co-factor for
several enzymes. To evaluate exposure to chromium in
foods and liquid intakes, measurements of both plasma
and hair have been used. Sazakli et al. [161] performed a
population-based cross-sectional study of chromium
exposure and intake in Greece, a country with higher
than WHO-recommended levels of chromium in the
drinking water. Both the plasma concentrations and the
hair levels of chromium were associated with intake in
different Greek regions. Urinary chromium may not be a
valid biomarker for chromium intake [162]. There is a
need for better biomarkers of chromium intake [163].
We have not been able to find any scientific articles
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published concerning measurement of chromium apply-
ing DBS technology although it should be feasible.

Fluoride
Fluoride is associated with dental enamel and bone
density. Little is known about useful biomarkers of
assessing fluoride intake. Rugg-Gunn et al. [164] con-
cluded in their review that: “While fluoride concentra-
tions in plasma, saliva, and urine have some ability to
predict fluoride exposure, present data are insufficient to
recommend utilizing fluoride concentrations in these
body fluids as biomarkers of contemporary fluoride ex-
posure for individuals. Daily fluoride excretion in urine
can be considered a useful biomarker of contemporary
fluoride exposure for groups of people.” We have not
been able to find any scientific articles published con-
cerning measurement of fluoride applying DBS technol-
ogy although it should be feasible.

Mercury
Measuring mercury intake is important to control for
the toxic effects of this trace element, in particular con-
cerning the developing nervous system. The concentra-
tion of mercury in plasma as well as its content in hair
has been used as biomarkers for mercury exposure, and
they are apparently well inter-correlated [165]. Blood
samples can be assayed using DBS [166]. The urinary ex-
cretion of mercury offers some promise as a biomarker
of mercury intake [167].

Cadmium
Similar to mercury, undesirably high intakes of cadmium
may lead to toxic effects. Often the plasma concentration
(e.g., as in DBS) is used as a biomarker of cadmium intake
[150, 166]. Interestingly, Piasek et al. [168] reported a po-
tential usefulness of cadmium content in the placenta for
evaluating cadmium exposure during pregnancy.

Iodine
Iodine is essential for adequate thyroid function. To
assess iodine intake, direct measurements of urine iodine
as well as of iodine incorporated into thyroid-derived
molecules (e.g., thyroxine, thyroid-stimulating-hormone
and thyroglobulin) have been used as functional markers
[169]. The systematic meta-analysis by Ristic-Medic
et al. [169] supported the use of all of these biomarkers
for evaluating iodine intake, although to a varying
degree, urine excretion being the better [170]. Moreover,
the analysis of thyroglobulin in DBS has emerged as a
putative biomarker alternative for iodine intake [171].

Feces—a potential matrix for dietary biomarkers
It has been generally acknowledged that the gut micro-
bial ecosystem may influence human physiology and
health [172]. The understanding to what extent the in-
testinal microbic composition is subject to dietary con-
trol, and to integrate these data with functional
metabolic signatures and biomarkers is of utmost inter-
est [173]. The gut microbiota can be recognized as a
highly active metabolic organ because it affords metabo-
lites affecting physiological processes in the intestine
and beyond. Thus, gut microbiome metabolites interfere
with the metabolic phenotype of the host and conse-
quently may affect health and disease risk [174].

Diet and stool metabolites
Diet plays a pivotal role in shaping the human gut
microbiota (composition and metabolism), one of the
most densely populated microbial ecosystems in nature.
As a prominent example, prebiotics are used to modu-
late composition, metabolism, and function of the gut
microbiota to improve the gut and host health [175].
However, a number of additional factors, such as physi-
cochemical food properties, nutrient availability, colonic
transit time, and age of the host, may modulate the ef-
fect of diet on the composition and metabolic activity of
the colonic microbiota [172, 173]. Metabolites due to
bacterial energy metabolism may reflect dietary intake,
such as short chain fatty acids (SCFA) as a result of
carbohydrate metabolism, metabolites of fatty acids and
lipid bioconversion, and metabolites of protein fermen-
tation. Minor food constituents structurally modified by
microbial activity might be detectable in feces and could
be a characteristic for the consumption of certain foods,
especially plant foods (bioconversion of secondary plant
products). Thus, the hypothesis that metabolites detect-
able in fecal samples may reflect dietary intake is valid,
although not well elaborated yet.

Short chain fatty acids
Carbohydrates that are not digested in the small intes-
tine are fermented by colonic microbiota and produce
SCFA, e.g., butyrate, propionate, acetate, and longer-
chain fatty acids [176, 177]. The SCFA fecal concentra-
tion alters in different stages of life; e.g., the change from
breast-feeding to solid food or a higher butyrate produc-
tion at higher age as a consequence of an increase in
bacteroides [178]. Furthermore, the relative proportions
of SCFA differ from one person to another and they
are specifically sensitive to the type of fermented
carbohydrate [179, 180]. However, the current evi-
dence for a distinct dietary substrate identification
based on SCFA analyses in feces is not conclusive
[172]. Also, lactate and succinate are intermediate
metabolites of bacterial carbohydrate metabolism.
However, a direct link to specific dietary carbohy-
drates has not been established; rather, they may be
useful markers of gut health [172, 181].
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Prebiotics
Many studies administering prebiotics as inulin, oligo-
fructose, and fructooligosaccharides (FOS) have reached
a significant increase in fecal bifidobacteria counts [182].
A double-blind placebo-controlled crossover study has
shown that the numbers of fecal bifidobacteria and
lactobacilli have significantly increased after administer-
ing very-long-chain inulin (VLI), derived from globe
artichoke, as compared to placebo [183]. Also oral ad-
ministration of a similar dose (similar to inulin dose) of
acacia gum increased bifidobacteria and lactobacilli pro-
duction [184]. Thus, an increase in fecal bifidobacteria
and lactobacilli excretion reflect prebiotics intake.
Another study has shown that administering 10, 15, or
20 g/day of a sugar-free digestion-resistant dextrin for
20 days led to increased number in the fecal lactobacilli
and bifidobacteria and a decrease in clostridium perfrin-
gens [185]. However, it should be considered that there
are different methods and no standard protocols for
assessing microbial proportions or numbers or activity
in fecal samples [186].

Branched chain fatty acids
Branched chain fatty acids (BCFA), ammonia, amines,
phenols, cresols, indoles, hydrogen sulfides (highly vola-
tile), etc. are metabolites arising from protein fermentation
[187]. There is a considerable inter-individual variation in
the urinary excretion of p-cresol and phenols probably
reflecting its production in colon [172]. In addition, fecal
concentrations of isobutyrate, 2-methylbutyrate and isova-
lerate, metabolites of the bacterial fermentation of valine,
isoleucine, and leucine [188] decreased after intake of pre-
biotics [189–191]. Thus, such metabolites could be evalu-
ated for its use as biomarkers of dietary intake. So far, they
are used only as more general markers for bacterial pro-
tein fermentation [192].

Dietary polyphenols
Most dietary polyphenols (e.g., flavonoids, anthocyanins,
phenolic acids, stilbenes, lignans, tannins) pass the small
intestine without absorption. Polyphenols have been de-
scribed to modulate composition of the gut microbiome
and probably contribute to gut and host health [193, 194].
In addition, polyphenols are bio-transformed into deriva-
tives that may become bioavailable for the host. Studies
using metabolomics techniques have shown that numer-
ous microbial metabolites of polyphenols can be detected
in feces and hence may be key markers for colonic bacter-
ial composition and activity [195]. They may also be valid
markers of food intake. As an example, serum concentra-
tions of enterolactone and equol are measured as markers
of plant lignan intake and microbial metabolism of daid-
zein (mainly derived from soy food), respectively. Using
feces as the analytic matrix, the chances to get more
information about diet (and microbial activity) would
be high.

Sterols
Secretions from the gastrointestinal tract constitute a
substantial portion of feces, and the bile is a major con-
tributor. Bile acids, cholesterol, coprostanol, and their
metabolites are subject to the enterohepatic circulation.
Their content and proportions (e.g., primary versus sec-
ondary bile acids) are strongly influenced by dietary fat
(saturated fat) intake, concomitant carbohydrate intake
and the gut microbial composition [196].
Fiber and resistant starch supplementation or chan-

ging to a lacto-vegetarian diet resulted in decreased fecal
bile acid concentrations, particularly secondary bile acids
[197, 198]. Cholesterol is transformed to coprostanol,
which represents about 60 % of the sterol content and is
considered the major 5ß-stanol in human feces [199].
Plant phytosterols, e.g., campesterol and sitosterol, are
reduced by enteric bacteria into 5ß-stigmastanol and 5-ß
campestanol. Hence, 5ß-stigmastanol and 5-ß campes-
tanol may be used as fecal biomarkers for dietary
phytosterol intake [200]. The relative proportions of
animal- and plant-derived stanols in feces may reflect
dietary preferences [200, 201]. Thus, the possibility of
applying various metabolites of bile acids and steroids
in feces as biomarkers of current diet should be
further explored.

Provitamin A carotenoids
Non-absorbed provitamin A carotenoids are mainly ex-
creted in feces. In addition, absorbed provitamin A caroten-
oids are partially excreted through bile and pancreatic
secretions in feces. Thus, carotenoids can be used as fecal
biomarkers for provitamin A (e.g., ß-carotene) intake or for
estimating ß-carotene bioavailability or for establishing ß-
carotene net balance in the body [202]; e.g., Van Lieshout
et al. [202] estimated the difference in the bioavailability of
ß-carotene between pumpkin and spinach based on meas-
uring carotenoids concentration in feces and serum.

Future prospect
The use of metabolomics techniques for analyses of fecal
samples allows identification of new biomarkers of gut
health, as well as understanding the interrelationship be-
tween the human gut microbiome activity and host
metabolism [203]. Moreover, it provides the possibility
to establish new markers of dietary (food) intake. A suc-
cessful strategy might be to utilize valid and reprodu-
cible metabolomics data to discover metabolite patterns
in feces that are associated with diet (rather than looking
for single compounds only). Thus, dietary intervention
studies may allow identification of fecal metabolite pat-
tern, which might be reproduced in population-based
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studies (e.g., cross-sectional and cohort studies). Up to
now, only some intervention studies have used metabo-
lomics techniques to evaluate the effect of synbiotics in
humans [204–206].

Methodological aspects
Metabolite profiling in fecal samples is much more com-
plicated as compared to other biospecimen. The physi-
cochemical properties of the feces influence the
reproducibility and full coverage of metabolite profiling
attained [206]. However, lyophilized feces samples ex-
tracted by water methanol mixtures, allow for the ana-
lysis of metabolite profiles that are reproducible and are
composed of various compounds. There are different
options for fecal sample collection and storage condi-
tions that may impact on the metabolite concentrations,
e.g., immediate freezing versus cooling on ice or in the
refrigerator before freezing versus storage at room
temperature before freezing [207]. For example, in water
extracts from frozen fecal samples, the concentration of
amino acids and glucose is higher than that in water ex-
tracts of fresh fecal samples [208]. Another option is
immediate mixing of the collected fecal sample with sta-
bilizing solutions such as RNAlater or Amis Transport
Medium [209]. A requirement for use of fecal samples
for dietary biomarker identification is a high sample
quality; however, optimization and harmonization of
sample collection, storage, and processing procedures
are yet to be established.
Analytical tools such as NMR, GC-MS, LC-MS, and

LC-MS-MS have been applied as metabolomics tech-
niques for the analyses of stool metabolites. Up till now,
mass spectrometry techniques have some advantages in
characterizing human metabolomes due to their high
sensitivity and selectivity [210]. NMR spectroscopy is
widely used in metabolite profiling due to its non-
destructive sample handling and its ability to quantify
compounds at very low concentrations. Furthermore,
NMR spectroscopy gives information on the structure of
the compounds, which is useful when unknown com-
pounds have to be identified [211, 212]. The heterogen-
eity of dietary compounds and of their formed
metabolites after ingestion is still a big challenge, as
many of these compounds are not yet defined [213].
Due to the diversity of fecal metabolites, more than one
method is necessary to achieve a comprehensive metab-
olite profile [214]. Important measures for selecting an
appropriate analytical method have to be considered
such as coverage, dynamic range, selectivity, accuracy,
precision, and price per sample [210].

Conclusions
Biomarkers of nutrient intake or nutrient status are im-
portant objective measures of one of the most important
environmental factors people are exposed to, namely
food. It is very difficult to obtain accurate data on
individual food intake, and there is a large variation in
nutrient composition of foods. This is the background
for studying more objective biomarkers of nutrient
intake. Modern technology with high sensitivity and
specificity concerning many nutrient-relevant bio-
markers has allowed an interesting development of non-
professional collection of small amounts of blood by
finger-pricking and collection on filters or sticks. With
proper collection, drying, transport, extraction, and ana-
lysis of the samples, many analytes of nutritional interest
can be measured such as metabolites, lipids, vitamins,
minerals, and many types of peptides and proteins. The
advantage of this alternative sampling technology is that
non-professionals can collect, dry, and mail the samples;
the samples can often be stored at room temperature in
a dry atmosphere; small amounts of blood are required
for analyses in professional laboratories with modern
analytical methodology. However, it should be noticed
that chemical measurements of nutrient biomarkers are
hampered by many confounding factors like variation in
food matrices, difference in digestion, absorption, trans-
port, distribution, activation, and catabolism. These facts
make it obvious that we do not get comparable data
from personal registration and objective biomarker mea-
surements. Thus, food registration as well as biomarker
measurements will most likely complement each other
in future decades of nutritional sciences. Another prom-
ising area of potential biological interest is the biology of
the microbiome in association with biomarkers. Interest-
ing perspectives are also related to the marked trend of
self-monitoring of body functions linked to mobile
phone technology.
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