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High nutrient intake during the early
postnatal period accelerates skeletal muscle
fiber growth and maturity in intrauterine
growth-restricted pigs

Liang Hu†, Fei Han†, Lin Chen, Xie Peng, Daiwen Chen, De Wu, Lianqiang Che* and Keying Zhang*
Abstract

Background: Intrauterine growth-restricted (IUGR) neonates impair postnatal skeletal muscle growth. The aim of
this study was to investigate whether high nutrient intake (HNI) during the suckling period could improve muscle
growth and metabolic status of IUGR pigs.

Methods: Twelve pairs of IUGR and normal birth weight (NBW) pigs (7 days old) were randomly assigned to adequate
nutrient intake and HNI formula milk groups. Psoas major (PM) muscle sample was obtained after 21 days of rearing.

Results: IUGR decreased cross-sectional areas (CSA) and myofiber numbers, activity of lactate dehydrogenase (LDH),
and mRNA expression of insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), mammalian target of rapamycin
(mTOR), ribosomal protein s6 (RPS6), eukaryotic translation initiation factor 4E (eIF4E), protein expression of
phosphorylated mTOR (P-mTOR), and phosphorylated protein kinase B (P-Akt) in the PM muscle of pigs. Irrespective
of birth weight, HNI increased muscle weight and CSA, the concentration of RNA, and ratio of RNA to DNA, as well as
ratio of LDH to β-hydroxy-acyl-CoA-dehydrogenase in the PM muscle of pigs. Furthermore, HNI increased percentages
of MyHC IIb, mRNA expression of IGF-1, IGF-1R, Akt, mTOR, RPS6, and eIF4E, as well as protein expression of P-mTOR,
P-Akt, P-RPS6, and P-eIF4E in the PM muscle of pigs.

Conclusion: The present findings suggest that high nutrient intake during the suckling period could improve skeletal
muscle growth and maturity, which is associated with increasing the expression of protein deposition-related genes
and accelerating the development of glycolytic-type myofiber in pigs.
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Background
Epidemiological studies have demonstrated that intrauter-
ine growth-restricted (IUGR) neonates are associated with
the higher morbidity and mortality during the early life
period, as well as a greater risk of the metabolic syndrome
in adult life [1, 2]. Furthermore, previous studies showed
that IUGR had negative impacts on the growth and
development of skeletal muscle in pigs, including reduced
skeletal muscle mass [3] and total myofiber number [4],
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increased cross-sectional area (CSA) [5], and abnormal
lipid deposition [6]. Skeletal muscle plays an important
role in the metabolic homeostasis [7], and a defect in
normal muscle development during the early postnatal
period can permanently alter the subsequent muscle
growth, contractile performance, and metabolism [8].
Therefore, improving skeletal muscle development of
neonates with IUGR would be beneficial.
Postnatal muscle growth is mostly determined by the

total myofiber number and fiber CSAs [9], as well as
controlled by many signaling pathways in vivo [10]. Among
those, the IGF1-Akt-mammalian target of rapamycin
(mTOR) pathway acts as a major positive regulator of
muscle growth [11]. Our previous study found high
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nutrient intake (HNI) could lead to catch-up growth
during the suckling period in IUGR pigs [12]; neverthe-
less, it is not clear whether HNI affects muscle growth
and muscle growth-related molecular signal pathway.
Since skeletal muscle accounts for about 50% of body
mass and approximately 25% of the basal metabolic rate
[13], changes in metabolic properties of muscle in the
neonatal phase are also correlated with early muscle
growth and myofiber maturation [14]. Thus, under-
standing the effects of HNI during the early postnatal
period on the muscular metabolic status may provide
new insights into the fiber development of IUGR.
Due to the physiological and genomic similarities

between pigs and humans, pigs have been recognized as
an excellent experimental model for the study of clinical
nutrition [15]. Moreover, pigs exhibit severe naturally
occurring IUGR [16]. In the present study, we investi-
gated the effects of HNI on skeletal muscle growth,
metabolic status, and the expressions of muscle growth
and development-related genes of IUGR pigs.

Methods
The experiment followed the actual law of animal
protection and was approved by the Animal Care and
Use committee of Sichuan Agricultural University and
performed in accordance with the National Research
Council’s Guide for the Care and Use of Laboratory
Animals.

Animals, experimental design, and formula milk
In the current study, we collected the samples from
the same animal experiment of our previous study. The
experimental pigs and diets were detailed described in our
previous study [12]. In brief, 12 pairs of IUGR (~ 0.87 kg)
and normal birth weight (NBW, ~ 1.52 kg) pigs (Duroc ×
(Landrace × Yorkshire)) from 12 healthy sows were
selected and all pigs were moved to be individually fed
in nursing cages (0.8 m × 0.7 m × 0.4 m) when they
were 7 days old (~ 1.68 for IUGR vs. ~ 2.78 kg for
NBW). For nutritional treatments, six pairs of NBW
and IUGR pigs were allocated to have adequate nutrient
intake (ANI), while other six pairs of NBW and IUGR
pigs were allocated to have high nutrient intake (HNI).
This produced four experimental groups (birth weight/
nutrient intake (NI)): IUGR/ANI, NBW/ANI, IUGR/
HNI, and NBW/HNI (n = 6, per group). The ANI formula
milk was made by mixing 1 kg of formula powder with 4 l
of water, whereas HNI formula milk was made by mixing
1.73 kg of formula powder with 4 l of water, whose nutrient
contents were about 1.5-fold of the ANI. The basic
formula milk powder was formulated according to our
previous study [12], and the composition was shown in
Additional file 1: Table S1. One hundred milliliters of
ANI formula milk contained 5.06 g protein, 4.64 g lactose,
and 5.20 g lipids, which were similar to that in the same
volume of sow milk, containing 5.00 g protein, 5.06 g
lactose, and 7.90 g lipids [12]. One hundred milliliters of
HNI formula milk contained 7.59 g protein, 6.96 g lactose,
and 7.80 g lipids. All pigs were fed with corresponding
formula milk at 50 ml/kg body weight (BW) per meal with
a feeding bottle seven times per day at 3-h intervals
between 06:00 and 24:00. Pigs had free access to water.
The ambient temperature and humidity were controlled
around 30 °C and 50~60%, respectively. This experiment
lasted for 21 days.

Tissue sample collection
At the end of the trial, all pigs were anesthetized with an
intravenous injection of pentobarbital sodium (15 mg/kg
BW) and killed. A set of morphometric measurements
were made: head length (snout to between ears, HL),
crow-rump length (between ears to end of tail; CRL),
and abdominal circumference (AC), before slaughtering.
Body mass index (BMI; BW/CRL2) was calculated for
each pig. The brain and heart of each pig were weighed
immediately. The semitendinosus (ST) muscle and psoas
major (PM) muscle from the left side of each carcass
were completely excised and weighed, and the length
and the circumference of the mid belly muscles were
recorded. Muscle samples for histological analyses were
excised from the central region of PM muscle, and then
stored in 4% methanol solution. In addition, other muscle
samples of PM muscle were collected, snap-frozen in
liquid nitrogen, and stored at − 80 °C.

Muscular morphology
The PM muscle samples stored in 4% methanol solution
were prepared after staining with hematoxylin and eosin
using standard paraffin-embedding procedures. All sections
were photographed using a digital microscope (Nikon), and
muscle fibers were counted over five randomly selected
fields of known size (1.01 mm2, 200–300 fibers) as the
myofiber density [17]. Muscle CSA was calculated from the
circumference of the mid belly muscle. Then, the estimated
total myofiber number was obtained by multiplying the
fiber number per unit area by the CSA of PM muscle.
The myofiber density was used to estimate the total
number of fiber by multiplying with the CSA of PM
muscle. The mean muscle fiber diameter in the united
area was measured by Image-Pro Plus 6.0 software
(Media Cybernetics, Bethesda, MD).

Biochemical analyses
Total RNA of PM muscle samples was extracted using
TRIzol reagent (Invitrogen, USA) according to the manu-
facturer’s instruction. RNA concentration and quality were
verified by both spectrometry and agarose gel (1.0%)
electrophoresis. DNA of muscle samples was extracted
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using the QIAamp® DNA mini kit (Qiagen) according to
the manufacturer’s instructions, and DNA quantification
was performed using a NanoVue Plus spectrophotometer
(GE Lifescience, Piscataway, NJ, USA). Protein concentra-
tion, lactate dehydrogenase (LDH), citrate synthase (CS),
and β-hydroxy-acyl-CoA-dehydrogenase (HAD) activities
of muscular samples were determined by using a commer-
cial kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) according to the instruction manuals.
Briefly, frozen muscle samples (approximately 50 mg)
were homogenized in 450 μl of 0.9% saline and then
centrifuged at 3500g for 10 min at 4 °C. The protein
content in muscle supernatant was determined based
on the method of Coomassie brilliant blue dyeing using
bovine serum albumin as the standard. The rate of
change of absorbance was monitored at 440, 340, and
412 nm for evaluation of LDH, CS, and HAD activity
using a biochemical analyzer (Multiskan Spectrum,
Thermo Scientific), respectively. Their activities were
expressed as units per gram of protein (U/g protein).

Real-time reverse transcription-PCR (RT-PCR)
Reverse transcription was performed at 37 °C for
15 min, followed by RT inactivation at 85 °C for 5 s
using PrimeScript™ RT reagent Kit (Catalog no. RR047A;
Takara). A portion of the RT products (1 μl) was used
directly for real-time PCR. Real-time PCR assays were
performed on complementary DNA samples in 384
well-optical plates on a 7900HT ABI Prism Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA) using the SYBR green system (Catalog no.
RR820A; Takara). Primers for individual genes were
designed using Primer Express 3.0 (Applied Biosystems)
and given in Table 1. The reaction mixture (10 μl)
contained 5 μl of fresh SYBR® Premix Ex TaqII (Tli
RNaseH Plus) and 0.2 μl ROX Reference Dye II (50×),
0.8 μl of the primers, 1 μl of RT products, and 3 μl
dH2O. The PCR protocol was used as follows: 1 cycle
(95 °C 30 s), 40 cycles (95 °C 5 s, 60 °C 31 s), and 1 cycle
(95 °C 15 s, 60 °C 1 min and 95 °C 15 s). The standard
curve of each gene was run in duplicate and three times
for obtaining reliable amplification efficiency values as
described previously [18]. The correlation coefficients
(r) of all the standard curves were more than 0.99, and
the amplification efficiency values were between 90 and
110%. At the end of amplification, dissociation analyses
of the PCR product were performed to confirm the
specificity of PCR products. The relative mRNA abundance
of analyzed genes was calculated using the method of
2−ΔΔCt [19], and 18S rRNA was used as a reference gene in
this study. In addition, the percentages of MyHC isoforms
was calculated as the ratio of the normalized expression
level of each MyHC isoform to the total expression of
MyHC [20].
Western blotting
Western blot analysis was performed as previously
described [21]. For the preparation of protein lysates,
frozen muscle samples were powdered under liquid
nitrogen and was homogenized in 1 ml cell lysis buffer
(Beyotime Biotechnology, Shanghai, China) supplemented
with protease inhibitor cocktail (Roche, Mannheim,
Germany) on a homogenizer. The protein lysate was
centrifuged at 12,000g and 4 °C for 30 min, and the
supernatant was transferred to a new EP tube. The con-
centration of protein in the supernatant was measured
with a BCA Protein Assay Kit (Thermo). One hundred
micrograms protein was used to prepare an electro-
phoresis sample with loading buffer (Bio-Rad, Shanghai,
China) in a volume of 30 μl for each sample. Proteins
were separated on 12% polyacrylamide gel, and then
transferred onto polyvinylidene fluoride membranes
(Bio-Rad Laboratories). The membranes were blocked
in 1% BSA/1 × TBST for 1 h at room temperature,
followed by incubation with the appropriate primary
antibodies overnight. Total mTOR (1:1000; Santa
Cruz), phosphorylated mTOR (Ser2448, 1:1000 dilution),
total eIF4E (1:1000 dilution), and phosphorylated eIF4E
(Ser209, 1:1000 dilution) were obtained from Santa Cruz
(Shanghai, China); total RPS6 (1:2000 dilution), phos-
phorylated RPS6 (Ser235/236, 1:1000 dilution), total Akt
(1:1000 dilution), phosphorylated Akt (Ser473, 1:1000
dilution), and β-actin (1:500 dilution) were obtained
from Cell Signaling Technology (Shanghai, China). The
membrane was then washed with 1× TBST for three times
at 4 °C. After thorough washing, membranes were
incubated with appropriate horseradish peroxidase-linked
secondary antibodies (Cell Signaling Technology, Shanghai,
China) (1:2000 dilution in 5% milk/1× TBST) for 1 h. After
further thorough washing, protein signals were detected by
ECL western blotting detection reagent (Bio-Rad, Shanghai,
China) on a Molecular Imager ChemiDoc XRS+ System
(Bio-Rad Laboratories). Blots were quantified with ImageJ
software (National Institutes of Health, Bethesda, MD).

Statistical analysis
Results are presented as means with their standard errors
(SEM). Analysis of variance using the General Linear Model
(GLM) procedure of SPSS statistical software (Ver.20.0 for
Windows, SPSS, Chicago, IL, USA) in the following model:
yijk = μ + ai + bj + (ab)ij + eijk (i = 1, 2, j = 1, 2, k = 1, 2,…, nij),
where yijk represents the dependent variable, μ is the
mean, ai is the effect of BW (IUGR, NBW), bj is the
effect of NI (ANI, HNI), (ab)ij is the interaction between
BW and NI, and eijk is the error term. The normality
and homogeneity of variances were evaluated by
Shapiro–Wilk W test and Levene’s test respectively.
Differences were considered as significant when P < 0.05,
and a tendency was recognized when 0.05 < P < 0.10. When



Table 1 Primer sequences of target and reference genes

Gene Primer sequence (5′–3′) Product size (bp) Genbank ID

IGF-1 F: GAACTGAAGAGCGTCCACCA 81 NM_214256.1

R: TGCTTGCTCTCCTTCACCAG

IGF-1R F: ATGGATCACAAAGCCCTCGG 148 HQ322390.1

R: CTGCCGCCACTACTACTACG

GHR F: GCTGTATGGATCCAGGGCTC 144 NM_214254.2

R: TGCAGAGAGTTCATCCAGGC

Akt F: TCCAGCTTGAGGTCCCGATA 132 NM_001159776.1

R: GCTCTTCTTCCACCTGTCCC

mTOR F: GGGGTTTGGATCAGGGTCTG 80 XM_003127584.4

R: GACTCATCCGCCCCTACATG

RPS6K F: TTGAACTTCTCCAGCGTCCC 106 XM_003131671.3

R: GCCTCCCTACCTCACACAAG

RPS6 F: TACTCAGTAGCAGGCGGACT 92 XM_005660083.1

R: TACTCAGTAGCAGGCGGACT

eIF4E F: ATGGAAGTCACTGTGGCCTG 133 DQ826509.1

R: TCGTCCCACTAGCTCACAGA

eIF4EBP1 F: CACAGGTGAGTTCCGACACT 105 NM_001244225.1

R: GACTACAGCACCACTCCCG

MyHC I F: AAGGGCTTGAACGAGGAGTAGA 130 AB053226

R: TTATTCTGCTTCCTCCAAAGGG

MyHC IIa F: GCTGAGCGAGCTGAAATCC 155 AB025260

R: ACTGAGACACCAGAGCTTCT

MyHC IIb F: ATGAAGAGGAACCACATTA 137 AB025261

R: TTATTGCCTCAGTAGCTTG

MyHC IIx F: AGAAGATCAACTGAGTGAACT 113 AB025262

R: AGAGCTGAGAAACTAACGTG

18S rRNA F: GACTCAACACGGGAAACCTCAC 146 AY265350.1

R: ATCGCTCCACCAACTAAGAACG

IGF-1 insulin-like growth factor 1, IGF-1R insulin-like growth factor 1 receptor, GHR growth hormone receptor, Akt protein kinase B, mTOR mammalian target of
rapamycin, RPS6K ribosomal protein S6 kinase, RPS6 ribosomal protein S6, eIF4E eukaryotic translation initiation factor 4E, eIF4EBP1 eukaryotic translation initiation
factor 4E binding protein 1, MyHC myosin heavy chain
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significant main effects or interactive effects were observed,
the means were compared using Tukey’s multiple compari-
sons with a P < 0.05 indicating significance.
Results
Organ indices
IUGR markedly decreased heart weight, AC, and CRL
(P < 0.05), but increased the ratio of brain to BW and the
ratio of HL to BW (P < 0.05) (Table 2). HNI increased
heart weight, AC, and BMI (P < 0.05), but decreased the
ratio of brain to BW and the ratio of HL to BW (P < 0.05)
regardless of BW. In addition, no interaction between
BW and NI was found on organ indices. Furthermore,
compared with NBW pigs receiving ANI, the heart
weight, AC, and BMI were higher (P < 0.05), but the
relative brain weight and the ratio of HL to BW were
lower (P < 0.05) in NBW pigs receiving HNI, respectively.
Muscle weight
IUGR significantly decreased the weight, length, and
the relative weight to BW of both ST and PM muscles
(P < 0.05) (Table 3), while increased the ratio of brain
to ST weight and the ratio of brain to PM weight of pigs
(P < 0.05). HNI increased the weight and length of PM
muscle (P < 0.05) but decreased the ratio of brain to PM
muscle weight (P < 0.05). Although not statistically signifi-
cant, HNI tended to exhibit longer ST (P = 0.095) and
greater (P = 0.085) ratio of PM weight to BW. Compared



Table 2 Effects of the level of nutrient intake on the organ weights, organ to body weight ratios, and morphometry of intrauterine
growth-restricted (IUGR) and normal birth weight (NBW) pigs

Items ANI HNI SEM P value

IUGR NBW IUGR NBW BW NI BW × NI

Brain, g 58.0 60.4 63.3 56.7 7.2 0.585 0.837 0.255

Heart, g 31.1a 42.3b 36.4a 50.6c 3.8 < 0.001 0.003 0.439

Brain: BW, % 1.05c 0.82b 0.94b,c 0.64a 0.11 0.001 0.025 0.573

Heart: BW, % 0.56 0.57 0.54 0.57 0.05 0.406 0.605 0.559

HL, cm 17.8 18.5 18.8 17.0 2.1 0.632 0.801 0.272

AC, cm 35.4a 42.1b 37.8a 45.5c 1.9 < 0.001 0.012 0.608

CRL, cm 43.6a 48.3a,b 46.0a,b 51.3b 3.4 0.017 0.871 0.161

BMI, kg/m2 29.1a 28.2a 33.3a,b 38.4b 4.59 0.431 0.016 0.268

HL:BW, cm/kg 3.2c 2.5b 2.8b,c 1.9a 0.36 0.001 0.011 0.723

Data are presented as mean values with their standard errors, n = 6 in each group. Mean values within a row with different superscript letters (a, b, c) were
significantly different between four groups (P < 0.05)
ANI adequate nutrient intake, HNI high nutrient intake, BW body weight, NI nutrient intake, HL head length, AC abdominal circumference, CRL crown-rump length,
BMI body mass index
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with IUGR pigs receiving ANI, the PM weight and length
were higher (P < 0.05), but the ratio of brain to PM was
lower (P < 0.05) in IUGR pigs receiving HNI, respectively.
Muscle characteristics
IUGR decreased the CSA and myofiber number (P < 0.05)
in the PM muscle of pigs, respectively (Table 4). Although
not statistically significant, moreover, IUGR pigs tended to
show higher myofiber density of PM (P = 0.083) than
NBW pigs. HNI increased the CSA (P < 0.05) and tended
to decrease myofiber density of PM muscle (P = 0.054)
regardless of BW. BW and NI had a significant inter-
action effect on the CSA and myofiber density of PM
muscle (P < 0.05). The CSA of PM was higher (P < 0.05)
while the myofiber density was lower (P < 0.05) in
NBW pigs receiving HNI, respectively, compared with
NBW pigs receiving ANI.
Table 3 Effects of the level of nutrient intake on the muscle weight
muscle ratios of intrauterine growth-restricted (IUGR) and normal bir

Items ANI HNI

IUGR NBW IUGR N

ST weight, g 16.5a 27.3b 19.9a 3

ST length, cm 5.8a 6.9b 6.7a,b 7

ST: BW, % 0.30 0.37 0.29 0

Brain: ST 3.66b 2.21a 3.31b 1

PM weight, g 15.3a 23.9b 21.5b 3

PM length, cm 7.5a 9.5b 9.4b 1

PM: BW, % 0.28a 0.32a,b 0.32a,b 0

Brain: PM 3.81c 2.57b 2.97b 1

Data are presented as mean values with their standard errors, n = 6 in each group.
significantly different between four groups (P < 0.05)
ANI adequate nutrient intake, HNI high nutrient intake, BW body weight, NI nutrient
Biochemical properties
IUGR had no influence on RNA, DNA, and protein
concentrations of PM muscle (Table 5). HNI markedly
increased the concentrations of RNA and the ratio of
RNA to DNA in PM muscles (P < 0.05) regardless of
BW. Although not statistically significant, HNI tended
to increase the concentration of protein in the PM
muscle (P = 0.082). Compared with NBW pigs receiving
ANI, the RNA concentration of PM was higher (P < 0.05)
in IUGR pigs receiving HNI.

Metabolic enzyme activities
IUGR tended to decrease the LDH activity of PM (Fig. 1,
P = 0.068) although not statistically significantly. Regard-
less of BW, HNI increased the ratio of LDH to HAD
(P < 0.05) but decreased the activity of HAD and the
ratio of HAD to CS in the PM muscle (P < 0.05). BW
and NI had significant interaction effect on the ratio
s and lengths, muscle to body weight ratios, and brain to
th weight (NBW) pigs

SEM P value

BW BW NI BW × NI

0.8b 4.52 < 0.001 0.167 0.972

.3b 0.68 0.028 0.095 0.471

.35 0.06 0.048 0.662 0.752

.92a 0.60 0.001 0.320 0.921

0.0c 2.46 < 0.001 < 0.001 0.995

0.6b 0.93 0.005 0.006 0.416

.34b 0.03 0.048 0.085 0.429

.90a 0.38 < 0.001 0.002 0.666

Mean values within a row with different superscript letters (a, b, c) were

intake, ST semitendinosus, PM psoas major



Table 4 Effects of the level of nutrient intake on histomorphometry of psoas major muscle of intrauterine growth-restricted (IUGR)
and normal birth weight (NBW) pigs

Items ANI HNI SEM P value

IUGR NBW IUGR NBW BW NI BW × NI

CSA, mm2 156.2a 209.1b 176.2a,b 344.8c 30.7 < 0.001 < 0.001 0.003

Myofiber diameter, um 24.7 23.4 23.3 23.6 2.4 0.720 0.663 0.555

Myofiber density, mm2 2161b 2270b 2227b 1463a 338 0.083 0.054 0.027

Myofiber number, thousand 337.2a 461.6b 394.6a,b 498.7b 68.1 0.004 0.178 0.764

Data are presented as mean values with their standard errors, n = 6 in each group. Mean values within a row with different superscript letters (a, b, c) were
significantly different between four groups (P < 0.05)
ANI adequate nutrient intake, HNI high nutrient intake, BW body weight, NI nutrient intake, CSA cross-sectional area
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LDH to HAD (P < 0.05) in the PM muscle. Compared
with IUGR pigs receiving ANI, the HAD activity and
the ratio of HAD to CS were lower (P < 0.05), but the
ratio of LDH to HAD was higher (P < 0.05) in IUGR
pigs receiving HNI, respectively.

Messenger RNA expression
To clarify the mechanism involved in protein synthesis
in the PM muscle of pigs, we measured the expression
of gene-related protein synthesis. IUGR pigs had signifi-
cantly decreased the mRNA abundance of IGF1, IGF1R,
mTOR, RPS6, and eIF4E (P < 0.05) in the PM muscle
relative to NBW pigs (Fig. 2). Regardless of BW, HNI
significantly increased the mRNA abundance of IGF1,
IGF1R, Akt, mTOR, RPS6, and eIF4E in the PM muscle
(P < 0.05). Significant interaction effects were found
between BW and NI on the mRNA abundance of GHR
and RPS6 (P < 0.05) in the PM muscle. BW and NI had a
significant interaction effect on the mRNA abundance of
RPS6 (P < 0.05). Compared with IUGR pigs receiving ANI,
the mRNA abundance of IGF1, IGF1R, Akt, mTOR,
RPS6, and eIF4E were higher in the PM of IUGR pigs
receiving HNI (P < 0.05).

The composition of myofiber type
HNI increased the percentage of MyHC IIb in the PM
muscle (P < 0.05) of pigs (Fig. 3). No significant changes
Table 5 Effects of the level of nutrient intake on the concentrations
growth-restricted (IUGR) and normal birth weight (NBW) pigs

Items ANI HNI

IUGR NBW IUGR N

RNA, mg/g 1.68a,b 1.63a 2.05b 1

DNA, mg/g 1.50 1.40 1.48 1

Protein, mg/g 181.6 173.9 186.0 1

RNA: DNA 1.14 1.18 1.39 1

Protein: DNA 123.3 126.5 139.7 1

Data are presented as mean values with their standard errors, n = 6 in each group.
significantly different between four groups (P < 0.05)
ANI adequate nutrient intake, HNI high nutrient intake, BW body weight, NI nutrient
in the percentages of other MyHC were found between
groups (P > 0.05). The percentage of MyHC IIb in the
PM muscle was higher (P < 0.05) in IUGR pigs receiving
HNI compared with IUGR pigs receiving ANI.

Protein expressions
We measured the protein expression of IGF-1-Akt-mTOR
signal pathway in the PM muscle. IUGR pigs had signifi-
cantly decreased the protein expression of P-mTOR
(Fig. 4a) and P-Akt (Fig. 4b) in the PM muscle relative to
NBW pigs (P < 0.05). Regardless of BW, HNI signifi-
cantly increased the protein expressions of P-mTOR
(Fig. 4a), P-Akt (Fig. 4b), P-RPS6 (Fig. 4c), and P-eIF4E
(Fig. 4d) in the PM muscle of pigs (P < 0.05). Compared
with IUGR pigs receiving ANI, the protein expression of
P-RPS6 (Fig. 4c) and P-eIF4E (Fig. 4d) were higher (P <
0.05) in IUGR pigs receiving HNI.

Discussion
Previous studies have been shown that neonates with
IUGR receiving high-density nutrition intake have high
risk of adult onset metabolic diseases, such as type 2 dia-
betes and cardiovascular disease [22, 23]. Skeletal muscle
plays important roles in many physiological activities
and is vital for contributing to basal metabolic rate of
body [24]. However, little is known about the effects of
HNI during the early postnatal period on skeletal muscle
of RNA, DNA, and protein in psoas major muscle of intrauterine

SEM P value

BW BW NI BW × NI

.79a,b 0.23 0.209 0.039 0.392

.38 0.20 0.292 0.884 0.987

90.6 12.6 0.725 0.082 0.248

.30 0.19 0.828 0.047 0.478

26.4 15.7 0.353 0.350 0.611

Mean values within a row with different superscript letters (a, b) were

intake



a b

Fig. 1 Effects of the level of nutrient intake on activities of LDH, CS, and HAD (a) and the ratio of LDH:CS, LDH:HAD, and HAD:CS (b) in psoas
major muscle of pigs with different birth weights. Values are means, with their standard errors represented by vertical bars (n = 6 for each group).
Mean values with different letters (a, b, c) were significantly different between four groups (P < 0.05). , IUGR/ANI; , NBW/ANI; , IUGR/HNI;

, NBW/HNI. ANI, adequate nutrient intake; HNI, high nutrient intake; IUGR, intrauterine growth restriction; NBW, normal birth weight; LDH,
lactate dehydrogenase; CS, citrate synthase; HAD, β-hydroxy-acyl-CoA-dehydrogenase
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growth and metabolic status or its potential mechanism
in IUGR neonates. The major finding of this study is
that HNI during the early postnatal period improved
the skeletal growth through mechanisms stimulating
protein synthesis in IUGR pigs. HNI exerted marked
differential effects on metabolic status and muscle
properties; these changes reflected catch-up develop-
ment induced by HNI during the early postnatal
period. These findings have important implications
for long-term muscle development of human infants
with IUGR.
Fig. 2 Effects of the level of nutrient intake on mRNA abundance of growt
weight. Values are means, with their standard errors represented by vertica
were significantly different between four groups (P < 0.05). , IUGR/ANI;
intake; HNI, high nutrient intake; IUGR, intrauterine growth restriction; NBW,
growth hormone receptor; Akt, protein kinase B; mTOR, mammalian target
initiation factor 4E; eIF4EBP1, eukaryotic translation initiation factor 4E bindi
significant effect of body weight (P < 0.05). For IGF1, IGF1R, Akt, mTOR, RPS
Furthermore, there was a significant interaction between body weight and
Neonates with IUGR had lighter body weight and
increased relative internal organ weights [25], which is
consistent with the observed shorter AC and CRL of
IUGR pigs compared with that of NBW pigs in our
study. By contrast, IUGR pigs had a markedly higher
relative brain weight than that of NBW pigs, indicating
that the maintenance of brain weight is of primary
importance for IUGR pigs [26]. This phenotype could
be due to the metabolic priority for the growth of key
organs when fetus suffering maternal malnutrition in
uterus [27]. The increased BMI and heart weight in IUGR
h-related genes in psoas major muscle of pigs with different birth
l bars (n = 6 for each group). Mean values with different letters (a, b, c)

, NBW/ANI; , IUGR/HNI; , NBW/HNI. ANI, adequate nutrient
normal birth weight; IGF1R, insulin-like growth factor 1 receptor; GHR,
of rapamycin; RPS6, ribosomal protein S6; eIF4E, eukaryotic translation
ng protein 1. For IGF1, IGF1R, mTOR, RPS6, and eIF4E, there was a
6, and eIF4E, there was a significant effect of nutrient intake (P < 0.05).
nutrient intake on the mRNA abundance of GHR and RPS6 (P < 0.05)



Fig. 3 Effects of the level of nutrient intake on the percentage of MyHC in psoas major muscle of pigs with different birth weights. Values are
means, with their standard errors represented by vertical bars (n = 6 for each group). Mean values with different letters (a, b) were significantly
different between four groups (P < 0.05). , IUGR/ANI; , NBW/ANI; , IUGR/HNI; , NBW/HNI. ANI, adequate nutrient intake. HNI, high
nutrient intake; IUGR, intrauterine growth restriction; NBW, normal birth weight; MyHC, myosin heavy chain
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pigs with HNI may be resulting from the compensatory
growth during the early postnatal period, which is in ac-
cordance with the report of Greenwood et al., who
showed that IUGR sheep with a high postnatal nutrition
resulted in a greater internal organ weight [28].
Numerous studies had demonstrated that pigs suffer-

ing IUGR had smaller muscle mass [29, 30], reflecting
decreased muscle growth prenatally and/or postnatally
[6, 31]. In the present study, IUGR decreased the PM
and ST muscle weight of pigs, which are in agreement
with previous findings [32]. However, we found that
there was a comparable PM muscle weight between
IUGR pigs with HNI and NBW pigs with ANI. The
growth performance found in our previous study showed
IUGR pigs receiving HNI were able to exert a similar
growth rate and comparable weight gain to NBW pigs
with ANI [12].
Neonates suffering IUGR formed a lower myofiber

number which will restrict the potential of lean growth
after birth [4]. In our study, both the myofiber number
and CSA of PM muscle were lower in IUGR pigs than
NBW pigs, which are in agreement with previous reports
[4, 5, 29]. Consistent with pervious study [32], IUGR pigs
had a higher myofiber density than their normal litter-
mate. However, HNI tended to decrease the myofiber
density during the suckling period, which may result from
increased CSA. The number and CSA of muscle fiber are
known to be an important determinant of postnatal
muscle growth [33]. Total myofiber number of pigs has
been reported to be fixed at birth [34, 35], but most
recently, many studies have found that there might be a
“third generation” for muscle fiber growth during the
early postnatal period [36–38], which are shown by the
occurrence of very small-diameter myofibers containing
embryonic and/or neonatal isoforms of myosin heavy
chain in porcine muscles [39]. Interestingly, compared
with NBW pigs, a comparable myofiber number of PM
muscle in IUGR pigs were found when receiving HNI,
which suggests that the restricted myofiber of pigs
suffering IUGR could be induced by HNI during the early
postnatal period. Similarly, Losel et al. reported that
L-carnitine supplementation also increased the myofiber
number of IUGR pigs during the suckling period [40].
Ratios of protein to DNA and RNA to DNA have been
used as indexes of hypertrophy and potential cellular
activity respectively [41]. In the current study, the early
postnatal fiber formation of IUGR pigs in response to
HNI was associated with greater RNA concentrations
and the ratio of RNA to DNA, as well as tended to
increase the concentration of protein in the PM muscle,
which could be explained as a shift to intensified myo-
genic proliferation [40]. These results provide another
line of evidence for the increased myofiber number of
IUGR pigs receiving HNI during the suckling period.
Taken together, these results indicated the myofiber
formation in IUGR pigs has not fully ceased at birth
and can be improved by HNI in the early postnatal
phase.
Muscle development in postnatal pigs is regulated by

gene expression and growth factors [42]. IGF-1 acts as
an important mediator to promote cell differentiation
and protein synthesis in fetuses [43]. Skeletal muscle
growth in response to IGF-1 is precisely mediated by the
serine/threonine kinase Akt, the downstream targets of
mTOR signal pathway, through regulation of mRNA
translation and protein synthesis [11, 44]. Consistent
with previous studies [45, 46], the decreased mRNA
abundance of IGF1, IGF1R, mTOR, RPS6, and eIF4E



a b

c d

Fig. 4 Effects of the level of nutrient intake on abundance of growth-related proteins in psoas major muscle of pigs with different birth weight.
ANI, adequate nutrient intake; HNI, high nutrient intake; IUGR, intrauterine growth restriction; NBW, normal birth weight; mTOR, mammalian target
of rapamycin; p-mTOR, phosphorylated mTOR; Akt, protein kinase B; P-Akt, phosphorylated Akt; RPS6, ribosomal protein S6; P-RPS6, phosphorylated
RPS6; eIF4E, eukaryotic translation initiation factor 4E; P-eIF4E, phosphorylated eIF4E. Values are means, with their standard errors represented by
vertical bars (n = 6 for each group). Mean values with different letters (a, b) were significantly different between four groups (P < 0.05). *P < 0.05 for
the respective sources of variation (nutrition intake or body weight)
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and protein expression of P-mTOR and P-Akt suggested
that the muscle growth is compromised in pigs suffering
IUGR. However, our results demonstrated that HNI
improved muscle growth via IGF1-Akt-mTOR signal
pathway, as indicated by the enhanced expressions at
the transcriptional level. Moreover, Akt activation is
reported to stimulate protein synthesis [47]. Therefore,
the increased Akt phosphorylation by HNI may be
responsible for enhancing the downstream effector.
mTOR, as an essential component of the signaling
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pathway that regulates protein synthesis, is directly
activated by the intake of nutrients [48]. Additionally,
phosphorylation of mTOR on Ser2448 is positively
related to the activity of mTOR [49]. Consistent with this
observation, we found that HNI resulted in an increase of
the protein expressions of P-mTOR in the PM muscle of
pigs, suggesting that HNI during the early postnatal period
enhanced the activation of elements involved in the mTOR
protein synthesis pathway. Moreover, the increased P-RPS6
and P-eIF4E by HNI (the downstream effector of mTOR)
supported this conclusion. eIF4E phosphorylation status
was examined because it influences mRNA bindings to the
43S preinitiation complex, resulting in increased protein
synthesis in cell culture [50]. Zhu et al. has reported that
restricted nutrient intake affected the protein expressions
by mTOR-RPS6 pathway in the muscle of sheep [51].
Rapid myofibril protein accretion and changes in MyHC

polymorphism of myofibers in the skeletal muscle of pigs
have been reported during the neonatal period [52]. In the
present study, we found that HNI increased the percent-
age of MyHC IIb-type muscle fiber in the PM muscle of
both IUGR and NBW pigs. Studies have suggested that
high muscularity is positively related to a high abundance
of MyHC IIb transcript [20]; the MyHC IIb mRNA levels
had been shown to be steadily increased from days 7 to
180 after birth. Furthermore, the phenotypic changes in
muscle characteristics are often linked to the metabolic
and functional alterations [11]; therefore, the activities of
related metabolic enzymes were measured in the present
study. The activities of CS, HAD, and LDH were used as
markers of overall oxidative capacity (tricarboxylic cycle),
lipid β-oxidation, and glycolytic potential, respectively [7].
In the present study, we found that IUGR tended to
decrease the activity of LDH in the PM muscle of pigs,
which suggested that glycolytic muscles might be more
susceptible to IUGR. However, the ratio of LDH to HAD
in the PM muscle of pigs was enhanced by HNI, which
is indicative of increased glycolytic capacity of skeletal
muscle when pigs are receiving HNI [14]. Moreover, a
shift toward a lower lipid β-oxidation capacity was
observed in the PM muscle of pigs receiving HNI, as
suggested by the decreased HAD activity and the ratio
of HAD to CS. Most importantly, IUGR pigs receiving
HNI had a higher ratio of LDH to HAD than those
receiving ANI, suggesting that restricted glycolytic
capacity could be restored by HNI during the early
postnatal period. Similarly, Lefaucheur et al. has shown
that high food intake during the early postnatal period
enhanced the muscular glycolytic capacity, as indicated
by the increased ratio of LDH to HAD in the muscle of
pigs [14], the increased glycolytic enzyme activity could
be observed in the early postnatal phase during the
muscular development [53]. Based on the data of
metabolic enzymes and MyHC isoform, HNI during
the suckling period may accelerate the muscle maturity of
pigs.

Conclusion
In summary, the results of the current study indicate
that high nutrient intake during the early postnatal
period contributed to skeletal muscle fiber growth and
maturity through stimulating protein synthesis-related
gene expression and accelerating glycolytic fiber devel-
opment in IUGR pigs, associated with changing the
metabolic status, which indicated the long-term effect of
IUGR on muscle development.
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