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Abstract

Context: Metabolic inflexibility is a characteristic of insulin resistance, limiting the ability to transiently regulate
oxidative metabolism and gene expression in response to nutrient availability. Little is known of the flexibility of
post-transcriptional regulation, including circulatory miRNAs (c-miRNAs).

Design: The abundances of targeted c-miRNAs, with reported functions in metabolic regulation, were analysed in
response to a high-carbohydrate meal in healthy weight insulin-sensitive (IS) and overweight insulin-resistant (IR)
women.

Participants: Age-matched healthy weight IS (n = 20, BMI = 24.3 ± 0.70) and overweight IR (n = 20, BMI = 28.6 ±
0.67) women.

Methods: An abundance of c-miRNAs was quantified prior to and following a high-carbohydrate breakfast meal
(2500 kJ; 50% carbohydrate, 20% fat and 27% protein). Target genes of the differentially regulated c-miRNA were
measured in RNA extracted from circulatory peripheral blood mononuclear cells (PBMCs).

Results: In healthy weight IS women, both miR-15a-5p (p = 0.03) and miR-17-5p (p < 0.01) levels were halved at 4 h
post-meal. These miRNA remained unaltered following the same meal in the overweight IR women. Furthermore,
amongst genes targeted by these miRNA, CPT1A (p = 0.01) and IL8 (p = 0.03) had also reduced expression 4 h post-
meal only in the healthy weight IS women.

Conclusions: The study findings provide preliminary evidence for a possible extension of metabolic inflexibility to
include c-miRNAs.

Trial registration: The clinical trial is registered with Australian New Zealand Clinical Trials Registry under Trial
registration: ANZCTR: ACTRN12615001108505. Registered on 21 October 2015.
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Introduction
Diurnal metabolism involves adaptive tailoring of glu-
cose and lipid oxidation in concert with the physio-
logical demands and nutritional state, thereby precisely
meeting whole body energetic demands [1]. Whilst this
regulation of nutrient flux is primarily dependent upon
enzymatic regulation, dynamic regulation of the

transcription of key metabolic genes is also essential [2,
3]. For instance, during fasting, there is an upregulation
of sirtuin-3 (SIRT3) expression leading to increased fatty
acid oxidation by reversible deacetylation of long-chain
coenzyme A dehydrogenase (LCAD), a key fatty acid
oxidation enzyme [4]. In individuals with cardio-
metabolic diseases including obesity and insulin resist-
ance (IR), this capacity to adaptively regulate nutrient
fluxes and oxidation to match the physiological and nu-
tritional states is diminished [5, 6], a root cause for ad-
vancement of these derangements into serious metabolic
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diseases including type 2 diabetes mellitus (T2DM) and
cardiovascular diseases (CVD) [3]. This loss of flexibility
occurs downstream of altered regulation of transcription
factors that are in turn controlled by nutrient availability
and cellular energy homeostasis [2].
The regulation of metabolic flexibility is reflected at

the transcriptional level of gene regulation, yet little is
known of possible regulation at the post-transcriptional
level, especially by microRNAs (miRNAs). miRNAs are
evolutionarily conserved small noncoding RNAs with
widespread biological functions [7], mainly acting as
negative regulators of post-transcriptional gene expres-
sion [8]. Circulatory miRNAs (c-miRNA) are known to
play a critical role in cell-to-cell communication [9] and
have been increasingly implicated as potential bio-
markers of diseases’ state, prognosis and progression, for
conditions including T2DM and cardiovascular disease
(CVD) (Additional file 1) [10]. Clinical and animal
models have further established functional roles of a
subset of c-miRNAs, with demonstrated function in
regulating the genes involved in multiple aspects of
metabolic control and insulin function [11, 12]. More-
over, c-miRNAs are identified to exhibit circadian oscil-
lations [13], and it has been reported that dynamic
miRNA-based post-transcriptional regulation of gene ex-
pression is important to harmonise physiological transi-
tions during fed-fast-refed cycles [14].
Therefore, the aim of this study was to quantify ex-

pression of c-miRNAs with established roles in the regu-
lation of metabolic function and with putative
dysregulation in established T2DM (Additional file 1:
Table S1), in response to a change in nutrient status
from overnight fasted to the postprandial state following
a high-carbohydrate meal. The ten selected c-miRNAs
for this study were selected based on our previously con-
ducted study reporting c-miRNAs as biomarkers of
MetS [15]. This analysis was performed in a selected co-
hort of post-menopausal women, who were recruited on
the basis of metabolic disease risk. On the basis of the in
silico functional target analysis of the differentially regu-
lated miRNAs, mRNA was extracted and analysed from
the circulatory peripheral blood mononuclear cells
(PBMCs). PBMC gene analysis has been reported to be a
non-invasive surrogate measure predictive of the mo-
lecular mechanisms within tissues which cannot be
readily accessed [16]. PBMC gene expression also
demonstrates significant concordance (80%) with
other tissue types [17]. It was hypothesised that in-
flexibility in the regulation of c-miRNAs, with estab-
lished functional roles in nutrient metabolism, would
be evident in the IR individuals. Furthermore, the al-
tered c-miRNA responses would correspond with dys-
regulated expression of genes with known function in
regulation of metabolic pathways in PBMCs.

Methods
Study design
The study utilised plasma samples from a previously
performed randomised controlled cross-over trial, ap-
proved by the University of Auckland Human Partici-
pants and Ethics Committee (014501). The study was
conducted in accordance with the guidelines of Declar-
ation of Helsinki and is registered with the Australian
New Zealand Clinical Trials Registry at www.anzctr.org.
au (ANZCTR: ACTRN12615001108505). All partici-
pants signed the written informed consent.

Study population and meal
Study participants were categorised into two groups:
healthy weight IS (n = 20) and overweight IR (n = 20).
Homeostasis model assessment of insulin resistance
(HOMA-IR) was used to estimate insulin sensitivity [18].
Participants with a BMI of > 25 kg/m2 and HOMA-IR of
≥ 1.4 were classified as overweight IR, whilst participants
with a BMI between 20.0 and 24.9 kg/m2 and HOMA-IR
< 1.4 were classified as healthy weight IS. Participants
with current or past endocrine disorders, CVD, cancer,
T2DM or any current medications that might interfere
with the study endpoint (e.g., anti-inflammatory drugs)
were excluded from the study.
All the participants consumed a standard evening

meal, and arrangements were made for them to arrive
fasted between 0700 and 0800 h to the Paykel Clinical
Research Unit, Liggins Institute. A venous blood sample
(EDTA-coated vacutainer) was drawn in the fasted state.
The participants then consumed a high-carbohydrate
meal breakfast (2500 kJ; 50% carbohydrate, 20% fat and
27% protein) within a 10-min time period (Table 1). All
participants consumed the meal in its entirety. Venous
blood collection was again performed at 2 and 4 h fol-
lowing meal consumption. Plasma was separated by cen-
trifugation at 1900×g for 15min at 4 °C and was
immediately stored at − 80 °C until further analysis.

Anthropometric and biochemical analysis
Height, weight, waist circumference and blood pressure
were measured at fasting. Both fasting and postprandial
plasma glucose and triglycerides were measured using
Cobas Modular P800 (Roche Diagnostics, New Zealand).
Plasma insulin fasting and postprandial was measured
using a Cobas Modular E170 analyser (Roche Diagnos-
tics, New Zealand). Homeostasis model assessment of
insulin resistance (HOMA-IR) was calculated to estimate
insulin sensitivity using the equation by Matthews et al.
[18]. An insulinogenic index (ΔInsulin30/ΔGlucose30 ra-
tio) was calculated to assess early insulin secretion in re-
sponse to the meal [19]. The area under the curve
(AUC) for measurement of insulin and triglyceride
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concentrations at baseline and at 2 and 4 h post-meal
was calculated.

Circulating total RNA extraction
Briefly, 250 μl plasma was used for total RNA extraction
(including miRNAs) using a previously described by
D’Souza et al. [20]. A fixed volume of plasma was uti-
lised to minimise extraction variation between different
samples and time points [21].

cDNA synthesis and circulating miRNA quantitative PCR
(qPCR)
Two microlitres of total RNA was used as an input for
cDNA synthesis reaction using TaqMan™ Advanced
miRNA cDNA Synthesis Kit (Catalogue number:
A28007, Applied Biosystems, USA), according to the
manufacturer’s recommendations. For quantification of
circulatory miRNA abundances using qPCR analysis,
custom human miRNA assays of miR-15a-5p,-miR-16-
5p, miR-17-5p, miR-21-3p, miR-126-3p and miR-222-3p
were used (TaqMan MicroRNA Assays, Applied Biosys-
tems, USA). Quantification was performed on a Quant
Studio™ 6 Flex Real-Time PCR System (Thermo Fisher
Scientific, USA). Samples with a detected cycle threshold
(Ct) of ≤ 35 were included in the analysis.
For normalisation of expression data, a geometric

mean of an endogenous miRNA (miR-423-5p) and an
exogenous spike-in (cel-miR-238) used for quality con-
trol were performed [22]. Haemolysis of all samples was
monitored by comparing miR-451a expression (a highly
expressed miRNA in red blood cells) with miR-23a-3p
expression (a miRNA unaffected by haemolysis) [23].
The resulting ΔCt (miR-23a-3p–miR-451a) was used as
a measure of the degree of haemolysis; two samples with
a ΔCt of > 7 were excluded from further analysis. The
abundance of miRNAs was measured using the two
(−ΔCt) method [24].

In silico target analysis
Target gene prediction network analysis of the differen-
tially expressed miRNAs and over-representation ana-
lysis of the targeted genes were performed using miRNet
[25]. All set of genes targeted by the miRNAs were iden-
tified and were subsequently used for prediction of

targeted pathways by these miRNAs. Functional annota-
tion of the dysregulated miRNA and the identification of
miRNA-target gene controlled pathways were deter-
mined via Gene Ontology (GO) categories biological
process analysis based on the hypergeometric tests with
p values ≤ 0.05 adjusted for false discovery rate (FDR).

Peripheral blood mononuclear cells (PBMC) total RNA
extraction
Total RNA was isolated from approximately 2.5 × 106

PBMCs collected at fasting as well at 4 h post-meal using
the AllPrep® DNA/RNA/miRNA Universal Kit (QIA-
GEN, Germany) following the manufacturer’s protocol
[26].

qPCR gene expression analysis
Input RNA of 500 ng was used for cDNA synthesis using
the High Capacity RNA-to-cDNA™ kit (Life Technologies,
USA). Quantification of gene expression (mRNA) was
performed by qPCR on a LightCycler 480 II (Roche Ap-
plied Science, Germany) using LightCycler® 480 SYBR
Green I Master (Roche Applied Science, Germany). Genes
quantified included peroxisome proliferator-activated re-
ceptor (PPARA), carnitine palmitoyltransferase-1A
(CPT1A), acyl-CoA oxidase-1 (ACOX1), CD36, USP3,
mitofusion-2 (MFN2), SMAD3, vascular endothelial
growth factor-A (VEGFA) and pro-inflammatory cyto-
kines (interleukin-6 (IL6), tumour necrosis factor-alpha
(TNF-α) and interleukin-8 (IL8)). Primers for qPCR were
designed using BLAST software (Additional file 1: Table
S2) [27]. For normalisation of the PCR data, the geometric
mean [28] of three human reference genes [29, 30],
valosin-containing protein (VCP), charged multivesicular
body protein 2A (CHMP2A) and chromosome 1 open
reading frame 43 (C1orf43), were used. Primer efficiency
for every target was calculated using the slope of standard
curve, and only primers with an efficiency of 90–100%
were used for analysis [31]. The relative expression of
mRNA was measured using the 2(ΔCt) method [24].

Statistical analysis
The expression data were evaluated for normality using
the Shapiro-Wilk test. The differences in the abundance
of c-miRNA, PBMC genes, AUC insulin and AUCTG in

Table 1 Composition of breakfast meal

Breakfast Serving size Calories Protein (g) Fat (g) Carbohydrates (g)

Whey protein isolate (WPI) unflavoured (g) 30 116 27.7 0.3 0.15

Anchor butter (g) 12.7 92.3 < 1.0 10.4 < 1.0

Budget white bread (slices) 4 272 11.2 2.4 46.6

Maltodextrin (g) 9 36 0 0 9

Gatorade orange (ml) 300 73.2 0 0 18

Macronutrient composition (%) 116 27.1 20.0 51.3
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relation to the acute dose of meal were measured using
repeated-measures ANOVA, with time as a repeated fac-
tor and group as a between-subject factor, followed by
Holm-Sidak multiple comparison corrections. Samples
with an expression of more than three times the inter-
quartile range were treated as outliers and were subse-
quently removed from further analysis [32]. Data are
shown as means ± SD unless otherwise stated. Analyses
were carried out using SPSS version 25.0 (SPSS Inc.,
USA) and graphs constructed using GraphPad prism-7
(GraphPad Software, USA). Statistical significance was
set at p ≤ 0.05.

Results
Study population characteristics
Participant clinical and demographic characteristics are
summarised in Table 2. Study participants in both the
healthy weight IS (n = 20) and overweight IR (n = 20)
group did not differ in terms of age.

Biochemical measures
Overweight IR as compared to healthy weight IS women
had a greater insulinogenic index (mIU/L/mg/dL)
(810.9 ± 84.1 versus 518.8 ± 63.8, respectively; p < 0.01;
Fig. 1) following the meal. Mean AUC insulin (mIU/L
120 min−1) was higher in overweight IR subjects as

compared to healthy weight IS (58,749.7 ± 5179.4 and
40,207.2 ± 5179.4, respectively; p ≤ 0.05; Fig. 2a). In
addition, mean AUC triglycerides (TG; mmol/L 120
min−1) was higher in overweight IR women as compared
to healthy weight IS (21.7 ± 7.2 and 7.1 ± 2.5, respect-
ively; p ≤ 0.05; Fig. 2b).

Table 2 Characteristics of study participants

Healthy weight IS (n = 20) Overweight IR (n = 20) p value

Age (years) 63.5 ± 1.0 62.5 ± 1.3 0.57

Weight (kg) 62.3 ± 2.1 77.6 ± 2.1 < 0.001

Height (cm) 159.9 ± 1.4 164.5 ± 1.2 0.01

BMI (kg/m2) 24.3 ± 0.7 28.7 ± 0.7 < 0.001

Waist circumference (cm) 80.4 ± 2.2 93.8 ± 1.7 < 0.001

Systolic blood pressure (mmHg) 121.6 ± 3.0 139.2 ± 3.0 < 0.001

Diastolic blood pressure (mmHg) 67.0 ± 2.2 72.0 ± 2.3 0.09

Plasma glucose (mg) 99.3 ± 1.8 108.6 ± 1.8 0.57

HDLc (mM) 2.1 ± 0.1 1.7 ± 0.1 < 0.01

Triglycerides (mM) 0.91 ± 0.1 1.40 ± 0.1 < 0.01

Insulin (mIU) 5.2 ± 0.5 9.1 ± 0.8 0.01

Medication use (n)

Aspirin 2 1

Statins 0 3

ACE inhibitor 0 3

α-Blocker 0 1

β-Blocker 0 1

PPIs 0 1

SSRIs 1 2

Values are means ± SD
HDLc high-density lipoprotein cholesterol, ACE angiotensin-converting enzyme inhibitor, PPIs proton pump inhibitors, SSRI selective serotonin reuptake inhibitors

Fig. 1 Insulinogenic index (△I30/△G30). Estimated after a high-
carbohydrate meal in healthy weight IS and overweight IR women,
Black dots represent individual study subjects. An asterisk indicates a
significant difference in the insulinogenic index of overweight IR as
compared to healthy weight IS women (two asterisks denote p ≤
0.01, error bars represent the standard error of mean (SEM))
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Postprandial abundance of circulatory miRNAs
Differences in the fasting miRNA expression in this
cohort have been previously reported in [15]. Com-
parison of the abundance of circulatory miRNAs at
fasting and postprandially 2 and 4 h in overweight IR
subjects (n = 20) to those of healthy weight IS (n =
20) demonstrated differences in the circulating levels
of miR-15a-5p and miR-17-5p. The postprandial re-
sponses in the levels of these miRNAs diverged be-
tween the two groups (group × time interaction; miR-
15a-5p (p < 0.01) and miR-17-5p (p = 0.01)) (Fig. 3).
In healthy weight IS women, miR-15a-5p (p = 0.03)
and miR-17-5p (p < 0.01) exhibited halving of abun-
dances following the meal. In contrast, overweight IR
subjects showed no significant change in the abun-
dance of these miRNAs during the postprandial
period (2 or 4 h).

Prediction of downstream mRNAs
Target gene prediction analysis demonstrated 1781
genes (both strong and weak interaction) as being puta-
tively regulated by miR-15a-5p and miR-17-5p, with 117
of these targets strongly being regulated by both of these
miRNAs (Fig. 4). Over-representation analysis of all the
targeted genes identified 175 computed GO biological
processes significantly enriched by the target genes of
these miRNAs (Additional file 1: Table S3) [33].
Functional analysis of the shared targeted genes (117)

highlighted 26 of the GO categories being significantly
enriched by these miRNAs. Amongst these categories,
14 processes predominantly involved in the regulation of
cellular and macromolecular metabolism were enriched
(p ≤ 0.05) (Additional file 1: Table S4) [33]. Modifica-
tions in these pathways have been previously described
as associated with the regulation of metabolic

Fig. 2 Area under the curve (AUC). a AUC for Insulin. b AUC for triglycerides. Black dots represent study individual study subjects; An asterisk
denotes between the group difference at an indicated time point (p ≤ 0.05); error bars represent the standard error of mean (SEM)
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homeostasis [34–36]. Interestingly, of the top 50 shared
genes, 5 genes (ACOX1, USP3, SMAD3, VEGFA and
CD36) were found to be uniformly enriched in almost
all of the identified metabolic processes; therefore, these
genes were further quantified in PBMCs using qPCR.
Along with these shared targets, additional genes

CPT1A, MNF2 and PPARA [2, 37] and pro-
inflammatory cytokines (TNF-α, IL6 and IL8) [3] which
were reported to be targeted by either miR-15a-5p or
miR-17-5p from our in silico analysis as well as were
found to be involved in lipid and oxidative metabolism
based on our literature search with a criteria of being

Fig. 3 Differential expression of circulatory miRNAs at baseline and in response to single meal at 2 h and 4 h. Black dots represent study subjects,
GxT denotes group and time interactions and an asterisk denotes a statistically significant difference between the two groups at indicated time
point (p ≤ 0.05). Number sign denotes a statistically significant difference within the group at indicated time points in relation to baseline (#p ≤
0.05; ##p ≤ 0.01). Black lines indicate statistically significant differences between different time points within the group
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reported in at least two of the models amongst animals,
humans or cell lines were shortlisted for PBMC
quantification.

PBMC gene expression
No difference in expression levels of measured PBMC
mRNA was observed between the groups at fasting. A
decrease in the expression of CPT1A (p = 0.01) (Fig. 5a)
was observed in the healthy weight IS women at 4 h fol-
lowing the meal. Furthermore, there was a group × time
interaction (p = 0.03) for expression of IL8, where nor-
mal weight IS women displayed a significant reduction
in expression of IL8, 4 h post-meal (p = 0.01) (Fig. 5b).

No changes in the gene expression of PPARA, SMAD3,
VEGFA, MFN2, CD36, ACOX1, IL6 and TNF-α were ob-
served either between the groups or following the meal.
Although USP3 was also a claimed candidate, its expres-
sion was too lowly expressed to be identified in the
current sample set.

Discussion
Metabolic flexibility is a hallmark feature of metabolic
health and insulin sensitivity [1]. The loss of the ability
to precisely tailor and regulate metabolic fluxes is a
major component in the metabolic dysregulation experi-
enced in IR states, but may also be a key feature in the

Fig. 4 Network gene analysis of the differentially expressed miRNA. The network visualisation of the differentially expressed miRNAs and their
respective gene targets; blue squares represent miRNAs; red circles represent shared genes between the miRNAs
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Fig. 5 (See legend on next page.)
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progression towards serious disease pathologies, as expe-
rienced in T2DM and CVD [5, 38]. In this study, the
abundances of selected c-miRNAs, with established
interaction with gene pathways necessary for nutrient
homeostatic regulation, were analysed in response to a
high-carbohydrate breakfast meal. Significant differences
in the postprandial responsiveness of c-miR-15a-5p and
c-miR-17-5p were observed. In the overweight IR sub-
jects, these c-miRNAs had reduced fasting abundances,
which remained unaltered within 4 h of the high-
carbohydrate meal. In the healthy weight IS, both c-
miR-15a-5p and c-miR-17-5p abundances declined ~
50% in the same time period.
miR-15a-5p and miR-17-5p are implicated in a variety

of experimental circumstances to influence metabolic
function and insulin sensitivity [39, 40]. miR-15a-5p is
primarily secreted into the circulation from pancreatic
β-cells [41] and is reported to influence pancreatic dif-
ferentiation and development and promote glucose-
stimulated insulin secretion and biosynthesis [42]. Evi-
dence has shown reductions in the abundance of c-miR-
15a-5p in morbidly obese men [43] and type 2 diabetics
[44]. Consistent with these findings, we have previously
demonstrated a reduction in its expression at fasting
[15]. Whilst further demonstrating reduced circulating
abundance in only healthy weight IS women following
the meal, this current study might suggest the loss of re-
sponsiveness of miR-15a-5p to altered nutrient status
and therefore could be responsible for the inflexibility in
the metabolism of subjects who are at a higher risk of
developing associated chronic metabolic diseases.
miR-17-5p has also reported to be central to the pro-

liferation and adaptation of pancreatic β-cells [45]. miR-
17/92 family is also reported to be involved in promot-
ing adipocyte differentiation, with their dysregulation
leading to the development of adipose-related vascular
diseases [46, 47]. However, little is known about the cir-
culatory abundance of miR-17-5p in obesity, with only
one study previously identified a reduced abundance of
c-miR-17-5p in obese patients [48]. Therefore, the
present study provides additional evidence that reduced
c-miR-17-5p might be a contributory factor in the devel-
opment of metabolic inflexibility in states of elevated
body fatness.
Although no previous human studies can be identified

that have addressed the regulation of c-miR-15a-5p and
miR-17-5p in response to meals or dietary manipulation,

both miRNAs are reported to have putative roles in regu-
lating genes involved in the coordination of nutrient flux,
including fatty acid synthase (FASN) [49, 50] and peroxi-
some proliferator-activated receptor (PPARA) [51, 52].
Therefore, to ascertain the effect of observed inflexibility
in the expression of miR-15a-5p and miR-17-5p on the
regulation of metabolic genes, the current study further
analysed the circulating PBMC target gene expression of
miR-15a-5p and miR-17-5p reported to be involved in
lipid as well as oxidative metabolism as highlighted by the
literature search [2, 37] and further supported by in silico
analysis [33]. For the majority of genes (PPARA, ACOX1,
CD36, MFN2, SMAD3, VEGFA, USP3) and pro-
inflammatory cytokines (IL6 and TNF-α) analysed, there
was no evidence of altered expression either between the
healthy weight IS or overweight IR groups in the overnight
fasted state or in response to the meal. However, there
was an impaired suppression of CPT1A in the overweight
IR women in response to the meal.
Dynamic regulation of CPT1A expression is observed

in rodents in the transition from fasted to the fed state
[53]. Moreover, miR-17-5p is reported to control the
transcription of CPT1A gene, mediated through its im-
pact on PPARA expression [54]. Recent evidence dem-
onstrates that both miR-15a-5p and miR-17-5p are part
of a coordinated network of nutrient-sensitive miRNA in
mouse liver [53], with loss of dynamic regulation of the
hepatic miRNA network resulting in accelerated gluco-
neogenesis and failed catabolic-to-anabolic switching
upon feeding in these mice. Taking into account the im-
portant role of CPT1A and miRNA networks in the
regulation of metabolic homeostasis, the current study
suggests a possible link between meal-induced CPT1A
gene expression and miRNA regulation.
Both miR-15a-5p and miR-17-5p are also reported to

be involved in the regulation of inflammation, through a
specific targeting of the IL8 gene [55, 56]. This study
also demonstrated a ninefold reduction in the expression
of IL8, a pro-inflammatory cytokine in the healthy
weight IS women, but not in overweight IR women, 4 h
after the meal. Little is known of the transcriptional
regulation of IL8 to altered nutrient availability. Evidence
shows increased circulating concentrations of IL8 pro-
tein in obesity and diabetes [57]. As the current study
did not measure circulating abundances of cytokines, the
significance of this measured gene change within the
PBMC cell population was not established.

(See figure on previous page.)
Fig. 5 Quantification of PBMC gene expression involved in regulating fuel metabolism and inflammatory-related pathways at baseline and in
response to single meal at 4 h. a Differential expression of metabolic genes at baseline and in response to single meal at 4 h. b Differential
expression of pro-inflammatory cytokines at baseline and in response to single meal at 4 h. Black dots represent individual study subjects. GXT
denotes group and time interactions. An asterisk denotes a statistically significant difference between the two groups at an indicated time point
(p ≤ 0.05). An asterisk indicates p ≤ 0.05, and two asterisks indicate p ≤ 0.01
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Limitations
There are several limitations to consider in this current
study. Although oxidative metabolism is reported to be in-
flexible in the overweight IR states, this was not measured
in the present study. Such analysis would typically require
indirect calorimetry to determine the substrate utilisation
as measured by the respiratory quotient (RQ) [58]. How-
ever, given that metabolic inflexibility is a common feature
of insulin resistance, it is likely that the participants of the
current study did experience some impairment in carbohy-
drate oxidation after the meal. With respect to the analysis
of c-miRNA, both sexual dimorphism and ethnicity have a
significant bearing on the circulating abundances of many
c-miRNA species [59, 60]. As this study was conducted
only in Caucasian women, the conclusions may not be
translatable to either males or individuals of differing eth-
nicities. This study also undertook only limited and tar-
geted PCR-based analysis of both c-miRNA and mRNA,
with the latter performed only in circulatory PBMC cells.
Although PBMCs have been widely used as surrogate tissue
to understand whole-body metabolic status, they are not al-
ways an appropriate surrogate [61]. Lastly, there is no
widely accepted minimal threshold for miRNA abundance
profiling [62], which is not always an appropriate surrogate
consideration when aiming to differentiate between the bio-
logical significance of experimental noise. Thus it remains
making it difficult to interpret the biological importance of
small changes as observed in this study. Therefore, any sub-
sequent analysis would be improved with the adoption of
high-throughput sequencing strategies [26] and larger
population cohorts to more comprehensively evaluate the
biological significance of global regulation of noncoding
and coding RNA transcripts.

Conclusion
In conclusion, c-miR-15a-5p and c-miR-17-5p failed to
respond to a high-carbohydrate meal in individuals with
IR, this might be indicative of the inflexibility in the
regulation of miRNA to adaptively regulate nutrient flux
to respond to the changing nutritional status and ener-
getic demands. Further, whilst it was also demonstrated
that the CPT1A and IL8 gene expressions altered post-
meal when analysed from a PBMC population, it is un-
clear whether this is evident either of transcriptional in-
flexibility or related to the inflexibility in miR-15a-5p
and miR-17-5p. However, it is apparent from this data
that dysregulated c-miR-15a-5p and c-miR-17-5p to
changing nutrient status could be another molecular fea-
ture of the metabolic inflexibility that is important in the
widespread loss of metabolic control and disease patho-
biology of insulin-resistant states. This study data there-
fore further suggest as yet poorly understood role for c-
miRNA in the adaptive regulation of whole-body re-
sponsiveness to altered nutritional status. This and many

additional studies demonstrate the possible value of c-
miRNAs as minimally invasive biomarkers of disease
risk, diagnosis and progression [10]. This study further
suggests possible use to examine dynamic and diurnal
changes as yet another tool to more precisely identify
disease risk.
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