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quantitative real-time PCR analysis in a
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Abstract

Background: Quantitative real-time polymerase chain reaction (qPCR) is a reliable and efficient method for
quantitation of gene expression. Due to the increased use of qPCR in examining nutrient-gene interactions, it is
important to examine, develop, and utilize standardized approaches for data analyses and interpretation. A
common method used to normalize expression data involves the use of reference genes (RG) to determine relative
mRNA abundance. When calculating the relative abundance, the selection of RG can influence experimental results
and has the potential to skew data interpretation. Although common RG may be used for normalization, often little
consideration is given to the suitability of RG selection for an experimental condition or between various tissue or
cell types. In the current study, we examined the stability of gene expression using BestKeeper, comparative delta
quantitation cycle, NormFinder, and RefFinder in a variety of tissues obtained from iron-deficient and pair-fed iron-
replete rats to determine the optimal selection among ten candidate RG.

Results: Our results suggest that several commonly used RG (e.g., Actb and Gapdh) exhibit less stability compared
to other candidate RG (e.g., Rpl19 and Rps29) in both iron-deficient and iron-replete pair-fed conditions. For all
evaluated RG, Tfrc expression significantly increased in iron-deficient animal livers compared to the iron-replete pair-
fed controls; however, the relative induction varied nearly 4-fold between the most suitable (Rpl19) and least
suitable (Gapdh) RG.

Conclusion: These results indicate the selection and use of RG should be empirically determined and RG selection
may vary across experimental conditions and biological tissues.

Keywords: Anemia, housekeeping genes, normalization genes, mRNA expression, quantitative real-time PCR

Background
Iron is an essential nutrient and is involved in many
mammalian processes including DNA synthesis, erythro-
poiesis, ATP production, and oxygen transport [1, 2]. In
humans, iron deficiency (ID) remains the most common
single nutrient deficiency and affects approximately 25%
of the world’s population or 1.62 billion people accord-
ing to the World Health Organization [3]. Due to its

importance in biological functions, inadequate levels of
iron lead to microcytic anemia, diminished cognitive de-
velopment, and decreased ATP production [1, 4].
A variety of biomarkers and methodologies exist to in-

vestigate iron status; for example, measuring serum fer-
ritin and transferrin saturation are common practices
and often employed together to enhance the detection of
systemic ID [5]. To investigate the iron content of bio-
logical tissues, inductively coupled plasma mass spec-
trometry is a useful strategy due to its low detection
limits [6]. In many instances, however, indirect measures
are needed to further understand iron homeostasis. In
these instances, the addition of immunoblotting,
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quantitative real-time PCR (qPCR), and iron regulatory
protein (IRP) RNA-binding assays can be utilized to de-
termine the abundance of proteins such as ferritin and
transferrin receptor [7], the gene expression of mRNA
encoding proteins such as transferrin receptor or hepci-
din [8], and IRP-binding activity, respectively [9]. Of
these approaches, qPCR has become the gold standard
for evaluating gene expression due to its sensitivity, ac-
curacy, and simplicity [10, 11]. Therefore, fully under-
standing this technique and standardizing the methods,
along with analyzing and interpreting qPCR results, are
of great importance.
To compare differences in gene expression (i.e.,

mRNA abundance) between experimental groups, qPCR
is used by applying Kary Mullis’ novel method of ampli-
fying DNA and using probe-based chemistries [11–13].
Following exposure to experimental conditions, there
are 4 major steps to successfully complete qPCR: (1)
harvest quality RNA from experimental groups, (2) re-
verse transcribe RNA templates into complementary
DNA (cDNA), (3) amplify cDNA with probe-based
chemistries by qPCR, and (4) quantify relative mRNA
abundance. First, it is essential that RNA integrity is
maintained during isolation and purification as poor
quality RNA may compromise experimental results [14].
Second, since qPCR amplifies only DNA by taking ad-
vantage of DNA polymerases, the quality RNA must be
reverse transcribed into cDNA by the enzyme reverse
transcriptase [11]. The third step, amplification of the
cDNA, utilizes fluorescence-based molecules that bind
to DNA and fluoresce following excitation. As each
qPCR cycle is repeated, new copies of the cDNA tem-
plate are generated. Thus, the fluorescence signal is dir-
ectly proportional to the abundance of DNA. Finally, to
quantify relative mRNA abundance, it is important to
control for sample-to-sample variation by one of two
strategies, the standard curve method or the comparative
CT method. Both methods amplify a target gene and a
control gene. The standard curve method expresses the
relative mRNA abundance to the standard curve of the
calibrator (i.e., untreated sample) and the comparative
CT method normalizes the threshold cycle values of the
target gene to the control gene before comparing experi-
mental groups.
The normalization process accounts for discrepancies

in RNA isolation, reverse transcription, and qPCR [15,
16]. Normalization utilizes invariant control genes that
are typically referred to as “housekeeping” or “reference”
genes (RG) [17]. Ideally, RG have minimal variation in
tissue or cell type and under different experimental con-
ditions; thus, RG are considered stable. Interestingly,
many RG have been reported to be regulated by experi-
mental conditions or tissue type [18] and subsequently
influence gene expression interpretation [15].

To date, there are many studies on RG selection for a
number of animal and cell models [19–22]; however,
there is limited data regarding RG selection in animal
models of dietary conditions. Consequently, the absence
of a systematic approach to RG selection makes gene ex-
pression data potentially difficult to interpret and com-
pare between studies, and therefore less reliable. For
instance, Suzuki et al. [23] reported Gapdh and Actb
were used as RG in more than 60% of articles they
reviewed in high-impact journals. While these RG may
have been appropriate in those studies, both are affected
by hypoxia and cell cycle maturation [24, 25], and tissue
type [26]. Furthermore, a commonly used iron-chelating
reagent, desferrioxamine, is considered a hypoxia-
mimetic which may also regulate these RG. Some pro-
gress has been made in terms of RG selection in certain
models, though the extent to which these results can be
applied to all models remains unclear [16, 21]. The focus
of this study was to examine RG stability in a weanling
rat model of dietary ID and to determine appropriate
RG for use in qPCR. Additionally, the extent to which
these RG were responsive to dietary ID was assessed.
We examined the stability of gene expression in ten
commonly used RG in qPCR (Actb, Gapdh, Hprt, Ppia,
Rpl19, Rpl22, Rpl27, Rplp0, Rps29, and Tbp) for their
candidacy to be used when comparing iron-deficient and
iron-replete pair-fed (PF) rat experimental conditions.
RG stability was also determined for individual tissues
including the gastrocnemius, heart, kidney, liver, lung,
and spleen under the same experimental conditions.
Using four RG computational programs (BestKeeper,
comparative delta quantification cycle (ΔCq), NormFin-
der, and RefFinder), we analyzed the gene stability to
predict the most suitable RG for studying the effects of
dietary ID on the regulation of gene expression [2, 20,
22, 27].

Results
Animal anthropometric data and iron status measure-
ments throughout the study are published elsewhere
[28]. In summary, the ID group exhibited greater than
50% reduction in hemoglobin, hematocrit, and serum
iron levels compared to both the control (C) and PF
groups. ID animals weighed ~ 20% less than the C
group; therefore, to control for the total diet consumed,
the PF group was fed an iron-sufficient diet to the level
of the ID group’s daily consumption. Importantly, there
were no differences in final body weight or rate of
weight gain between PF and ID groups. These results
are consistent with previous findings indicating that ID
animals exhibit decreased food intake and lower body
weight compared to C animals [29]. All RG analyses
were made utilizing the PF group instead of the C group

Fiddler and Clarke Genes & Nutrition           (2021) 16:17 Page 2 of 13



to account for any non-specific changes due to unequal
food intake.

BestKeeper analysis
BestKeeper software analysis ranks RG based on a pair-
wise correlation and then calculates the most suitable
RG based on geometric means assessing crossing points
(CP) or Cq. Among potential RG examined, if the criter-
ion (SDCq value < 1.0) was met, RG were considered
suitable for qPCR normalization [27]. Interestingly, when
analyzing RG in both experimental groups (PF and ID)
in individual tissue, all RG except one exhibited stability
based on the criteria (data not shown). Rplp0 failed to
meet the criteria in heart tissue (SDCq = 1. 2). After
analyzing each experimental group individually using an
all tissue combined approach, BestKeeper analyses indi-
cated high variation in RG expression in the PF group
with only Hprt meeting the criteria (Table 1) and mod-
erate variation in the ID group with five of the candidate
genes Hprt, Rps29, Tbp, Rpl19, and Rplp0 having an
SDCq value < 1.0 (Table 2). Finally, when combining
datasets from all tissues and both experimental groups
to determine which RG exhibits the least amount of
variability, Hprt and Rpl19 displayed the most stability
(Table 3). Interestingly, two commonly used RG in the
rat model of ID and other nutrition models, Actb and
Gapdh, exhibited poor stability with Actb having the
least stability in all BestKeeper analyses [30–32].

Comparative ΔCq analysis
Gene expression levels were analyzed for stability using
the comparative ΔCq method and standard deviations
(SD) [22]. Pairwise comparisons were utilized to deter-
mine ΔCq of the relative gene expression within individ-
ual tissues and in all tissues combined. Mean ΔCq and
SD were then averaged to interpret RG stability values
for each experimental condition individually (PF and ID)

and combined experimental conditions stability among
all tissues. Similar to Silver et al.’s results, certain genes
exhibited increased or decreased levels of deviation in
ΔCq among all tissues and experimental condition ana-
lyses [22]. Those genes calculated to have the lowest
mean SD were interpreted as having the most stability as
a RG. After examining treatment conditions separately,
Rpl22 and Hprt exhibited the most stability in PF ani-
mals and Rpl19 and Ppia exhibited the most stability in
ID animals. Finally, when combining datasets from each
tissue and both experimental groups to determine which
RG exhibits the most stability, Rpl19 and Actb had the
lowest mean SD and therefore the most stability, while
Rplp0 and Ppia had the highest SD or least stability
(Table 4).

NormFinder analysis
In contrast to the BestKeeper software, NormFinder
determines suitability of RG as a function of variabil-
ity. NormFinder software ranks potential RG using a
model-based approach. The methodology examines
sample subgroups (PF and ID herein), disparity in
intra- and intergroup expression, and from these
data calculates a stability value for candidate RG [2].
RG were assessed first in each tissue individually
and then in all tissues combined to determine appro-
priateness of a single RG for use in all tissues.
Among individual tissues, the most stable RG were
Rps29 in the heart, Tbp in the kidney and lung,
Rpl27 in the liver, and Ppia in the gastrocnemius
and spleen. Exhibiting the least stability, Actb ranked
poorly in nearly all tissues (Fig. 1A–F). After com-
bining data from the six individual tissues, Rps29
and Rpl27 were identified as the most stable RG and
Hprt and Gapdh as the least stable RG using Norm-
Finder (Fig. 2).

Table 1 BestKeeper descriptive statistics and ranking of reference genes in pair-fed iron-replete animals in all tissues

Hprt Rps29 Rplp0 Tbp Rpl27 Rpl22 Gapdh Actb Ppia Rpl19

Geo mean [CP] 22.68 17.72 19.08 24.32 18.3 17.89 17.92 17.13 19.89 22.72

CV 0.02 0.06 0.06 0.05 0.06 0.06 0.07 0.07 0.06 0.06

Min [CP] 21.28 15.75 17.05 22.54 15.77 15.87 16.13 14.85 17.79 19.52

Max [CP] 24.66 20.73 22.36 26.45 21.15 20.38 20.65 19.9 25.65 25.29

Std dev [± CP] 0.51 1.06 1.08 1.11 1.13 1.14 1.17 1.22 1.24 1.37

Min [x-fold] − 2.64 − 3.92 − 4.08 − 3.45 − 5.78 − 4.04 − 3.46 − 4.85 − 4.27 − 9.18

Max [x-fold] 3.94 8.05 9.71 4.37 7.21 5.64 6.63 6.85 54.44 5.92

Std dev [± x-fold] 1.42 2.08 2.11 2.16 2.19 2.2 2.25 2.33 2.37 2.59

Ranking 1 2 3 4 5 6 7 8 9 10

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes. RG are ordered from left to right
according to their SDCq value. Reference genes with a SDCq value < 1.0 are considered to be an appropriate reference gene when assessing gene expression in the
pair-fed animals. To determine the under- and over-expression of a reference gene relative to the gene’s geometric mean (x-fold), the min, max, and standard
deviation are calculated by the BestKeeper software
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RefFinder analysis
RefFinder is a software program that utilizes multiple
established algorithms (BestKeeper, ΔCq, geNorm, and
NormFinder) to calculate a comprehensive RG stability
value [33]. Each gene is assigned a weight based on each
algorithm’s geometric mean and weights are then com-
bined to conclude the overall RefFinder ranking. In the
individual tissues, the most stable RG were Hprt in the
heart, Rps29 in the kidney, Rplp0 in the lung, Rpl27 in
the liver, and Ppia in the gastrocnemius and spleen (Fig.
3A–F). After combining the six tissues, Rpl19 and Rps29
were identified as the most stable RG and Ppia and
Gapdh as the least stable (Fig. 4). Interestingly, when ex-
perimental conditions were analyzed separately (PF or
ID) and combined (PF and ID), Actb, Ppia, and Gapdh
all were ranked in the bottom half respectively (data not
shown).
Results from BestKeeper, comparative delta Cq, Norm-

Finder, and RefFinder computational programs were

organized to develop a relative overall ranking. The
ranking was based on PF and ID experimental groups
and all tissues combined. The top two candidates (in
rank order of most suitable to least suitable) were Rpl19
and Rps29. The least suitable candidate was Gapdh, with
Actb, Ppia, and Rplp0 ranking second in a three-way tie
(Table 5). The same analyses were completed for the top
two candidates or most suitable genes in each specific
tissue (Table 6).
Lastly, to compare the impact of RG on target gene

abundance and the interpretation of data, Tfrc gene ex-
pression in the liver of PF and ID animals was examined.
Using the two best RG based on the overall ranking,
(Rpl19 and Rps29), and two commonly used genes that
ranked poorly in our analyses (Gapdh and Ppia), the
relative abundance of Tfrc mRNA was determined using
the ddCt method [34]. Although Tfrc expression in-
creased significantly in ID animals regardless of the RG
utilized, the relative fold changes varied (Fig. 5) (p <

Table 2 BestKeeper descriptive statistics and ranking of reference genes in iron-deficient animals in all tissues

Hprt Rps29 Tbp Rpl19 Rplp0 Ppia Rpl27 Rpl22 Actb Gapdh

Geo mean [CP] 22.57 17.48 24.16 17.44 19.2 17.6 18.8 17.99 16.64 22.47

CV 0.03 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07

Min [CP] 21.13 15.55 21.67 15.45 17.26 15.48 16.62 15.68 14.49 19.18

Max [CP] 24.39 18.96 25.7 18.51 20.59 19.05 20.78 19.59 18.16 25.85

Std dev [± CP] 0.64 0.89 0.91 0.93 0.94 1.01 1.06 1.08 1.14 1.48

Min [x-fold] − 2.7 − 3.81 − 5.6 − 3.98 − 3.83 − 4.35 − 4.53 − 4.95 − 4.42 − 9.75

Max [x-fold] 3.55 2.79 2.91 2.11 2.62 2.73 3.95 3.02 2.88 10.4

Std dev [± x-fold] 1.56 1.86 1.88 1.9 1.92 2.01 2.09 2.12 2.2 2.8

Ranking 1 2 3 4 5 6 7 8 9 10

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes. RG are ordered from left to right
according to their SDCq value. Reference genes with a SDCq value < 1.0 are considered to be an appropriate reference gene when assessing gene expression in the
iron-deficient animals. To determine the under- and over-expression of a reference gene relative to the gene’s geometric mean (x-fold), the min, max, and
standard deviation are calculated by the BestKeeper software

Table 3 BestKeeper descriptive statistics and ranking of reference genes in iron-replete and iron-deficient animals in all tissues

Hprt Rpl19 Rps29 Tbp Rpl27 Rplp0 Ppia Rpl22 Actb Gapdh

Geo mean [CP] 22.62 17.58 17.69 24.24 18.94 19.55 17.76 18.15 16.89 22.60

CV 0.03 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.07 0.06

Min [CP] 21.13 15.45 15.55 21.67 16.62 17.26 15.48 15.68 14.49 19.18

Max [CP] 24.66 20.73 20.38 26.45 22.36 25.65 20.65 21.15 19.90 25.85

Std dev [± CP] 0.58 0.99 1.00 1.01 1.06 1.10 1.10 1.11 1.18 1.43

Min [x-fold] − 2.81 − 4.39 − 4.39 − 5.94 − 5.00 − 4.88 − 4.86 − 5.52 − 5.26 − 10.66

Max [x-fold] 4.10 8.85 6.47 4.62 10.67 68.84 7.38 8.00 8.10 9.52

Std dev [± x-fold] 1.49 1.99 2.00 2.01 2.08 2.14 2.15 2.16 2.27 2.70

Ranking 1 2 3 4 5 6 7 8 9 10

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes. RG are ordered from left to right
according to their SDCq value. Reference genes with a SDCq value < 1.0 are considered to be an appropriate reference gene when assessing gene expression in
pair-fed and iron-deficient animals. To determine the under- and over-expression of a reference gene relative to the gene’s geometric mean (x-fold), the min, max,
and standard deviation are calculated by the BestKeeper software
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Table 4 Comparative ΔCq evaluation and ranking of RG in pair-fed and iron-deficient animals in all tissues

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Rpl19 vs
Actb

− 0.700 0.280 0.400 Tbp vs
Actb

− 7.410 0.250 0.440 Rps29 vs
Rpl27

1.460 0.400 0.590 Rplp0 vs
Gapdh

2.110 0.650 1.450

Rpl19 vs
Rpl27

1.430 0.280 (1) Tbp vs
Rpl27

− 6.070 0.250 (4) Rps29 vs
Rpl19

0.030 0.420 (7) Rplp0 vs
Rpl19

− 1.930 0.660 (10)

Rpl19 vs
Rpl22

0.630 0.290 Tbp vs
Hprt

− 2.240 0.280 Rps29 vs
Ppia

0.440 0.510 Rplp0 vs
Ppia

− 1.590 0.720

Rpl19 vs
Ppia

0.340 0.310 Tbp vs
Ppia

− 6.380 0.310 Rps29 vs
Rpl27

0.740 0.550 Rplp0 vs
Act

− 2.620 0.740

Rpl19 vs
Tbp

6.700 0.360 Tbp vs
Rpl19

− 6.700 0.360 Rps29 vs
Actb

− 0.590 0.600 Rplp0 vs
Hprt

2.050 0.910

Rpl19 vs
Rps29

− 0.030 0.420 Tbp vs
Rpl27

− 5.280 0.360 Rps29 vs
Tbp

6.820 0.650 Rplp0 vs
Rps29

− 2.650 2.080

Rpl19 vs
Hprt

4.460 0.510 Tbp vs
Rps29

− 6.820 0.650 Rps29 vs
Hprt

4.570 0.680 Rplp0 vs
Rpl27

− 1.210 2.140

Rpl19 vs
Gapdh

4.030 0.540 Tbp vs
Gapdh

− 2.680 0.660 Rps29 vs
Gapdh

4.140 0.740 Rplp0 vs
Rpl22

− 1.880 2.290

Rpl19 vs
Rplp0

1.930 0.660 Tbp vs
Rplp0

− 4.790 0.840 Rps29 vs
Rplp0

2.030 0.750 Rplp0 vs
Tbp

3.990 2.850

Actb vs
Tbp

7.410 0.250 0.420 Rpl22 vs
Rpl27

0.800 0.240 0.450 Gapdh vs
Rpl19

− 4.030 0.540 0.630

Actb vs
Rpl19

0.700 0.280 (2) Rpl22 vs
Tbp

6.070 0.250 (5) Gapdh vs
Actb

− 4.730 0.560 (8)

Actb vs
Ppia

1.030 0.290 Rpl22 vs
Ppia

− 0.310 0.290 Gapdh vs
Rpl27

− 2.600 0.590

Actb vs
Rpl22

1.330 0.320 Rpl22 vs
Rpl19

− 0.630 0.290 Gapdh vs
Ppia

− 3.700 0.620

Actb vs
Rpl27

2.120 0.390 Rpl22 vs
Hprt

3.830 0.390 Gapdh vs
Hprt

0.430 0.630

Actb vs
Hprt

5.160 0.410 Rpl22 vs
Actb

− 0.870 0.460 Gapdh vs
Rplp0

− 2.110 0.650

Actb vs
Gapdh

4.730 0.560 Rpl22 vs
Rps29

− 0.740 0.550 Gapdh vs
Rpl22

− 3.400 0.650

Actb vs
Rps29

0.590 0.600 Rpl22 vs
Gapdh

3.400 0.650 Gapdh vs
Tbp

2.680 0.660

Actb vs
Rplp0

2.620 0.740 Rpl22 vs
Rplp0

1.750 0.910 Gapdh vs
Rps29

− 4.140 0.740

Rpl22 vs
Rpl27

− 0.800 0.240 0.430 Hprt vs
Tbp

2.240 0.280 0.530 Ppia vs
Actb

− 1.030 0.290 1.180

Rpl27 vs
Rpl19

− 1.430 0.280 (3) Hprt vs
Rpl22

− 3.830 0.390 (6) Ppia vs
Rpl19

− 0.340 0.310 (9)

Rpl27 vs
Tbp

5.280 0.360 Hprt vs
Ppia

− 4.140 0.420 Ppia vs
Hprt

4.140 0.420

Rpl27 vs
Ppia

− 1.090 0.370 Hprt vs
Actb

− 5.170 0.490 Ppia vs
Gapdh

3.700 0.620

Rpl27 vs
Actb

− 2.120 0.390 Hprt vs
Rpl27

− 3.030 0.500 Ppia vs
Rplp0

1.570 0.720

Rpl27 vs
Rps29

− 1.460 0.400 Hprt vs
Rpl19

− 4.460 0.510 Ppia vs
Rpl22

− 0.290 1.870

Rpl27 vs
Hprt

3.030 0.500 Hprt vs
Gapdh

− 0.430 0.630 Ppia vs
Rps29

− 1.060 1.880

Rpl27 vs
Gapdh

2.600 0.590 Hprt vs
Rps29

− 4.570 0.680 Ppia vs
Rpl27

0.370 2.120

Rpl27 vs 0.500 0.730 Hprt vs − 2.560 0.910 Ppia vs 5.580 2.400
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0.05). For normalization using Rpl19 and Rps29 as RG,
Tfrc mRNA abundance increased 10-fold and 8-fold in
ID animals, respectively (Fig. 5). In contrast to the best
ranking RG, using Gapdh and Ppia as RG, Tfrc mRNA
abundance increased 6-fold and 7-fold, respectively (Fig.
5).

Discussion
The necessity for ensuring suitable RG in qPCR quanti-
tation has been well recognized [2, 20, 26, 35, 36]. Ideal
RG should exhibit minimal variation in expression levels
among various tissues and under experimental manipu-
lations [35]. The existence of an ideal RG is, however,
uncertain at best. To date, limited data has been pub-
lished on gene expression analyses with nutrient-gene
interactions in animal models [37, 38] and to our know-
ledge, an empirical determination of appropriate RG se-
lection in the male weanling rat model of iron deficiency
has not been conducted. Additionally, the extent to
which RG vary among specific tissues in the same nutri-
tional model has not been examined.

This study was designed to evaluate variation in gene
expression in ten commonly used RG in varying dietary
(PF and ID) conditions and to identify the RG most suit-
able for iron deficiency analyses utilizing qPCR in
gastrocnemius, heart, kidney, liver, lung, and spleen tis-
sues. Our data is consistent with other research and sug-
gests that commonly used RG may be regulated under
experimental conditions and expression stability varies
between tissues [26]. It is evident that appropriateness of
a RG is likely dependent on the tissue of interest in
which gene expression is being analyzed. For example,
Gapdh ranked poorly in the majority of the computa-
tional programs, both in individual tissues and when
combining all tissues for analysis. However, NormFinder
and RefFinder data concluded Gapdh had increased sta-
bility and was ranked in the top 3 RG in skeletal muscle.
Another example of RG inconsistency based on tissue
occurred with Rplp0; although Rplp0 is one of the least
stable RG in the liver, it is the most stable RG in the
lung based on the RefFinder results. These tissue differ-
ences were reflected in poor overall ranking when all

Table 4 Comparative ΔCq evaluation and ranking of RG in pair-fed and iron-deficient animals in all tissues (Continued)

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Sample Mean
ΔCq

SD Mean
SD

Rplp0 Rplp0 Tbp

Mean ΔCq values are given for the mean difference between the genes. Standard deviations (SD) are given for the variation in Cq values over the animals

Fig. 1 Relative gene stability values of RG including both experimental conditions. Stability values were determined using NormFinder (A–F).
Stability values of RF in the gastrocnemius, heart, kidney, liver, lung, and spleen. Values were plotted based on stability; most stable starting on
the left and least stable on the right
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Fig. 2 Relative gene stability values of RG. Stability values were determined using NormFinder. Stability values of reference genes based on a
combined analysis of gene expression in the gastrocnemius, heart, kidney, liver, lung, and spleen. Values were plotted based on stability; most
stable starting on the left and least stable on the right

Fig. 3 Comprehensive stability ranking of RG including both experimental conditions. Rankings were determined using RefFinder. A–F Ranking of
RG in the gastrocnemius, heart, kidney, liver, lung, and spleen. Values were plotted based on ranking number; most stable [1] and least stable [10]
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tissues were combined for analysis. In contrast, both
Rpl19 and Rps29 were relatively stable in all tissues
resulting in a high overall ranking as determined by all
software analyses and our combined overall ranking sys-
tem. Thus, it is evident that appropriateness of a RG is
likely dependent on the tissue of interest in which gene
expression is being analyzed, and when comparing mul-
tiple tissues simultaneously, it is important RG exhibit
relative stability across all tissues.
The RG selected herein have diverse biological func-

tions and origination. The RG can be categorized as en-
coding for (1) ribosomal proteins, (2) structural proteins,
or (3) enzymatic proteins (Table 7). Based on our results,
rRNA (Rpl19 and Rps29) are the most stable and highest
ranking RG for the weanling model of iron deficiency.
Although ribosomal RG tend to be more stable in our
study, it is important to understand the limitations of
using rRNA as RG. First, synthesis of rRNA (RNA

polymerase I) and mRNA (RNA polymerase II) are inde-
pendent, and for that reason, it is thought to be contro-
versial to choose a RG whose transcription is not
regulated in the same manner [39]. Second, if original
RNA samples were enriched for mRNA, rRNA would be
excluded from the isolation process making it an in-
appropriate control [16]. The samples used in this study
were not enriched for any RNA species as evidenced by
agarose gel. Next, according to Derveaux et al. [40], it is
important to select RG with a similar abundance level to
the target mRNA (or gene), making rRNA unsuitable
since they are expressed at much higher levels than
mRNA. Finally, like mRNA, rRNA have been reported
to be regulated under some experimental conditions [20,
41, 42].
The use of computational programs for determination

of the most suitable RG assumes consistent gene expres-
sion profiles between experimental groups. Our study,

Fig. 4 Comprehensive stability ranking of RG including both experimental conditions. Rankings were determined using RefFinder. Ranking of RG
was based on a combined analysis of gene expression in the gastrocnemius, heart, kidney, liver, lung, and spleen. Values were plotted based on
ranking number; most stable [1] and least stable [10]

Table 5 Relative overall ranking

Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Hprt Rpl19 Rps29 Rpl19 Rpl19

2 Rpl19 Actb Rpl27 Rps29 Rps29

Least stable 1 Gapdh Rplp0 Gapdh Gapdh Gapdh

2 Actb Ppia Hprt Ppia Ppia

The two most stable and two least stable RG from BestKeeper, comparative ΔCq, NormFinder, and RefFinder were combined to provide an overall ranking of PF
and ID experimental groups in all tissues. Overall ranking was determined by quantifying the most stable or least stable genes of all programs
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consistent with other studies, shows similar results in
overall ranking between all computational programs for
some genes [43, 44]. This could be due to overlap in
computational programs as RefFinder uses a combin-
ation of NormFinder, BestKeeper, Delta CT, and Gen-
orm. We did not give more weight to any one program
to take an unbiased approach to the analyses. Substantial

variation was exhibited by some of the RG under exam-
ination. For instance, when analyzing all tissues together
in both PF and ID animals, Actb ranked as the second
most stable gene with the ΔCq method, but then ranked
in the bottom half of all genes with BestKeeper, Norm-
Finder, and RefFinder. Thus, this type of result supports
a more robust approach to RG selection. Despite some

Table 6 Relative overall ranking for each tissue

Gastrocnemius Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Gapdh Ppia Ppia Ppia Ppia

2 Ppia Rpl22 Tbp Gapdh Gapdh

Heart Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Hprt Rps29 Rps29 Hprt Rps29

2 Tbp Rpl19 Rpl19 Rps29 Rpl19/Hprt*

Kidney Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Gapdh Ppia Tbp Rps29 Rps29

2 36b4 36b4 Rps29 Rpl22 36b4

Liver Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Tbp Rpl27 Rpl27 Rpl27 Rpl27

2 Rpl27 Rpl19 Rpl19 Rpl19 Rpl19

Lung Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 Gapdh 36b4 Tbp 36b4 36b4*

2 Hprt Tbp 36b4 Tbp Tbp*

Spleen Ranking BestKeeper ΔCq NormFinder RefFinder Overall

Most stable 1 36b4 Rps29 Ppia Ppia Gapdh*

2 Gapdh Rpl22 Gapdh Rps29 Ppia*

Rps29*

The two most stable RG from BestKeeper, comparative ΔCq, NormFinder, and RefFinder were combined to provide an overall ranking of PF and ID experimental
groups in gastrocnemius, heart, kidney, liver, lung, and spleen. Overall ranking for each tissue was determined by quantifying the most stable genes of all
programs. *Indicates equal stability ranking

Fig. 5 Real-Time quantitative PCR results assessing relative Tfrc mRNA expression in the liver. The mRNA levels of Tfrc1 were normalized to Rpl19,
Rps29, Ppia, and Gapdh in pair-fed and iron-deficient rat livers
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similarities between computational program results,
small differences in RG stability do exist and could lead
to unreliable data interpretation. For instance, when liver
Tfrc mRNA abundance levels were normalized to the
most stable RG (Rpl19 and Rps29) and the least stable
RG (Actb and Gapdh), as determined by our overall
ranking system, Tfrc mRNA abundance was significantly
increased in the ID animals based on all four RG; how-
ever, the magnitude of the differences varied. A signifi-
cant increase in Tfrc mRNA abundance in response to
dietary iron deficiency has been well established [45, 46],
however in studies aiming to evaluate target mRNA that
result in marginal mRNA abundance changes, a signifi-
cance may not be detected. Therefore, it may be neces-
sary to use multiple computational programs when
determining the most stable RG for nutrient-gene
interaction-focused studies. Additionally, as suggested by
Bustin et al. [15], using more than one RG for
normalization and choosing the top ranked RG based on
the use of multiple computational programs is likely the
superior comprehensive approach investigators should
use for mRNA normalization.

Conclusions
Small changes in gene expression may be misinter-
preted if an appropriate RG is not selected. Therefore,
it may be inappropriate to choose RG for a study
based solely on previous research or literature reviews
instead of taking an empirical approach to identifying
the most suitable RG. To our knowledge, this is the
first study to examine RG stability for qPCR gene ex-
pression analyses focused on dietary condition and
tissue type. Based on the ten-selected RG, Rpl19 and
Rps29 are the most suitable RG for normalization
studies involving gastrocnemius, heart, kidney, liver,
lung, and spleen tissues in studies focused on the
male weanling model of dietary iron deficiency. The
combined ranking system provides a more appropriate
evaluation of RG suitability because it provides a

thorough assessment of overall RG stability based on
four accepted computational RG programs. The
model illustrated herein provides an appropriate
method for validation of RG, specifically for studies
involving dietary responses in multiple tissues, and
should be implemented prior to qPCR assays in order
to report valid and reliable results.

Methods
Twenty-one-day-old weanling male Sprague-Dawley®
(Harlan, Indianapolis, IN USA) rats (n = 24) were
housed individually in stainless steel, wire-bottomed
cages in an environmentally controlled facility and
maintained on a 12-h light: dark cycle at 20 °C with
ad libitum access to deionized water. All rats were
allowed access to the control diet for 3 days prior to
starting dietary treatments. Following the acclimation
period, animals were randomly assigned to one of
three diet groups (n = 8 per group) for 21 days: con-
trol iron-replete (C; 40 mg Fe/kg diet), pair-fed iron-
replete (PF; control diet with the mean intake of the
ID group) or iron-deficient (ID; < 5 mg Fe/kg diet).
Diets were purchased from Harlan Teklad (ENVIGO,
Madison, WI, USA; C-TD.89300 and ID-TD.80396)
based on the recommendations from the American
Institute of Nutrition’s 1976 (AIN 76) Standards for
Nutritional Studies. Individual body weights and food
intake were measured daily. Following the 21-day ex-
perimental period, animals were anesthetized with a
ketamine/xylazine mixture and were sacrificed by ex-
sanguination via the abdominal aorta. The gastrocne-
mius, heart, kidney, liver, lung, and spleen were
snap-frozen in liquid nitrogen immediately following
removal and stored at – 80 °C until subsequent ana-
lysis. All institutional guidelines for the care and use
of laboratory animals were followed and approved by
the OSU Institutional Animal Care and Use
Committee.

Table 7 Reference gene information

Gene name Gene symbol Accession number Function

Actin, beta Actb NM_031144 Cytoskeletal structural protein

Glyceraldehyde-3-phosphate dehydrogenase Gapdh NM_017008 Glycolysis enzyme

Hypoxanthine phosphoribosyltransferase 1 Hprt NM_012583 Salvages purines

Peptidylprolyl isomerase A (cyclophilin A) Ppia NM_017101 Protein folding

Ribosomal protein L19 Rpl19 NM_031103 Protein synthesis

Ribosomal protein L22 Rpl22 NM_031104 Protein synthesis

Ribosomal protein L27 Rpl27 NM_022514 Protein synthesis

Ribosomal protein, large, P0 (36b4) Rplp0 NM_022402 Protein synthesis

Ribosomal protein S29 Rps29 NM_012876 Protein synthesis

TATA box-binding protein Tbp NM_001004198 RNA polymerase II transcription factor
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RNA isolation and cDNA synthesis
Total RNA was isolated from tissues including the
gastrocnemius, heart, kidney, liver, lung, and spleen
using STAT-60 (Tel-test, Inc., Friendswood, TX, USA)
according to the manufacturer’s instructions. After isola-
tion, RNA concentration was determined using a Nano-
drop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and relative purity of total RNA
was assessed by the A260/280 ratio. Only A260/280 ratios ≥
1.8 were used for this study. The integrity of RNA was
determined by examining 18S and 28S rRNA by agarose
gel electrophoresis. Total RNA was treated with DNase I
(Roche, Basel, Switzerland) and reverse-transcribed with
SuperScript II (Invitrogen, Carlsbad, CA, USA) for a
final cDNA concentration of 50 ng/μL.

Quantitative qPCR and data analysis
Gene expression was determined by qPCR using SYBR
Green chemistry on an ABI 7900HT sequence detection
system instrument and 2.4 SDS software (Applied Bio-
systems, Foster City, CA, USA). All reactions were per-
formed in 10 μL volumes, including 50 ng of template,
2.5 μM of each forward and reverse primer, and 10 mM
of dNTPs (2.5 mM each). Amplification was performed
with a 2 min activation step at 50 °C, 10 min denatur-
ation step at 95 °C, followed by 40 cycles of 90 °C for 15
s and 60 °C for 1 min. Following each cycle, a dissoci-
ation curve analysis was performed using the default set-
tings of the software to confirm the specificity of the
PCR products. For each target RG, the relative stability
was assessed using BestKeeper, the comparative delta Cq
(ΔCq) method, NormFinder, and RefFinder.
RG were assessed in individual tissues and based on all

tissues combined. They were assessed between experi-
mental conditions (PF and ID) based on all tissues com-
bined. Potential RG analyzed included Actb, Gapdh,
Hprt, Ppia, Rpl19, Rpl22, Rpl27, Rplp0, Rps29, and Tbp
(Table 7). The overall rankings were determined by

using all tissue combined analyses or each specific tissue
for each stability program. The two most stable and two
least stable RG for each program were quantified based
on the number of times they were ranked at the top or
bottom. The two most stable and two least stable genes
from the all tissues ranking were further used as RG to
compare Tfrc gene expression in PF versus ID rat livers.
The comparative ΔΔCq method was used to analyze
mRNA abundance [47]. Oligonucleotide primers (Table
8) were obtained from Integrated DNA Technologies
(IDT, Coralville, IA, USA) and designed using Primer
Express software 3.0.1 (Applied Biosystems, Foster City,
CA, USA). Briefly, nucleotide sequences were acquired
from NCBI and primers were designed to cross exons,
not exceed an amplicon length of 100 nucleotides, and
have the lowest possible error rate.

Statistical analysis
Analyses were performed using SPSS version 23.0 soft-
ware (IBM Corp., Armonk, NY, USA). Statistical ana-
lyses using Student’s t test were performed to determine
treatment effects of dietary condition (ID or PF). Values
are expressed as means ± standard error of the mean
(SEM).
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Table 8 Primer sequences for reference gene analysis by qPCR

Gene symbol Forward primer Reverse primer

Actb 5′ CAT CGT GGG CCG CCC TA 5′ CGC CCA CGG AGG AGT CCT TCT G

Gapdh 5′ GAG GTG ACC GCA TCT TCT TG 5′ CCG ACC TTC ACC ATC TTG TC

Hprt 5′ GCC GAC CGG TTC TGT CAT 5′ CAT AAC CTG GTT CAT CAT CAC TAA TCA

Ppia 5′ GGT CTT TGG GAA GGT GAA AGA A 5′ GCC ATT CCT GGA CCC AAA A

Rpl19 5′ CGT CCT CCG CTG TGG TAA A 5′ TGG CGA TTT CGT TGG TTT

Rpl22 5' CAC CCT GTA GAA GAT GGA ATC ATG 5' TTC CCG TTC ACC TTG ATC CT

Rpl27 5′ GCA AAG CCG TCA TCG TAA AGA 5′ CTG GGA TAG CGG TCA ATT CC

Rplp0 5′ CAC CTT CCC ACT GGC TGA A 5′ TCC TCC GAC TCT TCC TTT GC

Rps29 5′ GCC AGG GTT CTC GCT CTT G 5′ GGC ACA TGT TCA GCC CGT AT

Tbp 5′ TGC CAG AAA TGC TGA ATA TAA TCC 5′ GTT CGT GGC TCT CTT ATT CTC ATG

Tfrc 5′ TCG GCT ACC TGG GCT ATT GT 5′ CCG CCT CTT CCG CTT CA
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