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Ancestors’ dietary patterns and
environments could drive positive selection
in genes involved in micronutrient
metabolism—the case of cofactor
transporters
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Abstract

Background: During evolution, humans colonized different ecological niches and adopted a variety of subsistence
strategies that gave rise to diverse selective pressures acting across the genome. Environmentally induced selection
of vitamin, mineral, or other cofactor transporters could influence micronutrient-requiring molecular reactions and
contribute to inter-individual variability in response to foods and nutritional interventions.

Methods: A comprehensive list of genes coding for transporters of cofactors or their precursors was built using
data mining procedures from the HGDP dataset and then explored to detect evidence of positive genetic selection.
This dataset was chosen since it comprises several genetically diverse worldwide populations whom ancestries have
evolved in different environments and thus lived following various nutritional habits and lifestyles.

Results: We identified 312 cofactor transporter (CT) genes involved in between-cell or sub-cellular compartment
distribution of 28 cofactors derived from dietary intake. Twenty-four SNPs distributed across 14 CT genes separated
populations into continental and intra-continental groups such as African hunter-gatherers and farmers, and between
Native American sub-populations. Notably, four SNPs were located in SLC24A3 with one being a known eQTL of the
NCKX3 protein.

Conclusions: These findings could support the importance of considering individual’s genetic makeup along with
their metabolic profile when tailoring personalized dietary interventions for optimizing health.
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Background
Diet and food availability shaped genetic variation in
humans and left distinct adaptation signals among geo-
graphically and culturally diverse populations [1–3]. Lactase
persistence in adults is the prime example of food-based
positive selection. Cattle domestication after the Neolithic
transition provided access to dairy products and the advan-
tages of an additional source of calories, calcium, protein,
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and other nutrients [4]. The ability to utilize this nutrient
dense food resulted in a strong positive selective pressure
on a variant of the lactase-phlorizin hydrolase gene (LCT)
responsible for lactose metabolism in the small intestine
[5, 6]. Other genetic changes can also be selected by food
availability. For example, the number of copies of the
salivary amylase gene may reflect adaptation to starch-rich
diets and with consequences for modern health as amylase
copy number variations may be negatively associated with
body mass index [7–9]. Positive adaptation signals have
also been described for FADS2, which codes for an
enzyme involved in long-chain polyunsaturated fatty acid
synthesis. A variant of FADS2 was associated with higher
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mRNA expression in vegan individuals [10] which have
diets typically low in long chain unsaturated fatty acids.
Positive selection has also been demonstrated for genes
coding for transporters of zinc, an important cofactor of
several enzymes and DNA-binding proteins [11, 12].
The objective of this study was to identify variants

showing signs of positive selection in genes coding for
cofactor transporters (hereafter referred to as CT and listed
in Additional file 1: Table S1). We posit that adaptation to
different ecological niches may also select for other genes
involved in nutrient transport and metabolism, especially
those that affect multiple cellular and biochemical pro-
cesses such as cofactors or their micronutrient precursors.
Cofactor transporter genes may be more susceptible to
being influenced by different environments and nutritional
habits because of their importance in nutrient absorption
and subsequent tissue distribution.
To fulfill this objective, genetic differentiation of CT-

associated variants were analyzed using data from the
Human Genome Diversity Project (HGDP), a dataset
chosen because it includes multiple world populations
representative of a variety of environments and ancestral
nutritional habits [1, 13, 14]. Using an approached based
on principal component analysis (PCA) [15–17], 24
variants in 14 CT genes with signals of positive selection
that could contribute to various disease risks and response
to nutritional intervention observed between individuals
with different genetic makeup were identified.

Results
Identification of proteins involved in cofactor transport
Public databases (i.e., NCBI PubMed, UniProt, and OMIM
databases) were searched for proteins involved in the trans-
port of cofactors (or their nutrient precursors) between cells
or sub-cellular compartments. CTs are a subset of proteins
that transport other nutrients such as essential fatty acids
or amino acids. At least one transporter was identified for
28 of 43 nutrient-derived cofactors [18] (see the “Methods”
section for further details and Additional file 1: Table S1 for
full list of cofactors and corresponding transporters). Some
of the fat-soluble cofactors such as pyrroloquinoline
quinone (PQQ), topaquinone, qbiquinone (CoQ), mena-
quinone (Vitamin K), and lipoic acid diffuse freely across
membranes and are transported in lipoproteins in the
blood. Other cofactors, such as biopterin, tetrahydrobiop-
terin (BH4), molybdopterin (MPT), and S-adenosyl-L-
homocysteine (SAH), are synthesized in cells and used lo-
cally and as such do not require transporters. Fe-S complex,
heme-thiolate, inositol hexaphosphate, and dipyrromethane
circulate as part of hemoglobin in red blood cells. The gene
coding for the pyridoxal phosphate (vitamin B6) transporter
has not yet been identified [19].
A total of 312 proteins are involved in the transport of

cofactors with 39 able to transport more than one
cofactor. The transporters with affinity to the most
cofactors are the cation transporters CNNM2 (cyclin
and CBS domain divalent metal cation transport medi-
ator 2) and NIPAL1 (non-imprinted in Prader-Willi-like
domain containing 1) that mediate the trans-membrane
movement of five divalent cations—cobalt, copper, iron,
magnesium, and manganese.

Cofactor transporters genetic diversity
Genotype data from HGDP was used to study the genetic
differentiation in genes coding for CTs. The final sample
set included 940 individuals from 53 populations using the
quality control criteria described in the “Methods” section.
Genetic variation in CT genes was summarized by PCA.
During the computation, smartpca removed 27 subjects
belonging to Papuan and Melanesian populations because
their PC values exceeded 6 standard deviations from popu-
lation and were deemed as outliers. Nine hundred thirteen
individuals were thus included in the following analyses.
The percentage of explained variance of each PC is shown
in Additional file 2: Figure S1. First three PCs were suffi-
cient to separate the populations into their corresponding
continental groups using the genetic variants in CT genes.
In particular, PC1 separated African populations from all
others, PC2 described a gradient from East Asia to Middle
East and Europe, and PC3 divided Native American popula-
tions from the others (Fig. 1 and Additional file 3: Figure S2).
The subsequent PCs described intra-continental genetic
differences. In particular, PC5 and PC6 separated the trad-
itional African hunter-gatherer groups (San, Mbuty Pygmy,
and Biaka Pygmy) from the African populations that adopted
the agricultural, sedentary lifestyle hereafter referred to as
farmers (Bantu from South Africa, Bantu from Kenya,
Yoruba, and Mandenka) (Additional file 4: Figure S3). The
grouping of subjects observed in the PCA of transporters
was similar to the results of PCA performed using
genome-wide genotype data (Additional file 5: Figure S4).

Positively selected SNPs and genes
A methodology based on PCA loadings was used to iden-
tify loci under positive selection. This method does not
require a priori separation of individuals by population
and is thus beneficial with datasets such as the HGDP
composed of individuals representing a large spectrum of
genetic diversity (see the “Discussion” and “Methods”
sections for further details). This method was first tested
on the entire genome-wide dataset (Additional file 6:
Table S2). The relevance of these findings was evaluated
by further looking in the literature for the top 10 loci of
each of the first ten PCs. All these loci spanned a region
that included a SNP with a q value < 0.05, with the excep-
tion of the SNPs related to PC1, PC2, and 1 SNP associ-
ated to PC6 (rs11682328) that did not exceed this
threshold. Sixty-one of these 100 loci corresponded to



Fig. 1 PCA result. The scatterplot shows the first two components of PCA analysis based on genotype data of SNPs located in genes coding for
transporters of cofactors in individuals from HGDP dataset. Each point corresponds to one individual, color-coded according to the geographic
region of origin as shown in the legend

Table 1 Positively selected SNPs within cofactor transporter genes

Genes Official gene name Cofactors Tissue enrichmenta Chr PC SNPs

CACNA1A Calcium voltage-gated channel
subunit alpha1 A

Ca Tissue enhanced: cerebral cortex;
stomach

19 PC3 rs7254771 (0.03)

CACNB4 Calcium voltage-gated channel
auxiliary subunit beta 4

Ca Tissue enhanced: cerebral cortex 2 PC5 rs16830593 (0.007); rs11902858 (0.02)

HPX Hemopexin Fe Tissue enriched: liver 11 PC5 rs16913549 (0.01)

KCNB2 Potassium voltage-gated channel
subfamily B member 2

K Tissue enhanced: cerebral cortex;
spleen

8 PC5 rs7833062 (0.04); rs6996335 (0.02)

KCNH5 Potassium voltage-gated channel
subfamily H member 5

K Tissue enhanced: adrenal gland;
cerebral cortex

14 PC5 rs8019319 (0.007)

KCNH7 Potassium voltage-gated channel
subfamily H member 7

K Tissue enriched: cerebral cortex 2 PC3; PC5 rs6753132 (0.05); rs6708255 (0.007);
rs7588788 (0.07)

KCNK13 Potassium two pore domain channel
subfamily K member 13

K Tissue enhanced: testis 14 PC3 rs3861656 (0.025); rs4462529 (0.025);
rs17223880 (0.025)

LRP2 LDL receptor related protein 2 D3 Group enriched: kidney; placenta;
thyroid gland

2 PC5 rs16856593 (0.004)

RYR2 Ryanodine receptor 2 Ca Tissue enriched: heart muscle 1 PC5 rs12087761 (0.011)

SLC11A2 Solute carrier family 11 member 2 Co Expressed in all 12 PC5 rs12312876 (2.70E-08)

SLC24A3 Solute carrier family 24 member 3 K,Ca Mixed 20 PC5 rs10485588 (0.04); rs16980447 (0.03);
rs6112335 (0.02); rs6035421 (0.02)

SLC25A26 Solute carrier family 25 member 26 SAM Expressed in all 3 PC3 rs17044224 (0.03); rs1471476 (0.03);

SLCO1A2 Solute carrier organic anion transporter
family member 1A2

GSH Group enriched: cerebral cortex;
liver; lung; salivary gland

12 PC5 rs2199685 (0.03)

TRPM4 Transient receptor potential cation
channel subfamily M member 4

Ca Mixed 19 PC5 rs8104571 (0.0008)

Ca calcium, Co cobalt, Chr chromosome, D3 vitamin D3, Fe iron, K potassium, GSH Glutathione, PC principal component, SAM S-Adenosylmethionine
aTissue enrichment category from Human Protein Atlas among the following categories: (i) Tissue enriched: mRNA levels in one tissue at least five times higher
than all other tissues, (ii) Group enriched: mRNA levels of a group of 2 to 7 tissues at least five times those of all other tissues, (iii) Tissue enhanced: mRNA levels
in a particular tissue at least five times the average level in all tissues, (iv) Expressed in all: mRNA detected in all tissues, (v) Mixed: detected in fewer than 32
tissues but not elevated in any tissue, or (vi) Not detected. Tissue(s) where protein is enriched in cases of Tissue enriched, enhanced or group enhanced is listed
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genes previously described as being positively selected in
the dbPSHP database [20] (Additional file 7: Table S3)
such as, OCA2/HERC2, SLC24A5, and EDAR [21, 22].
The workflow was then applied to the CT dataset.
Twenty-four SNPs corresponding to 14 CT genes differen-
tiated along the first five PCs (i.e., PC3 and PC5) (Table 1).
The SNPs showing evidences of positive selection in the
subsequent PCs are reported in Additional file 8: Table S4.
Positive selection in CTs was also evaluated using the inte-
grated Haplotype Score (iHS) selection metrics calculated
in HGDP [23] and grouping SNPs at the gene level. Most
of the genes previously identified using the PCA
workflow, with the exception of CACNA1A, HPX, SLC11A2
SLCO1A2, and TRPM4, showed evidence of positive selec-
tion in at least one population or group of populations
using this method (detailed in the Additional file 9: Note 1).

Functional annotation and linkage disequilibrium
patterns of positively selected SNPs
SNPs showing signs of positive selection were annotated
using Ensembl transcript to investigate their functional
consequences within or flanking each gene. None were
found in exons (Additional file 10: Table S5). However,
four SNPs (rs16830593 in CACNB4, rs1471476 and
rs17044224 in SLC25A26, and rs10485588 in SLC24A3)
were identified as significant cis-eQTLs from the GTeX
eQTL database [24] (Table 2). Moreover, an additional
SNP in SLC24A3 (rs16980447) showed a nominal p value
< 0.05 but was not significant after FDR correction.
SLC24A3 SNPs were found to be associated with its
expression level in blood cells while the CACNB4 variant
was associated with its gene expression level in skin
exposed to sun. SLC25A26 SNPs were cis-eQTL in the
heart and adipose tissue. Two SNPs, rs3861656 in KCNK13
andrs16830593 in CACNB4, are likely to affect transcription
factor binding (RegulomeDB variant classification of 2b and
2c, respectively) (Additional file 11: Table S6).
Proxy SNPs using the Yoruba population from the

1000 Genomes database were used to investigate
whether non-mapped functional SNPs were in linkage
Table 2 Significant eQTL from positively selected cofactor transport

PC SNP Gene Official gene name

3 rs1471476 SLC25A26 Solute Carrier Family 25 (Mitochondrial Carr
Phosphate Carrier), Member 26

3 rs17044224 SLC25A26 Solute Carrier Family 25 (Mitochondrial Carr
Phosphate Carrier), Member 26

3 rs17044224 SLC25A26 Solute Carrier Family 25 (Mitochondrial Carr
Phosphate Carrier), Member 26

5 rs10485588 SLC24A3 Solute carrier family 24 (sodium/potassium/
calcium exchanger), member 3

5 rs16830593 CACNB4 Calcium Channel Voltage-Dependent
Subunit Beta 4

From GTeX eQTL database
Ca calcium, K potassium, SAH S-Adenosyl-L-homocysteine, PC principal component
disequilibrium (LD) with SNPs differentiated in African
populations (related to PC5). No non-synonymous SNPs
were found among those in LD with the differentiated
SNPs (R-square > 0.8). However, two missense SNPs
were identified as proxy SNPs (rs6757850 correlated
with KCNH7 SNP rs6708255 and rs7588788 and
rs114005357 correlated with SLC11A2 SNP rs12312876)
when lowering the R-square threshold to 0.4. Similar
analysis was not possible for Native American popula-
tions since no sequencing data from a different dataset
was available to evaluate LD. For what concern PC5, we
observed that the clustering of African populations in
two groups corresponded to one of the two subsistence
strategies traditionally adopted by these populations,
namely being primarily farmers or hunter-gatherers. The
best candidate gene related to PC5 is SLC24A3 since it
contains four SNPs showing evidences of positive selec-
tion, one of which also being a strong eQTL in GTeX
database. The African genetic variation in the SLC24A3
region was further examined by estimating haplotypes to
better evaluate the difference in allele frequencies of
SLC24A3 region between the previously identified groups
of farmers and hunter-gatherers. The most common
haplotype is characterized by the SNP alleles ACAG
shared by both farmers and hunter-gatherers. Notably,
some haplotypes were restricted to only one sub-group
(Fig. 2b). Specifically, the haplotype GTAG was sepa-
rated from the network core by rs10485588 (A [red in
Fig. 3] and G [blue in Fig. 3], the ancestral and derived
alleles, respectively), the putative eQTL SNP, which is
found predominantly in farmer populations (with the
exception of two Biaka Pygmies individuals) (Fig. 3). The
haplotype with the alternative alleles for those SNPs (i.e.,
ACGA) is completely absent among farmers.

Discussion
Positive selection of genes coding for proteins involved in
cofactor transport between cells or sub-cellular compart-
ments was found by comparing genotypes of populations
from the HGDP. This dataset is particularly interesting
er SNPs

Tissue Cofactors Effect size p value

ier; Heart—left ventricle SAH − 0.49 1.4E−06

ier; Adipose—subcutaneous SAH − 0.32 4.9E−05

ier; Heart—left Ventricle SAH − 0.5 5.0E−07

Whole blood K, Ca 0.74 1.9E−08

Skin—sun exposed (lower leg) Ca − 0.82 6.6E−05



Fig. 2 Linkage disequilibrium plots and haplotype network of SLC24A3 regions in African populations. a Visualization of LD between the genetic
variants in SLC24A3 regions bearing signals of positive selection. LD was calculated using r2 parameter separately in African populations of farmers
and hunter-gatherers. Squares shaded according to strength of LD. b Haplotype network analysis of SLC24A3 regions. Each circle represents a
haplotype that is color-coded according to the population in which it is present. Circle sizes are proportional to the haplotype frequency and
each line corresponds to one mutational step
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since it includes genotypes from several genetically diverse
worldwide populations, whom ancestries have evolved in
different environments and thus been exposed to diets of
varying nutritional composition (i.e., hunter-gatherers and
farmers). Cofactor transporters are of particular interest as
they regulate the tissue and sub-cellular bioavailability of
micronutrient-derived cofactors and are more likely to be
influenced by different nutritional habits from ancient
populations originating from regions with varying climates
[1] and soil composition [25]. Cofactor-requiring biological
processes participate in normal and pathophysiological
processes that could contribute to between-population
differences in disease incidence and response to nutritional
interventions and diets [18, 26]. However, other selective
forces may have contributed to the evolution and distribu-
tion of CT variants among populations.
The PCA-based approach followed here associated the

population-specific alleles to a specific PC and thus a
specific ancestry gradient. Contrarily to FST statistic, a
popular measure of positive selection based on
population differentiation [27], it does not require a
priori definition of populations or groups of populations
[16]. We thus considered it more suitable for the HGDP
dataset, which contains several populations and some of
them not being genetically well separated from one
another. Moreover, since the PCA-based approach iden-
tifies outlier SNPs for each principal component, it is
less likely to identify variants that underwent random
genetic drift since such phenomenon should similarly
affect all variants in a population.
The signals of positive selection identified here were

derived mainly from two PCs, namely PC3 and PC5.
The gradient described is intra-continental and is due to
the difference in allele frequencies across the Native
Americans and Africans populations, respectively. PC5
separated African hunter-gatherers from farmers, two
populations that traditionally based their subsistence on
different diets and identified SLC24A3 as being positively
selected. SLC24A3 encodes for the potassium-dependent
Na+/Ca2+ exchanger type 3 protein (NCKX3), an



Fig. 3 Spatial frequency distribution of rs10485588 alleles. Each pie chart corresponds to one HGDP population and is positioned on the map
according to the latitude and longitude data used by Rosenberg et al. [44]. Pie charts are colored according to the frequency of the common,
ancestral A (red) and the derived G (light blue) alleles. Note that among the African populations, hunter-gatherers are written in bold
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important regulator of intracellular calcium homeostasis.
This gene is expressed most abundantly in the brain but
also found in the aorta, uterus, intestine, and skeletal
muscle with low expression in other tissues [28].
Polymorphisms in SLC24A3 have been associated with

salt-sensitive vasoconstriction and hypertension [29],
while the expression of NCKX3 protein was linked to
preeclampsia (i.e., pregnancy complicated by high blood
pressure) [30]). Selection of these variants in hunter-
gatherers may be due to diverse, animal-based, diets that
were low in sodium chloride and high in potassium salt
intake compared with the diet adopted after the Neolithic
transition [31]. Indeed, this transition took place at the end
of the most recent ice age and coincided with the advent of
agriculture which was characterized by increases in plant-
based at the expense of animal-based ingredients and
where salt became an important commodity. Adaptation to
such dietary pattern must have induced genetic adaptation
in many genes involved in nutrient metabolism and may
partly explain modern-day phenotypes, as that observed
recently with the FADS gene [10, 32]. Namely, individuals
with varying admixture from hunter-gatherers to farmers,
such as modern Europeans [33], have different risks of
cardiovascular disease, hypertension, stroke, kidney stones,
and osteoporosis (e.g., [34]) compared to African-Americans
(e.g., [35]), which could be mediated by their different meta-
bolic response to various dietary minerals. In fact, a short-
term intervention with a hunter-gatherer, or Paleolithic, diet
improved glucose homeostasis and lipid profiles in modern-
day Americans living with type II diabetes [36]. The opposite
is also possible to envision. Namely, transitioning from a
hunter-gatherer to a post-Neolithic diet could induce meta-
bolic alterations that, in longer-terms, would increase
cardiovascular and other chronic disease risks.
Limitations were inevitably present in the study and

should be considered when interpreting observations.
First, the HGDP dataset, obtained using the DNA chip
technology, does not allow studying rare variants that
would instead be detected using newer technology such
as the next generation sequencing. Moreover, each
population in the dataset is represented by a small
sample and could be the reason of not having extremely
significant results. In fact, even if all the SNPs reported
in the manuscript were significant after FDR correction,
only one met the genome-wide significance threshold of
p < 5 × 10−8, rs12312876 (p = 2.70 × 10−8). This issue
could be overcome using 1000 Genomes dataset; how-
ever, the populations included in that project do not
cover the spectrum of human genetic differentiation that
would be necessary to study the selective pressure
exerted by diet. In fact, even close populations such as
the African farmers and hunter-gatherers, not present in
1000 Genomes, could have been affected by different
environmental factors. Another important limitation is
the lack of direct information on dietary habits of refer-
ence populations that prevent any conclusion about the
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driving force of the adaptation. For what concern the
analysis, the method we chose allowed us not to split
the dataset in separate populations and thus has been
the methodology of choice. However, if we had the
possibility of using larger sample sizes for the population
of interest, it would have been interesting to apply other
selection metrics such as the haplotype-based methods
such as iHS [37] and XP-EHH [38], calculated for each
population instead of groups of populations, or the XP-
CLR method [39], which uses allele frequency differenti-
ation between populations to detect selective sweeps.
The availability of sequencing data would allow to test
also other methods, such as the population branch stat-
istic (PBS), which was successful in identifying genes
involved in adaptation to high altitude from exome
sequencing data [40].

Conclusion
Genetic variation in cofactor transporters may be of use
clinically to investigate and help explain inter-individual
variability in response to dietary interventions [18]. In-
deed, individual CT SNP distribution, reflective of their
genetic backgrounds, could influence the expression or ac-
tivity of these important mediators of micronutrient-
derived cofactor ADME and biological effect. Thus, our
findings support the importance of considering an individ-
ual’s genetic makeup along with their metabolic profiles
(e.g., homeostatic measures of vitamin levels for instance)
when tailoring and analyzing responses to personalized
dietary interventions aimed at optimizing health.

Methods
Cofactor and transporter identification
NCBI PubMed (http://www.ncbi.nlm.nih.gov/pubmed),
UniProt (http://www.uniprot.org/), and OMIM (http://
www.omim.org/) databases were searched for trans-
porters of cofactors [18]. The cofactor name and their
synonyms with the addition of the word “transport” or
“transporter” were used for the PubMed search. For
instance, combinations of one of the following vitamin C
synonyms “vitamin C”, “vit C”, “ascorbic acid”, and
“ascorbate” AND “transporter” were searched to identify
vitamin C transporters. The transporters identified from
NCBI PubMed were verified on the UniProt database
for their involvement in the transport of other cofactors.
Tissue-specific expression of CTs was evaluated using

data extracted from the Human Protein Atlas database,
which classifies proteins into the following categories: (i)
Tissue enriched: mRNA levels in one tissue at least five
times higher than all other tissues, (ii) group enriched:
mRNA levels of a group of 2 to 7 tissues at least five
times those of all other tissues, (iii) tissue enhanced:
mRNA levels in a particular tissue at least five times the
average level in all tissues, (iv) expressed in all: mRNA
detected in all tissues, (v) mixed: detected in fewer than
32 tissues but not elevated in any tissue, or (vi) not
detected (resulting tissue-specific information can be
found in Additional file 1: Table S1) [41].

Genetic variation data
The genotype data were obtained from the HGDP–
CEPH panel, a resource that captures a significant pro-
portion of human genetic diversity. The genotypes were
obtained with the Illumina BeadStation technology for
1043 individuals, were downloaded from http://
www.hagsc.org/hgdp/files.html, and were pre-processed
at the SNP and individual levels using PLINK v1.07 [42].
Before the quality control procedure, 660,918 SNPs were
available. Sixteen thousand six hundred fifty non-
autosomal SNPs and 1248 SNPs with a genotyping rate
less than 0.95 and 12,085 SNPs with a minor allele
frequency less than 0.01 were excluded for a total of
630,935 remaining SNPs (of which 8960 SNPs for CT
genes). Additionally, 103 related individuals from both
first- and second-degree relative pairs, as described in
Rosenberg, 2006 [43], were also discarded. The assign-
ment of individuals to populations was performed using
the table downloaded from the Rosenberg Lab website
http://rosenberglab.stanford.edu/data/rosenberg2006ahg/
SampleInformation.txt, as published in Rosenberg, 2006
[43]. According to this data the HGDP individuals were
assigned to 53 populations. The geographic coordinates
were downloaded from the same web source (https://
web.stanford.edu/group/rosenberglab/data/rosenbergE-
tAl2005/rosenbergEtAl2005.coordinates.txt), and they
have been previously used in Rosenberg et al. [44].

Principal component analysis
Principal component analysis was performed with
smartpca tool of the EIGENSOFT package v6.0.1 [45]
using the default settings that allow the removal of indi-
viduals detected as outliers during the computation. A
preliminary PCA on the genome-wide data was used as an
additional quality control step to detect the presence of
outliers or individuals not grouped with their geographic
region of origin, and we did not detect any issue. Next, we
used PCA to evaluate the population stratification both at
genome-wide level and on CT genes only. The pattern of
differentiation in CT genes was investigated on a subset of
8960 SNPs located in CT genes [46, 47].

Selection statistic
Statistical analyses were performed with R 3.1.2 (R
Foundation for Statistical Computing, Vienna, Austria;
http://www.r-project.org/) unless otherwise specified.
Our analysis was designed to identify SNPs with signal
of positive selection on the basis of outlier detection
from principal component analysis. Such PCA-based

http://www.ncbi.nlm.nih.gov/pubmed
http://www.uniprot.org
http://www.omim.org
http://www.omim.org
http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
http://rosenberglab.stanford.edu/data/rosenberg2006ahg/SampleInformation.txt
http://rosenberglab.stanford.edu/data/rosenberg2006ahg/SampleInformation.txt
https://web.stanford.edu/group/rosenberglab/data/rosenbergEtAl2005/rosenbergEtAl2005.coordinates.txt
https://web.stanford.edu/group/rosenberglab/data/rosenbergEtAl2005/rosenbergEtAl2005.coordinates.txt
https://web.stanford.edu/group/rosenberglab/data/rosenbergEtAl2005/rosenbergEtAl2005.coordinates.txt
http://www.r-project.org
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approaches were recently successful in identifying genetic
loci under adaptive selection [15–17]. The main advantage
of this approach over other methods like FST statistic is
that it assesses genetic differentiation along gradients
without requiring a priori clustering of the individuals by
population. Starting from the SNP weights (loadings)
obtained from the smartpca output, the selection statistics
D2 was calculated and it corresponds to the squared
loading of each SNP [15, 16]. The discrepancy between
the empirical distribution and the theoretical one was
determined, and the pchisq R function was used to associate
a p value to each SNP. p values obtained were corrected for
multiple testing using the R package q value, which controls
for false discovery rate (FDR) [48]). q value significance
threshold of 0.05 was used. To evaluate the results obtained
applying the selection statistic to the genome-wide HGDP
dataset, the top ten SNPs were extracted for the first ten
PCs (100 total SNPs). A genomic region spanning
200 kb around each SNP was identified and genes
annotated using the Bioconductor annotation package
TxDb.Hsapiens.UCSC.hg18.knownGene. The comparison
of results with literature was done using the data from
dbPSHP, a database which contains information about
genes and genomic regions from curated publications about
positive selection in different human populations [20].

Linkage disequilibrium and haplotype analysis
The identification of the proxy SNPs of each significant vari-
ant associated to PC5 was performed using the genotype
data of 1000 genomes Yoruba population. The analysis was
carried out using the online tool LDlink (https://analysis-
tools.nci.nih.gov/LDlink/?tab=home). We submitted the
significant SNPs identified, and for each of them, we
retrieved a list of proxy variants located −/+ 500 Kb of the
query variant with a pairwise R2 value greater than 0.01.
The pattern of LD in SLC24A3 gene was estimated using

Haploview v4.2. The haplotype phase was inferred using
fastPHASE v1.4.8. The input files were created using
PLINK, and the tool was run using these parameters: 25
iterations of the EM algorithm (C parameter) and 200 as
the number of the number of haplotypes sampled from the
“posterior” distribution obtained from a particular random
start of the EM algorithm (H parameter). To build the
haplotype network, we used the indiv.out file which
contains estimates which attempt to minimize individual
error. The haplotype network was produced by Network
4.2.0.1 using the median-joining algorithm [49].

Functional annotation
The impact of SNPs on protein function was examined
using the Ensembl Variant Effect Predictor tool (http://
www.ensembl.org/Homo_sapiens/Tools/VEP/), using the
GRCh38.p7 human assembly. The regulatory potential
of the SNPs was investigated using the RegulomeDB,
Version 1.1 [50]. The data from GTEx database V6 [24]
(http://www.gtexportal.org/home/) were used to investi-
gate the presence of correlations between the SNPs and
tissue-specific gene expression levels (i.e., eQTL).
Additional files

Additional file 1: Table S1. List of all proteins identified as transporters
of cofactors. (XLSX 174 kb)
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Additional file 8: Table S4. Regulome DB annotation. (XLSX 59 kb)

Additional file 9: Note 1. (DOCX 32 kb)

Additional file 10: Table S5. SNP functional annotation (XLSX 13 kb)

Additional file 11: Table S6. Regulome DB annotation. (XLSX 10 kb)

Abbreviations
CT: Cofactor transporter; HGDP: Human genome diversity project;
IHS: Integrated haplotype score; PC: Principal components; PCA: Principal
component analysis

Acknowledgements
The authors would like to acknowledge the contribution of Dr. Laura
Caberlotto in the initial data mining.

Funding
This research project was funded by the Nestlé Institute of Health Science.

Availability of data and materials
The genotypic dataset analyzed during the current study is available in the
HGDP repository, http://www.hagsc.org/hgdp/files.html. All the other data
generated or analyzed during this study are included in this published article
(and its Additional files).

Authors’ contributions
MPSB and JK conceived and designed the study. SP and MPSB performed
the analyses. SL interpreted the results and drafted the manuscript. All
authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Jim Kaput works for the Nestlé Institute of Health Sciences. The other
authors declare that they have no competing interests.

https://analysistools.nci.nih.gov/LDlink/?tab=home
https://analysistools.nci.nih.gov/LDlink/?tab=home
http://www.ensembl.org/Homo_sapiens/Tools/VEP
http://www.ensembl.org/Homo_sapiens/Tools/VEP
http://www.gtexportal.org/home
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
dx.doi.org/10.1186/s12263-017-0579-x
http://www.hagsc.org/hgdp/files.html


Parolo et al. Genes & Nutrition  (2017) 12:28 Page 9 of 10
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1The Microsoft Research, University of Trento Centre for Computational
Systems Biology (COSBI), piazza Manifattura 1, 38068 Rovereto, TN, Italy.
2Vydiant, Inc, Gold River, CA, USA.

Received: 16 February 2017 Accepted: 19 September 2017

References
1. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C,

Gebremedhin A, et al. Human adaptations to diet, subsistence, and
ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci.
2010;107(Supplement_2):8924–30.

2. Ye K, Gu Z. Recent advances in understanding the role of nutrition in
human genome evolution. Adv Nutr An Int Rev J. 2011;2:486–96.

3. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jørgensen ME,
et al. Greenlandic Inuit show genetic signatures of diet and climate
adaptation. Science. 2015;349:1343–7.

4. Ingram CJE, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose
digestion and the evolutionary genetics of lactase persistence. Hum
Genet. 2009;124:579–91.

5. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA,
et al. Genetic signatures of strong recent positive selection at the lactase
gene. Am J Hum Genet. 2004;74:1111–20.

6. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al.
Convergent adaptation of human lactase persistence in Africa and Europe.
Nat Genet. 2007;39:31–40.

7. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, et al. Diet and
the evolution of human amylase gene copy number variation. Nat Genet.
2007;39:1256–60.

8. Santos JL, Saus E, Smalley SV, Cataldo LR, Alberti G, Parada J, et al. Copy
number polymorphism of the salivary amylase gene: implications in human
nutrition research. J Nutrigenet Nutrigenomics. 2012;5:117–31.

9. Carpenter D, Dhar S, Mitchell LM, Fu B, Tyson J, Shwan NAA, et al. Obesity,
starch digestion and amylase: association between copy number variants at
human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol
Genet. 2015;24:3472–80.

10. Kothapalli KSD, Ye K, Gadgil MS, Carlson SE, O’Brien KO, Zhang JY, et al.
Positive selection on a regulatory insertion-deletion polymorphism in
FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol
Biol Evol. 2016;33:1726–39.

11. Zhang C, Li J, Tian L, Lu D, Yuan K, Yuan Y, et al. Differential natural
selection of human zinc transporter genes between African and non-African
populations. Sci Rep. 2015;5:9658.

12. Engelken J, Carnero-Montoro E, Pybus M, Andrews GK, Lalueza-Fox C,
Comas D, et al. Extreme population differences in the human zinc
transporter ZIP4 (SLC39A4) are explained by positive selection in Sub-
Saharan Africa. PLoS Genet. 2014;10:e1004128.

13. Cann HM, de Toma C, Cazes L, Legrand M-F, Morel V, Piouffre L, et al. A
human genome diversity cell line panel. Science. 2002;296:261–2.

14. Cavalli-Sforza LL. Opinion: the Human Genome Diversity Project: past,
present and future. Nat Rev Genet. 2005;6:333–40.

15. Galinsky KJ, Bhatia G, Loh P-R, Georgiev S, Mukherjee S, Patterson NJ, et al.
Fast principal-component analysis reveals convergent evolution of ADH1B
in Europe and East Asia. Am J Hum Genet. 2016;98:456–72.

16. Duforet-Frebourg N, Luu K, Laval G, Bazin E, Blum MGB. Detecting genomic
signatures of natural selection with principal component analysis:
application to the 1000 Genomes data. Mol Biol Evol. 2016;33:1082–93.

17. Chen G-B, Lee SH, Zhu Z-X, Benyamin B, Robinson MR. EigenGWAS: finding
loci under selection through genome-wide association studies of
eigenvectors in structured populations. Heredity (Edinb). 2016;117:51–61.

18. Scott-Boyer MP, Lacroix S, Scotti M, Morine MJ, Kaput J, Priami C. A network
analysis of cofactor-protein interactions for analyzing associations between
human nutrition and diseases. Sci Rep. 2016;6:19633.

19. Albersen M, Bosma M, Knoers NVVAM, de Ruiter BHB, Diekman EF, de Ruijter
J, et al. The intestine plays a substantial role in human vitamin B6
metabolism: a Caco-2 cell model. PLoS One. 2013;8:e54113.
20. Li MJ, Wang LY, Xia Z, Wong MP, Sham PC, Wang J. dbPSHP: a database of
recent positive selection across human populations. Nucleic Acids Res.
2014;42(Database issue):D910-6.

21. Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol
Genet. 2009;18:R9–17.

22. Tan J, Yang Y, Tang K, Sabeti PC, Jin L, Wang S. The adaptive variant
EDARV370A is associated with straight hair in East Asians. Hum Genet.
2013;132:1187–91.

23. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. Signals
of recent positive selection in a worldwide sample of human populations.
Genome Res. 2009;19:826–37.

24. GTEx Consortium TGte, Welter D, MacArthur J, Morales J, Burdett T, Hall P,
et al. Human genomics. The Genotype-Tissue Expression (GTEx) pilot
analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

25. Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of
hypertension. N Engl J Med. 2007;356:1966–78.

26. Ames BN. Low micronutrient intake may accelerate the degenerative
diseases of aging through allocation of scarce micronutrients by triage.
Proc Natl Acad Sci. 2006;103:17589–94.

27. Holsinger KE, Weir BS. Genetics in geographically structured populations:
defining, estimating and interpreting FST. Nat Rev Genet. 2009;10:639–50.

28. Visser F, Valsecchi V, Annunziato L, Lytton J. Exchangers NCKX2, NCKX3, and
NCKX4: identification of Thr-551 as a key residue in defining the apparent
K(+) affinity of NCKX2. J Biol Chem. 2007;282:4453–62.

29. Citterio L, Simonini M, Zagato L, Salvi E, Delli Carpini S, Lanzani C, et al.
Genes involved in vasoconstriction and vasodilation system affect salt-
sensitive hypertension. PLoS One. 2011;6:e19620.

30. Yang H, Kim T-H, An B-S, Choi K-C, Lee H-H, Kim J-M, et al. Differential
expression of calcium transport channels in placenta primary cells and tissues
derived from preeclamptic placenta. Mol Cell Endocrinol. 2013;367:21–30.

31. Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC, Sebastian A.
Metabolic and physiologic improvements from consuming a paleolithic,
hunter-gatherer type diet. Eur J Clin Nutr. 2009;63:947–55.

32. Hunter-gatherers to farmers. http://www.historyworld.net/wrldhis/
PlainTextHistories.asp?ParagraphID=ayj. Accessed 18 Sept 2017.

33. Callaway E. Ancient European genomes reveal jumbled ancestry. Nature.
2014; https://doi.org/10.1038/nature.2014.14456.

34. Ramos E, Rotimi C. The A’s, G’s, C’s, and T’s of health disparities. BMC Med
Genet. 2009;2:29.

35. Helgadottir A, Manolescu A, Helgason A, Thorleifsson G, Thorsteinsdottir U,
Gudbjartsson DF, et al. A variant of the gene encoding leukotriene A4
hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet.
2006;38:68–74.

36. Masharani U, Sherchan P, Schloetter M, Stratford S, Xiao A, Sebastian A,
et al. Metabolic and physiologic effects from consuming a hunter-gatherer
(Paleolithic)-type diet in type 2 diabetes. Eur J Clin Nutr. 2015;69:944–8.

37. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive
selection in the human genome. PLoS Biol. 2006;4:e72.

38. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al.
Genome-wide detection and characterization of positive selection in human
populations. Nature. 2007;449:913–8.

39. Chen H, Patterson N, Reich D. Population differentiation as a test for
selective sweeps. Genome Res. 2010;20:393–402.

40. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, et al. Sequencing of
50 human exomes reveals adaptation to high altitude. Science. 2010;80:329.

41. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics. Tissue-based map of the human proteome. Science.
2015;347. https://doi.org/10.1126/science.1260419.

42. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559–75.

43. Rosenberg NA. Standardized subsets of the HGDP-CEPH Human Genome
Diversity Cell Line Panel, accounting for atypical and duplicated samples
and pairs of close relatives. Ann Hum Genet. 2006;70(Pt 6):841–7.

44. Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman
MW. Clines, clusters, and the effect of study design on the inference of
human population structure. PLoS Genet. 2005;1:e70.

45. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS
Genet. 2006;2:e190.

46. Cavalli-Sforza LL, Menozzi P, Piazza A. The History and Geography of Human
Genes. New Jersey: Princeton University Press; 1994.

http://www.historyworld.net/wrldhis/PlainTextHistories.asp?ParagraphID=ayj
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?ParagraphID=ayj
http://dx.doi.org/10.1038/nature.2014.14456
http://dx.doi.org/10.1126/science.1260419


Parolo et al. Genes & Nutrition  (2017) 12:28 Page 10 of 10
47. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population
stratification in genome-wide association studies. Nat Rev Genet. 2010;11:459–63.

48. Storey JD. False discovery rates. In: International Encyclopedia of Statistical
Science. Miodrag Lovric, editor. Berlin: Springer-Verlag; 2011.

49. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring
intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48.

50. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al.
Annotation of functional variation in personal genomes using RegulomeDB.
Genome Res. 2012;22:1790–7.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Identification of proteins involved in cofactor transport
	Cofactor transporters genetic diversity
	Positively selected SNPs and genes
	Functional annotation and linkage disequilibrium patterns of positively selected SNPs

	Discussion
	Conclusion
	Methods
	Cofactor and transporter identification
	Genetic variation data
	Principal component analysis
	Selection statistic
	Linkage disequilibrium and haplotype analysis
	Functional annotation

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

