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Abstract

Background: Previous observational studies have provided conflicting results on the association between serum
iron status and the risk of breast cancer. Considering the relevance of this relationship to breast cancer prevention,
its elucidation is warranted.

Object: We used a two-sample Mendelian randomisation (MR) study to explore the causal relationship between
serum iron status and the risk of breast cancer.

Method: To select single nucleotide polymorphisms (SNPs) that could be used as instrumental variables for iron
status, we used the Genetics of Iron Status consortium, which includes 11 discovery and 8 replication cohorts,
encompassing 48,972 individuals of European descent. Moreover, we used the OncoArray network to select SNPs
that could be considered instrumental variables for the outcome of interest (breast cancer); this dataset included
122,977 individuals of European descent with breast cancer and 105,974 peers without breast cancer. Both
conservative (SNPs associated with overall iron status markers) and liberal (SNPs associated with the levels of at
least one iron status marker) approaches were used as part of the MR analysis. For the former, we used an inverse-
variance weighted (IVW) method, whereas for the latter, we used the IVW, MR-Egger regression, weighted median
and simple mode methods.

Results: When the conservative approach was used, iron status showed no significant association with the risk of
breast cancer or any of its subtypes. However, when the liberal approach was used, transferrin levels were found to
be positively associated with the risk of ER-negative breast cancer based on the simple mode method (OR for MR,
1.225; 95% Cl, 1.064, 1.410; P = 0.030). Nevertheless, the levels of the other iron status markers showed no
association with the risk of breast cancer or its subtypes (P > 0.05).

Conclusion: In our MR study, the liberal approach suggested that changes in the concentration of transferrin could
increase the risk of ER-negative breast cancer, although the levels of other iron status markers had no effect on the
risk of breast cancer or its subtypes. This should be verified in future studies.
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Introduction

The morbidity of breast cancer is increasing, affecting
the quality of life of patients and their families and in-
creasing their economic burden. Oxidative stress, a
known cause of breast cancer, may have a role in this
process [1]. Iron is a necessary micronutrient for the hu-
man body [2], and it plays an important role in various
physiological processes, such as electron transfer, oxygen
transport, immune function, DNA synthesis and energy
production [3, 4]. Moreover, iron catalyses the gener-
ation of reactive oxygen species, and it could thus in-
crease both oxidative stress and oncogene activation.
Therefore, levels of iron in the body may affect the de-
velopment of breast cancer [2, 5, 6].

Previous epidemiological studies have reported that
higher levels of iron may be associated with a modestly
increased risk of breast cancer [7, 8]. In contrast, studies
by Quintana Pacheco et al. and Cade et al. have found
that high levels of iron show an inverse relationship with
breast cancer risk [9, 10]. Further, study by Kabat et al.
has shown that iron status is not associated with the risk
of breast cancer [11]. The link between iron status and
breast cancer risk is therefore under much debate.

Previous studies have reported the presence of con-
founding factors, such as post-natal living environment,
behaviour and habits, social status and environmental
factors, that affect the association between iron status
and breast cancer risk [12]. Indeed, such confounding
factors could affect the causal inferences obtained in
traditional epidemiological studies. Moreover, it is pos-
sible that breast cancer and iron levels have a reverse
causal relationship, which could further affect the con-
clusions of traditional observational epidemiological
studies.

Mendelian randomisation (MR) — a process in which
genetic variations closely related to the exposure variable
are used as instrumental variables — can help overcome
the limitations of traditional epidemiological studies and
allow us to make causal inferences regarding the effect
of a particular exposure on an outcome [13]. Because al-
leles follow random distribution during gametogenesis,
fertilised eggs have random genetic variants; thus, the
genetic variations associated with the outcome or expos-
ure are not affected by confounding factors or reverse
causality [12].

To our knowledge, there have been no MR-based
studies examining the relationship between iron status
and breast cancer risk, even though the delineation of
this relationship could have significant utility in breast
cancer prevention and treatment. To this end, in the
present study, we used MR to investigate whether iron
status is related to the incidence of breast cancer using
publicly available data from genome-wide association
studies (GWASs).
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Methods

We applied two-sample MR to summary data from
the respective GWASs (Fig. 1). The original studies
had been performed after obtaining informed consent
from participants and had also received ethical ap-
proval. We used single nucleotide polymorphisms
(SNPs) that showed strong relationships with total
serum iron status as instrumental variables to explore
the effect of iron status on breast cancer risk. By
adjusting for the relationship of the instrumental vari-
ables (SNPs) with iron status and breast cancer, we
estimated the effect of systemic iron status on breast
cancer risk. To investigate whether iron status acts as
a potential bias or mediator in the relationship be-
tween breast cancer risk and other breast cancer risk
factors, we analysed the relationship between the
SNPs associated with iron status and breast cancer
risk factors.

Data sources: exposure

We obtained summary data from the largest meta-
GWAS containing information on iron status, the
Genetics of Iron Status (GIS) consortium, and per-
formed MR analysis. This database included data on
serum iron levels, transferrin levels, ferritin levels, and
transferrin saturation. Data from 11 discovery and 8
replication cohorts encompassing 48,972 individuals
of European ancestry were collected [14]. Benyamin
et al. had performed genome-wide analyses within
each cohort based on a uniform analysis plan after
adjustment for factors such as principal component
scores and age. Furthermore, the thresholds of the
population stratification and quality control for each
cohort were imputed into the score > 0.5, Hardy—
Weinberg Equilibrium (HWE) > 10°%, minor allele fre-
quency (MAF) > 0.01 [14].

Data sources: outcome

Publicly available summary data on breast cancer were
obtained from the largest meta-GWAS containing data
on breast cancer risk — the OncoArray network —
which contains data regarding five cancers: breast, ovar-
ian, prostate, lung, and colorectal cancer [15]. The breast
cancer database contained information on 122,977 indi-
viduals of European ancestry with breast cancer (cases)
and 105,974 peers (controls). Of the case cohort, 69,501
individuals had ER-positive and 21,468 individuals had
ER-negative breast cancer.

The thresholds of the population stratification and
quality control for the GWAS analysis for the cohort
were imputed into the score > 0.3, HWE > 107*%, and
MAF > 0.01. This information has been previously
reported [16, 17].
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Fig. 1 Related databases and analysis methods in MR analysis. The publicly available summary data of SNP phenotypes were obtained from the
largest meta-GWAS databases. The effect of iron status on asthma was estimated using a conservative approach (IVs: only SNPs connected with
the concentrations of ferritin, serum iron and transferrin saturation were increased, concentrations of transferrin was decreased and systemic iron
status would be increased) and a liberal approach (IVs: one of the SNPs was associated with breast cancer). In conservative instruments set, the
inverse-variance-weighted (IVW) method was used, and in liberal instruments set, the IVW, MR Egger regression, weighted median and simple
mode methods were used. MR, Mendelian randomization; IVs, instrumental variables; SNP, single nucleotide polymorphism; MR Egger, Mendelian
randomization—-Egger regression method; BMI, body mass index

Selection of instrumental variables

Instrumental variables that showed a strong association
with iron status (P < 5 x 107%) were selected from the
GIS consortium (Tables 1, 2, 3, 4) [14]. All the SNPs
could be found in the OncoArray network and showed
linkage equilibrium (all pairwise r* < 0.01). None of the
SNPs that were chosen as instrumental variables were
correlated with breast cancer (P > 0.05). The corre-
sponding statistical indicators (beta and SE) were ob-
tained from the GIS consortium and OncoArray
network databases. SNPs for iron status from the GIS
consortium corresponded to the European population,
with a sample size of 48,972 cases. SNPs for breast

cancer from the OncoArray network database corre-
sponded to the same European ethnic group, with a
sample size of 122,977.

To select instrumental variables, we used two analysis
methods: conservative and liberal variable analyses. For
conservative variable analyses, 3 SNPs (rs855791,
rs1800562, rs1799945) strongly associated with the in-
creasing concentrations of ferritin, serum iron and trans-
ferrin saturation and decreasing concentrations of
transferrin (P < 5 x 107%) were selected. Increased con-
centrations of ferritin and serum iron; increased trans-
ferrin saturation and decreased concentrations of
transferrin would cause an improvement in systemic

Table 1 Effect of iron concentration GWAS identified variants on breast cancer

SNPs Chr: BP Locus Effect/ Iron (umol/L) Overall breast cancer ER-positive breast ER-negative breast
(Build 37) other cancer cancer
allele  Boab (SE)  Pvalue  Beta® (SE)  Pvalue Beta®(SE)  Pvalue Beta® (SE) P value
18177240 3: 133,477,701 TF T/G —0.066(0.007) 6.65E-20 —0.014 (0.007) 0.040 —0.014 (0.008) 0.072 —-0.012 (0.012) 0304
rs1800562° 6: 26,093,141  HFE A/G 0.328(0.016)  2.72E-97 —0.003 (0.014) 0.831 0.010 (0.016) 0535 —0.027 (0.025) 0.288
rs7385804 7:100,235970 TFR2 A/C 0.064(0.007)  1.36E-18 0.016 (0.007)  0.015 0.010 (0.008) 0225 0017 (0.012)  0.151
rs855791%  22: 37,462,936 TMPRSS6 A/G —0.181(0.007) 1.32E-139 —0.003 (0.006) 0.627 0.001 (0.008) 0.852 —0.013 (0.012) 0.255
rs1799945° 6:26,091,179  HFE /G —0.189(0.010) 1.10E-81  —0.001 (0.009) 0913 —0.003 (0.011) 0.804 —-0.014 (0.016) 0.380

23 SNPs used in the conservative analyses. GWAS genome-wide association studies, SNPs single nucleotide polymorphisms, Chr chromosome, BP base pair, SE

standard error, ER oestrogen receptor
PBeta units are per-allele effect estimates in iron concentrations
“Per-allele logarithm of the odds ratios between breast cancer cases and controls
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Table 2 Effect of transferrin concentration GWAS identified variants on breast cancer

SNPs Chr: BP Locus Effect/ Transferrin (umol/L) Overall breast ER-positive breast ER-negative breast

(Build 37) other cancer cancer cancer
allele Beta® (SE) Pvalue Beta®(SE) Pvalue Beta® (SE) P value Beta®(SE) P value

rs744653  2:190,378,  WDR75- T/C 0.068 (0.010) 1.35E-11 —0.009 03548  —0.007 0500  -0016 0310
750 SLC40AT (0.009) (0.011) (0.016)

rs8177240 3: 133477, TF T/G —0.380 843E -0014 0.039 -0.014 0.072 —0.012 0.304
701 (0.007) -610 (0.007) (0.008) (0.012)

rs9990333  3: 195,827, TFRC T/C —0.051 195E-13  —-0.012 0.059 -0.015 0.062 —0.015 0210
205 (0.007) (0.007) (0.008) (0.012)

rs1800562° 6: 26,093, HFE A/G —-0479 8.90E —0.003 0.831 0.010 (0.016) 0535 -0.027 0.288
141 (0.016) -196 (0.014) (0.025)

rs1799945° 6: 26,091, HFE /G 0.114 (0.010) 9.36E-30 -0.001 0913 —-0.003 0804  -0014 0.380
179 (0.009) 0.011) (0.016)

54921915  8: 18,272, NAT2 A/G 0.079 (0.009) 7.05E-19 -0.010 0.187 -0.012 0186  -0014 0.295
466 (0.007) (0.009) (0.013)

rs174577 11: 61,604, FADS2 A/C 0.062 (0.007) 228E-17 —0.006 0341 0.002 (0.008) 0.761 —0.033 0.007
814 (0.007) (0.012)

rs6486121 11: 13,355, ARNTL T/C —0.046 3.89E-10 -0.004 0.587 —0.002 0.809 —0.009 0450
770 (0.007) (0.006) (0.007) (0.012)

rs855791%  22: 37,462, TMPRSS6 A/G 0.044 (0.007) 198E—-09 —0.003 0.627 0.001 (0.008) 0.852 —0.013 0.255
936 (0.006) (0.012)

23 SNPs used in the conservative analyses. GWAS genome-wide association studies, SNPs single nucleotide polymorphisms, Chr chromosome, BP base pair, SE

standard error, ER oestrogen receptor
PBeta units are per-allele effect estimates in transferrin concentrations

“Per-allele logarithm of the odds ratios between breast cancer cases and controls

iron status [18]. Therefore, the genetic instrumental vari-
ables would have a coincident relationship with iron sta-
tus via these four markers.

For liberal variable analyses, the SNPs strongly affili-
ated with at least one of the iron markers (5 SNPs for
serum iron, 9 SNPs for transferrin, 5 SNPs for ferritin
and 5 SNPs for transferrin saturation) in the GWAS (P
< 5 x 107%) were selected. Previous study has shown that
there is a causal relationship between body mass index
(BMI) and breast cancer [19]. Therefore, in order to rule
out the possible confounding effect on the relationship

Table 3 Effect of ferritin concentration GWAS identified variants on

between iron status and breast cancer, SNPs associated
with BMI were retrieved from the GWAS database,
GIANT, and we verified whether any of these were se-
lected as instrumental variables in our study. In addition,
we ensured that none of the instrumental variables were
associated with the risk of breast cancer (all P > 0.05).

Validation of selected instrumental variables

To be validated as instrumental variables, the selected
SNPs had to meet three important criteria [20]. First,
they had to be strongly associated with the exposure

breast cancer

SNPs Chr: BP Locus Effect/ Ferritin (log) (umol/ Overall breast cancer ER-positive breast ER-negative breast

(Build 37) other L) cancer cancer
allele Beta® (SE) P value Beta (SE) P value Beta“ (SE) P value Beta® (SE) P value

rs744653  2:190,378,  WDR75- T/C —0.089 8.37E —0.008 (0.009) 0.355 —0.007 (0.011) 0500  -0.016 0310
750 SLC40A1 (0.010) -19 (0.016)

rs1800562° 6: 26,093, HFE A/G 0.204 (0.016) 1.54E —0.003 (0.014) 0.831 0.010 (0.016) 0535 -0.027 0.288
141 -38 (0.025)

1s1799945° 6: 26,091, HFE C/G —0.065 1.71E —0.001 (0.009) 0913 —0.003 (0.011) 0.804 -0.014 0.380
179 (0.010) -10 (0.016)

rs411988 17: 56,709, TEX14 A/G —0.044 1.59E —0.019 (0.006) 0.003 —0.014 (0.008) 0.079 —0.027 0.020
034 (0.007) -10 (0.012)

rs855791%  22: 37,462, TMPRSS6 A/G —0.055 1.98E —0.003 (0.006) 0627 0.001 (0.008) 0.852 -0.013 0.255
936 (0.007) -09 (0.012)

23 SNPs used in the conservative analyses. GWAS genome-wide association studies, SNPs single nucleotide polymorphisms, Chr chromosome, BP base pair, SE

standard error, ER oestrogen receptor
PBeta units are per-allele effect estimates ferritin concentrations

“Per-allele logarithm of the odds ratios between breast cancer cases and controls
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Table 4 Effect of transferrin saturation concentration GWAS identified variants on breast cancer

SNPs Chr: BP Locus Effect/ Transferrin saturation Overall breast cancer ER-positive breast ER-negative breast
(Build 37) other (pmol/L) cancer cancer
allele Beta® (SE) Pvalue Beta® (SE) P value Beta“ (SE) P value Beta“ (SE) P value
rs8177240 3:133,477,701 TF T/G 0.100 (0.008)  7.24E-38 —0.014 (0.007) 0.039 —0.014 (0.008) 0.072 -0.012 (0.012) 0304
rs1800562° 6: 26,093,141  HFE A/G 0577 (0.016)  2.19E-270 —0.003 (0.014) 0.831 0010 (0.016)  0.535 —0.027 (0.025) 0.288
rs1799945° 6: 26,091,179  HFE /G —0.231 (0.010) 5.13E-109 -0.001 (0.009) 0913 —0.003 (0.011) 0.804 —0.014 (0.016) 0380
rs7385804 7:100,235970 TFR2 A/C 0.054 (0.008) 6.07E-12 0.016 (0.007) 0.015 0.010 (0.008)  0.225 0017 (0.012) 0151
rs855791%  22:37,462,936 TMPRSS6 A/G —0.190 (0.008) 641E-137 —0.003 (0.006) 0.627  0.001 (0.008) 0852  —0.013(0.012) 0.255

23 SNPs used in the conservative analyses. GWAS genome-wide association studies, SNPs single nucleotide polymorphisms, Chr chromosome, BP base pair, SE

standard error, ER oestrogen receptor

PBeta units are per-allele effect estimates in saturation concentration concentrations

“Per-allele logarithm of the odds ratios between breast cancer cases and controls

(iron status). Second, they had to not be associated with
any confounders of the relationship between the expos-
ure (iron status) and outcome (breast cancer). Finally,
they should have influenced the outcome (breast cancer)
only via the exposure (iron status) (Fig. 2).

To minimise any possible weak instrumental vari-
able bias, we ensured that the F statistic was above
10, indicating that the study had sufficient strength.
We ensured that the F statistic for the instrumental
variables was above 10, and this was used to impose
restrictions on the possible bias [21]. To limit the
possibility of bias related to population stratification,
we ensured that both exposure and outcome cohorts
included individuals of European descent. We per-
formed three analyses to resolve issues associated
with pleiotropy. First, we assessed the SNPs that were
known asthma risk factors associated with breast can-
cer. Second, to analyse MR estimates, we used two
approaches — the conservative approach (primary
analysis) and the liberal approach (secondary analysis).
Third, unknown directional pleiotropy was assessed
using the MR-Egger test.

MR analyses

Two-sample MR was performed for testing the causal
relationship between iron status and breast cancer.
Moreover, breast cancer was subdivided as ER-positive
and ER-negative breast cancer. Conservative and liberal
methods were used in the MR analyses. As part of the
conservative analysis, we used the inverse-variance-
weighted (IVW) [21] method to conduct MR analyses.
As part of the liberal analysis, we used the IVW, MR-
Egger regression [22], weighted median, and simple
mode methods [23] to estimate the effect of iron status
on breast cancer risk. All of the data were selected from
the OncoArray network and GIS consortium which were
publicly available GWAS data (Fig. 1). R package ‘“Two-
SampleMR’ was used for MR analysis. Beta, SE and P
values were obtained for the MR analysis. Beta values
were transformed to odds ratios (ORs) using the follow-
ing formula: OR = exp (beta). The 95% confidence inter-
val (CI) was computed as follows: CI = exp (beta + 1.96
x SE). Due to the limited consistency in publicly avail-
able data, the relationship between instrumental vari-
ables and other potential confounders, such as exercise

(Iron status-related SNPs)

v ]
)

~
~
~

~
—~
—

Exposure

(Iron status)

\____X___,/

Fig. 2 Diagram of the hypothesis of instrumental variables in Mendelian randomization study. IV, instrumental variable; BMI, body mass index
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and drinking, was difficult to assess. Hence, we used the
GWAS catalogue database (https://www.ebi.ac.uk/gwas)
to search for other phenotypes (including exercise,
drinking, smoking, C-reactive protein levels, white blood
cell counts) related to the selected instrumental variable
SNPs and manually removed these SNPs from the MR
analysis to rule out possible pleiotropic effects.

Sensitivity analyses
For the sensitivity analyses, we used the IVW and MR-
Egger tests to evaluate heterogeneity and displayed the
results using forest plots showing the value for each SNP
and Cochran’s Q statistics [24, 25]. In addition, by delet-
ing one SNP at a time and recomputing estimates for
the overall instrument variable pool, a leave-one-out
analysis was performed to identify SNPs that had a
greater or non-proportional effect. To ensure that the
MR analysis results were more robust, we also per-
formed an MR-Egger statistical sensitivity analysis,
which limited the pleiotropic effects of the instrumental
variables. In MR-Egger regression, the intercept, as an
indicator of the average pleiotropic deviation, is allowed
to be freely estimated [26]. In the conservative approach,
the MR-Egger method regression was not performed to
test pleiotropic effects, because only 3 SNPs were used
and one SNP was removed for LD, making the data in-
sufficient for analysis [27]. For the same reason, the
pleiotropic effects of iron and transferrin saturation on
overall breast cancer risk could not be tested.

All above analyses were performed by R, version 3.6.1.

Results

Instrumental variables for iron status and breast cancer
risk

Tables 1, 2, 3 and 4 show the connections of iron status
with SNPs that were used as instrumental variables in
the liberal and conservative analyses. For the liberal ana-
lyses, Tables 1, 2, 3 and 4 show the characteristics of the
genetic variation related to iron concentration (3 SNPs
for overall breast cancer and 5 SNPs for ER-positive
breast cancer and ER-negative breast cancer), transferrin
concentration (9 SNPs for ER-positive breast cancer and
8 SNPs for overall breast cancer and ER-negative breast
cancer), ferritin (log) concentration (4 SNPs for ER-
positive breast cancer and 5 SNPs for overall breast can-
cer and ER-negative breast cancer) and transferrin satur-
ation concentration (3 SNPs for overall breast cancer
and 5 SNPs for ER-positive breast cancer and ER-
negative breast cancer), respectively. For the conservative
analyses, we used 3 SNPs association with iron levels,
transferrin levels, ferritin levels and transferrin satur-
ation (rs1800562, rs1799945, and rs855791). F statistics
for all the instrumental variables ranged from 40
(rs651007, ABO gene) to 3346 (rs8177240, TF gene),
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showing that all the SNPs were strong instrumental vari-
ables (Tables 1, 2, 3, 4).

The genetic instrument and breast cancer risk

None of the individual SNPs were associated with BMI,
which is a confounding factor for breast cancer. In short,
none of the selected variables associated with breast can-
cer risk in the liberal or conservative analyses were asso-
ciated with increasing BMI (all P > 0.05) (Table 5).

Effect of iron status on breast cancer

Figure 3 shows the results of MR in examining the asso-
ciation of genetically predicted iron status with the risk
of breast cancer. The ORs for the risk of breast cancer
and its subtypes per SD increase in the levels of each
iron marker are displayed. In the conservative analysis,
none of the four iron status was found to be associated
with overall breast cancer, ER-positive breast cancer and
ER-negative breast cancer risk (all P > 0.05). In the lib-
eral analysis, we found a positive correlation between
transferrin levels and ER-negative breast cancer risk
based on the simple mode (OR, 1.225; 95% CI, 1.064,
1.410; P = 0.030). However, the status of other iron
markers had no association with the risk of breast cancer
or its subtypes (P > 0.05).

Sensitivity analyses

For MR estimates, we used the liberal instruments
method, and the heterogeneity for overall breast cancer,
ER-positive breast cancer, and ER-negative breast cancer
did not show statistical significance (all P > 0.05). Using
the IVW method, we found no evidence of heterogeneity
for the associations between the status of the four iron
markers (iron, transferrin, ferritin and transferrin

Table 5 P value for the relationship between BMI and all
genetic variations

SNPs BMI
(kg/m?)?
P
15174577 0.104
rs1799945 0.124
rs1800562 0.124
rs411988 0.236
14921915 0.236
rs6486121 0.078
157385804 0.502
15744653 0813
158177240 0.941
rs855791 0.083
rs9990333 0.937

2P value for relationship between SNPs and BMI selected from the Genetic
Investigation of Anthropometric Traits consortium
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randomization; MR-Egger, Mendelian randomization-Egger regression method; OR: odds ratio; 95% Cl, 95% confidence interval; ER,
oestrogen receptor
(.

saturation) and breast cancer risk (for overall breast can-
cer: Q 0.02, 7.59, 1.12 and 0.08; for ER-positive breast
cancer: Q 4.99, 6.21, 2.07 and 3.16; for ER-negative
breast cancer: Q 3.65, 7.68, 2.81 and 4.66, respectively;
all P > 0.05). Moreover, when using the MR-Egger
method in the liberal analysis, we did not identify aggre-
gated directional pleiotropy between the levels of the
four iron markers and breast cancer risk (ER-positive
breast cancer: intercept —0.005, 0.003, 0.008 and 0.012;
ER-negative breast cancer: intercept 0.010, 0.005, —0.001
and 0.017; overall breast cancer: intercept 0.0005 [trans-
ferrin] and —0.0004 [ferritin]; all P > 0.05) (Supplemen-
tary Figs. 1, 2 and 3).

Importantly, the MR estimates did not radically
change when the leave-one-out analyses were performed,
although the estimated direction showed differences
(Supplementary Figs. 4, 5, 6 and 7). Previous GWASs
have reported that rs174577 is also related with low-
density lipoprotein cholesterol (LDL-D), high-density

lipoprotein cholesterol (HDL-C), triglyceride (TG) and
total cholesterol (TCHO) levels; rs4921915 is also related
with TG and TCHO, and rs1800562 and rs651007 are
related with LDL-C and TCHO [28]. Nevertheless, re-
moving the 4 SNPs (rs174577, rs4921915, rs1800562 and
rs651007) did not change the trends in the obtained re-
sults (Supplementary Figs. 4, 5, 6 and 7).

Discussion

Previous traditional observational studies have shown in-
consistent results regarding the relationship between
iron status and breast cancer [7-11], likely owing to dif-
ferences in race, ethnicity and sample sizes. Moreover,
reverse causality and residual confusion may also be
present in these studies, and unconsidered confounding
factors or unknown risk factors may influence the ob-
served correlations between iron status and breast can-
cer. To overcome these limitations, in this study, we
conducted two-sample MR to estimate the causal
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relationship between iron status and breast cancer risk
using summary statistics data from the largest meta-
GWASs of the European population. Our results showed
that serum transferrin levels were positively associated
with the risk of ER-positive breast cancer, but that other
iron statuses had no association with the risk of breast
cancer or its subtypes. To the best of our knowledge, the
present study is the first to use MR to investigate the as-
sociation between iron status and breast cancer.

In the causal estimation of the relationship between
serum transferrin and ER-negative breast cancer risk, we
used the simple mode approach in addition to the three
traditional methods. A positive correlation [OR, 1.225
(1.084, 1.366); P = 0.030] was observed between transfer-
rin levels and ER-negative breast cancer risk. It has been
speculated that a high concentration of transferrin and
transferrin receptors could increase the transport effi-
ciency of iron, increasing intracellular iron concentra-
tion. This increase in iron concentration could lead to
lipid peroxidation, gene mutations, DNA strand break-
age and oncogene activation, thus leading to an in-
creased risk of breast cancer [29, 30].

In addition, the simple mode approach is a new
method wherein the mode-based estimate can be used
to obtain a single causal estimation from multiple gen-
etic instruments. It provides robustness to horizontal
pleiotropy in a different manner than the IVW, MR-
Egger and weighted median methods. The simple mode
provides better detection capability than the MR-Egger
estimate, although its detection capability is inferior to
that of the IVW and weighted median methods [17]. In
addition, the causal estimates of the simple mode for the
relationship between transferrin and ER-negative breast
cancer were marginally significant; hence, this relation-
ship needs to be studied further.

As there is some risk of pleotropic effects in MR esti-
mates [31], we searched for the possibility of this sec-
ondary effect using SNPs from the PubMed database.
Our online search identified 4 SNPs — rs1800562 in
HFE, rs174577 in FADS2, rs651007 in ABO and
rs4921915 in NAT2 — related to LDL-C, TCHO, and/or
TG levels, which have been reported to influence breast
cancer risk [31, 32]. Nevertheless, the removal of these
SNPs from our analysis did not cause any substantial
changes in the MR estimation results, indicating that
our results are unlikely to be biassed by blood lipid
levels. In order to further test the robustness of our find-
ings with regard to potential pleiotropic effects, we in-
creased the number of SNPs available for analysis by
relaxing the selection criteria for instrumental variables.
In the sensitivity analysis, we found no significant differ-
ences via both the conservative and liberal approaches.
The slight difference in estimation and confidence inter-
val width between the different MR analysis methods
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may be accidental or a result of differences in measure-
ment error, instead of reflecting actual differences. In
addition, in the pleiotropic test, the MR-Egger method
detected no bias. The public GWAS data on both expos-
ure and outcome came from European cohorts, minimis-
ing the population bias. Further, our calculation results
for the leave-one-out MR analysis were similar to the
main MR estimates. Taken together, it appeared that
there was no serious bias in the overall analysis and con-
clusion of our study.

Breast cancer is a heterogeneous disease with differ-
ent histopathology and molecular subtypes, each with
their own clinical prognosis and risk factors [33]. Pre-
vious studies have suggested that obesity may increase
the risk of breast cancer [34]. Furthermore, BMI is
related to iron concentrations and breast cancer risk
[35, 36]. Data on BMI-related genetics were obtained
from the GIANT consortium for 339,224 individuals
of European descent [37]. None of the 11 SNPs we
selected as instrumental variables were significantly
associated with BMI (Table 5).

The change in iron status and the risk of breast cancer
may be caused by common exposure factors. For ex-
ample, inflammation affects iron status, increasing serum
ferritin concentrations and reducing serum iron concen-
tration [28, 38], and it could also increase oxidative
tumour stress. Hence, inflammation may lead to an in-
crease in iron status and the risk of breast cancer. How-
ever, due to the limited literature on this topic, further
research is needed to fully explore these relationships.

There are some advantages to our study. We evalu-
ated summary data from the largest meta-GWASs
available, the GIS consortium and the OncoArray net-
work. All the data extracted were from individuals of
European descent, reducing any ancestry-related bias.
In addition, we used two analysis methods to select
instrumental variables — conservative and liberal ana-
lyses — which guarantees the robustness of our
causal estimation.

However, there are some limitations to our present
study. First, due to the limitations of the publicly avail-
able GWAS databases, it was difficult to perform hier-
archical analysis according to factors such as age and sex
in the combined exposures and outcome databases. Sec-
ond, we used liberal instruments, which although pro-
vide more power to the study, also make the study
particularly vulnerable to effects of pleiotropy. In this
study, although we tried to reduce the effects of plei-
otropy, bias due to the unknown biological functions of
the SNPs concerned with iron status may be inevitable.
Moreover, under ideal condition, for MR analysis, a sam-
ple size as large as possible should be used to make the
results more reliable. Although the data for iron status
and breast cancer were obtained from the GWAS



Hou et al. Genes & Nutrition (2021) 16:9

databases with the largest sample size in the world, the
sample size may still not have been fully ideal. The co-
horts used in our study are all from European races,
which contributing to reducing the bias brought by
races. However, it is unknown whether the results are
suitable for other races. Therefore, more researches
should be conducted.

Conclusion

Our MR study indicates that changes in the serum
transferrin concentration could increase the risk of
ER-negative breast cancer, whereas the status of the
other three iron statuses had no association with
breast cancer. As the liberal instrument was relatively
weak, these findings need to be verified in further
studies.
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