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Gut microbiota in patients with obesity and
metabolic disorders — a systematic review
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Abstract

Background: Previous observational studies have demonstrated inconsistent and inconclusive results of changes in
the intestinal microbiota in patients with obesity and metabolic disorders. We performed a systematic review to
explore evidence for this association across different geography and populations.

Methods: We performed a systematic search of MEDLINE (OvidSP) and Embase (OvidSP) of articles published from
Sept 1, 2010, to July 10, 2021, for case–control studies comparing intestinal microbiome of individuals with obesity
and metabolic disorders with the microbiome of non-obese, metabolically healthy individuals (controls). The
primary outcome was bacterial taxonomic changes in patients with obesity and metabolic disorders as compared
to controls. Taxa were defined as “lean-associated” if they were depleted in patients with obesity and metabolic
disorders or negatively associated with abnormal metabolic parameters. Taxa were defined as “obesity-associated” if
they were enriched in patients with obesity and metabolic disorders or positively associated with abnormal
metabolic parameters.

Results: Among 2390 reports screened, we identified 110 full-text articles and 60 studies were included.
Proteobacteria was the most consistently reported obesity-associated phylum. Thirteen, nine, and ten studies,
respectively, reported Faecalibacterium, Akkermansia, and Alistipes as lean-associated genera. Prevotella and
Ruminococcus were obesity-associated genera in studies from the West but lean-associated in the East. Roseburia
and Bifidobacterium were lean-associated genera only in the East, whereas Lactobacillus was an obesity-associated
genus in the West.

Conclusions: We identified specific bacteria associated with obesity and metabolic disorders in western and
eastern populations. Mechanistic studies are required to determine whether these microbes are a cause or product
of obesity and metabolic disorders.
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Introduction
Obesity-related metabolic disorders, including type 2
diabetes (T2DM), cardiovascular diseases, and non-
alcoholic fatty liver disease (NAFLD), affect 13% of
the population and result in 2.8 million deaths each

year [1, 2], and are a significant socioeconomic bur-
den to society. Pathophysiology of obesity and meta-
bolic disorders is multi-factorial, and currently,
therapies are limited. The role of intestinal microbiota
in patients with obesity and metabolic disorders have
been extensively studied in the past decade. Human-
ized mouse models showed that the microbiome in
obese subjects appeared to be more efficient in har-
vesting energy from the diet and may thereby contrib-
ute to the pathogenesis of obesity [3, 4]. However,
observational studies reported inconsistent and incon-
clusive changes of intestinal microbiota in patients
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with obesity and metabolic disorders [5]. For instance,
the Firmicutes and Bacteriodetes ratio (F/B ratio) is
not a reproducible marker across human cohorts [6].
Microbial-based therapies such as probiotics aiming to

reshape the gut microbial ecosystem have been increas-
ingly explored in the treatment of obesity-related meta-
bolic disorders [7, 8]. Traditional probiotics, primarily
consisting of Lactobacillus and Bifidobacterium have
been shown to elicit weight loss in subjects with obesity
yet the effect sizes were small with large variations of ef-
ficacy among different studies [9]. Emerging evidence
showed that Akkermansia muciniphila was depleted in
patients with obesity-related metabolic disorders. These
results have led to mechanistic studies and clinical trials
to test its efficacy in the management of obesity and
metabolic disorders [10].
Age, geography, and dietary patterns largely affect the

gut microbiome [11–13]. The gut microbiota of vegetar-
ians was dominated by Clostridium species [14] whereas
subjects who mainly consumed fish and meat had high
level of F. prausnitzii [15]. In recent years, the preva-
lence of childhood obesity has increased sharply. How-
ever, only limited data has issued the function and
structure of gut microbiota in children and adolescents
with obesity [16].
We have therefore conducted a systematic review of

case–control studies evaluating the microbiota in pa-
tients with obesity and metabolic disorders compared to
lean, healthy controls to summarize the current evidence
in the relationship between individual members of the
microbiota and obesity. We aimed to identify novel can-
didates as live biotherapeutics to facilitate the treatment
of obesity and metabolic disorders.

Materials and methods
Search strategy
This systematic review was performed in accordance
with the PRISMA 2009 guidelines [17]. We performed a
systematic search of MEDLINE (OvidSP) and Embase
(OvidSP) of articles published from Sept 1, 2010 to July
10, 2021 to identify case-control studies comparing gut
microbiota in patients with obesity and metabolic dis-
order and non-obese, metabolically healthy controls.
Search strategy is shown in the Appendix.

Study selection and patient population
Studies were included if they were (1) case–control stud-
ies comparing gut microbiota in patients with obesity
and metabolic disorders and non-obese, metabolically
healthy individuals (controls); (2) intestinal microbiota
was assessed by next-generation sequencing (NGS; 16s
rRNA amplicon or shotgun metagenomic sequencing);
and (3) obesity was defined based on body mass index
(BMI) ≥ 30kg/m2 and metabolic disorders including type

2 diabetes mellitus, non-alcoholic fatty liver disease, car-
diovascular disease, and metabolic syndrome were diag-
nosed according to respective guidelines (Table 1).
Studies from all age groups were included. Studies were
excluded if they were (1) case reports, reviews, meta-
analyses, re-analysis of public datasets, or conference ab-
stracts, (2) without data for individual bacterial groups,
(3) not in English, and (4) not a case–control design.
Studies of genetic-associated obesity such as Prader–
Willi syndrome were also excluded.

Study outcomes
The primary outcome was the bacterial taxonomic
changes in patients with obesity and metabolic disor-
ders compared to non-obese, metabolically healthy
controls. Secondary outcomes included the changes in
bacteria diversity and F/B ratio, subgroup analysis of
microbiota changes in adults and children with obes-
ity and metabolic disorders, and in Eastern and West-
ern populations. Data on microbiota community
composition were extracted from each study. Taxa
were defined as “lean-associated” if they were de-
pleted in patients with obesity and metabolic disor-
ders or negatively associated with abnormal metabolic
parameters such as high body mass index (BMI), ele-
vated fasting plasma glucose and elevated serum chol-
esterol. Taxa were defined as “obesity-associated” if
they were enriched in patients with obesity and meta-
bolic disorders or positively associated with abnormal
metabolic parameters. Taxon at each level (phylum,
class, order, family, genus) was only counted once for
each study (i.e., if a genus was both depleted in obes-
ity and negatively associate with fat mass in the same
study, it was only counted once).

Eligibility assessment and data extraction
Two authors (JW, HW) independently reviewed studies
and excluded based on titles, abstracts, or both to lessen
the selection bias and then reviewed selected studies
with full text for complete analysis. JW extracted data
from studies and entered it into a designated spread-
sheet. HW checked the accuracy of this process. The
data were re-checked when there was a discrepancy. XZ
arbitrated if the discrepancy cannot be resolved by con-
sensus and discussion. The data collected included the
following: participant characteristics, including age
group, country, types of metabolic disorders, number of
patients; types of specimens, microbiota assessment
method, microbiome diversity, and Firmicutes/Bacter-
oides ratio.

Quality assessment
The Newcastle-Ottawa Scale was applied to assess the
quality of included studies. The Newcastle-Ottawa Scale
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consists of 3 domains (maximum 9 stars); selection (is
the case definition adequate, representativeness of the
cases, selection of controls, definition of controls); com-
parability (comparability of baseline characteristics); and
exposure (ascertainment of exposure, same method of
ascertainment for cases and controls, attrition rate).

Results
Study characteristics
Overall, 2390 citations were retrieved; 2280 were ex-
cluded based on title, abstract, and the availability of full
text; 110 articles were subsequently fully reviewed. After
further review, 50 full-text articles were rejected (Fig. 1).
The final analysis included 60 studies (Table 1). Of
these, 44 studies assessed the gut microbiota in adults
and 16 in infants, children, and adolescents. Ethnicity of
subjects consisted of Asian, Black, Caucasian, Hispanic,
or Latino. Fifty-eight out of 60 (96.7%) studies evaluated
intestinal microbiota in stool samples and two studies
assessed the microbiota in duodenal biopsies. Thirty-two
studies involved patients with obesity [18–48, 76], ten
involved patients with T2DM [49–58], eleven involved
patients with NAFLD or non-alcoholic steatohepatitis

(NASH) [59–68, 75], and seven involved patients with
metabolic syndrome [69–74, 77]. General characteristics
and diagnostic criteria for obesity and metabolic disor-
ders in each study were summarized in Table 1.

Microbiome assessment methods
Of the 58 studies assessing stool microbiome, 50 studies
assessed the gut microbiota by using 16S ribosomal
RNA (rRNA) gene sequencing, six used shotgun metage-
nomic sequencing and two studies applied both 16s
rRNA and shotgun metagenomic sequencing. Both stud-
ies assessing biopsy microbiome applied 16S rRNA
sequencing.

Primary outcomes
At the phylum level, significant changes of phyla Firmi-
cutes, Bacteroidetes, and Proteobacteria were most re-
ported in obese, metabolic diseased subjects compared
with controls. Among 60 studies included, 22 studies re-
ported significant changes in Firmicutes with 15 studies
showing phylum Firmicutes were obesity-associated and
7 showing it was lean-associated [18, 21, 23, 28, 29, 32,
34, 42, 43, 45, 46, 48 50, 53–55, 59, 62, 63, 68, 69, 71];

Fig. 1 Flowchart of study selection
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20 studies reported significant changes in Bacteroidetes
with 8 studies showing it was obesity-associated and 12
showing it was lean-associated [20, 23, 29, 31, 32, 35, 37,
43, 46, 55, 57, 59, 61–63, 68, 69, 71, 74, 75]. Fifteen stud-
ies reported significant change in Proteobacteria with 13
studies showing it was obesity-associated and 2 showing
it was lean-associated [19, 20, 22, 29, 31, 32, 45, 46, 55,
59, 61, 65, 68, 69, 71]. Studies consistently reported that
Fusobacteria as obesity-associated taxa (n = 5) [18, 20,
22, 32, 61], Actinobacteria was a lean-associated taxa (n
= 7) [20, 23, 32, 45, 62, 68, 69] and Tenericutes was
lean-associated (n = 4) [20, 22, 48, 77] (Table 2). The de-
tails on the differential levels of taxon in each eligible
study are shown in Supplementary table 1.
At lower taxonomic levels, studies consistently re-

ported the class Bacilli, Gammaproteobacteria and family
Coriobacteriaceae to be obesity-associated. Controversial
results were reported for class Clostridia, family Lach-
nospiraceae, Rikenellaceae, and Ruminococcaceae (Sup-
plementary table 2). At the genus level, Alistipes,
Akkermansia, Bifidobacterium, Desulfovibrio, and genera
in the Clostridium cluster IV (Faecalibacterium, Eubac-
terium, Oscillospira, Odoribacter) were the most re-
ported lean-associated genera, while Prevotella,
Lactobacillus, Blautia, Escherichia, Succinivibrio, and
Fusobacterium were the most reported obesity-
associated genera. Significant change in genera Rumino-
coccus, Coprococcus, Dialister, Bacteroides, Clostridium
and Roseburia were reported but results were controver-
sial (Table 3).

Secondary outcomes
Forty (67%) studies provided alpha diversity of the gut
microbiota. Among them, 18 reported significant reduc-
tion in diversity while four reported significant increase

of alpha diversity in obesity and metabolic disorders
compared with controls. The remaining studies (n = 18)
found no significant difference in alpha diversity be-
tween both groups. In addition, 11 studies demonstrated
significant difference in β-diversity [20, 23, 27, 28, 32,
40, 47, 55, 58, 66, 69], while 10 studies showed no sig-
nificant difference in β-diversity between patients with
obesity and metabolic disorders and controls [24, 26, 38,
49, 50, 57, 65, 70, 74, 79]. Twenty-two (37%) studies re-
ported Firmicutes/Bacteroidetes (F/B) ratio [51–54, 56–
68, 71–75]. Among them, eight studies reported signifi-
cant increase [34–36, 39, 48, 52, 59, 75] and three stud-
ies reported a significant decreased in F/B ratio [33, 41,
44]. Eleven studies reported no significant change in F/B
ratio in patients with obesity and metabolic disorders
compared with controls (Supplementary Table 3) [37,
42, 46, 53, 54, 60–63, 67, 68].

Difference of microbiota between adult and childhood
obesity
The trend for most microbial changes in adult and
childhood obesity were consistent. Studies reported
Actinobacteria as lean-associated, while Proteobacteria
and Firmicutes as obesity-associated in both adults and
childhood obesity. However, discrepancies were ob-
served for several genera. Three studies in adults con-
sistently reported that Fusobacterium was obesity-
associated, but controversial results were found in chil-
dren [18, 20, 22, 32, 61, 77]. Moreover, more studies re-
ported that Dorea [39, 46, 49, 77] and Ruminococcus [39,
44, 49, 69] were obesity-associated in adults, while more
studies reported them to be lean-associated in children
[19, 68]. Three studies consistently reported that Turici-
bacter was lean-associated in adults [44, 66, 69], but one
study reported it to be obesity-associated in children

Table 2 Differentially abundant phyla in obesity/metabolic diseases

No. of studies 3 or more papers with obese/
metabolic diseases

2 papers with obese/
metabolic diseases

1 paper with obese/
metabolic diseases

0 paper with obese/
metabolic diseases

3 or more papers with lean/
metabolically healthy

Bacteroidetes (8, 12)* – – Tenericutes (4)

Firmicutes (7, 15) Actinobacteria (7)

2 papers with lean/
metabolically healthy

Proteobacteria (13) – Verrucomicrobia –

1 paper with lean/
metabolically healthy

– Candidatus
Saccharibacteria

Elusimicrobia

Ignavibacteriae

Rikenellaceae

Lentisphaerae

Prevotellaceae

0 paper with lean/
metabolically healthy

Fusobacteria (5) Acidobacteria –

Cyanobacteria

*n (lean/metabolically healthy, obese/metabolic diseases)
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[20]. Notably, three studies in adults reported that the
genus Bifidobacterium was lean-associated [22, 57, 58],
while controversial results were found in children (3
lean-associated and 2 obesity-associated) [19–21, 38, 68].
These findings suggested that microbiota in childhood
obesity and metabolic disorders were more heteroge-
neous compared with adults.

Difference of microbiota between the East and the West
Large discrepancies in gut microbiome in obesity and
metabolic disorders were observed in studies from the

East and the West. Four studies exclusively consisting of
populations in the West reported that the Family Corio-
bacteriaceae was obesity-associated [27, 38, 53, 71]
whereas none in the East reported significant change of
this bacterial family between obese subjects and controls.
Four studies in the East reported that the family Rumi-
nococcaceae was lean-associated [22, 60, 61, 63], but
conflicting results were found in studies from the West
(2 lean-associated and 2 obesity-associated) [27, 36, 43,
68]. At the genus level, four studies reported that Prevo-
tella was lean-associated in the East (3 lean-associated

Table 3 Differentially abundant genera in obesity/metabolic diseases

No. of studies 3 or more papers with obesity-
associated

2 papers with
obesity-associated

1 paper with obesity-
associated

0 paper with
obesity-associated

3 or more papers with
lean-associated

Faecalibacterium (13,3) [18–20, 22, 26, 44,
46, 58, 59, 66, 69, 71, 72]

Bifidobacterium (6) [20–
22, 57, 58, 68]

Alistipes (10) [20, 26, 44, 53,
58–60, 68, 76, 77]

Odoribacter (6) [29, 44,
59, 60, 77, 78]

Prevotella (5,6) [26, 38, 67, 72, 73, 75] Roseburia (4) [53, 63,
66, 68, 69, 79]

Akkermansia (9) [23, 28, 36, 44,
45, 47, 49, 65, 70]

Oscillospira (6) [20, 36,
68, 70, 75, 77]

Bacteroides (6,4) [18, 24, 26, 41, 43, 44, 46,
48, 69, 72]

Clostridium (4) [20, 38,
46, 49, 53, 72]

Turicibacter (3) Oscillibacter (4)

Ruminococcus (4, 5) [20, 23, 39, 44, 49, 62,
63, 68, 69]

Eubacterium (3) [20, 44,
68]

Dialister (4,4) [19, 20, 36, 50, 55, 70, 72,
79]

Desulfovibrio (3) [18,
20, 44]

Lactobacillus (3,6) [19, 21, 38, 46, 57, 60] Anaerotruncus (3)

Coprococcus (3, 5) [18, 23, 44, 48, 63, 68,
69, 71]

Blautia (3,6) [38, 39, 44, 48, 73, 74]

2 papers with lean-
associated

Streptococcus (4) Bilophila Holdemania Oxalobacter

Lachnospira (3) Methanobrevibacter

Fusobacterium (4) [18, 20, 22, 44] Acholeplasma

gemmiger

1 paper with lean-
associated

Sutterella Veillonella

Phascolarctobacterium (3) Megasphaera Staphylococcus Haemophilus

Dorea (4) Megamonas Rothia Anaerostipes

Collinsella (3) Adlercreutzia Pseudomonas Parabacteroides

Acidaminococcus (3) Parasutterella

Lactococcus

Klebsiella

Haemophilus

0 paper with lean-
associated

Succinivibrio (3) [38, 69, 78] SMB53 Alloprevotella

Escherichia (3) [57, 60, 68] Porphyromonas Lachnospiraceae incertae sedis

Peptoniphilus Burkholderiales

Mitsuokella

Escherichia-Shiguela

Catenibacterium

Bacillus

Aggregatibacter

*n (lean-associated, obesity-associated)
For most studies used 16s rRNA sequencing, which lacks species resolution, Faecalibacterium prausnitzii, and Akkermansia muciniphila were combined with
respective genera as they were the primary species that constitute respective genera
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and 1 obesity-associated) [19, 20, 26, 61], while other
studies from the West have reported it to be obesity-
associated (2 lean-associated and 5 obesity-associated)
[38, 55, 67, 68, 72, 73, 75]. Three studies reported that
Ruminococcus was lean-associated in the East [20, 63,
67], but most studies reported it to be obesity-associated
in the West (1 lean-associated and 5 obesity-associated)
[23, 39, 44, 49, 62, 69]. Similar findings were observed
for Roseburia (3 lean-associated in the east [30, 63, 66],
1 lean-associated and 2 obesity-associated in the west
[53, 68, 69]). Notably, the common genus Lactobacillus
was repeatedly reported to be obesity-associated in the
West (1 lean-associated and 4 obesity-associated) [19,
38, 44, 46, 57]. Controversial results for Lactobacillus
were also reported in the East (2 lean-associated and 2
obesity-associated) [21, 59, 60, 63].

Quality of the evidence
The Newcastle Ottawa Scale showed that all 60 studies
provided an adequate explanation in the definition and
selection method for patients with obesity and metabolic
disorders (Table 4). Fifty-five (91.7%) of 60 studies did
the same process for controls. Twenty (33.3%) and 27
(45%) studies demonstrated comparable data of sex and
age in patients with obesity / metabolic disorders and
controls.

Discussion
To our knowledge, this is the most comprehensive sys-
tematic review in microbiota and obesity and metabolic
disorders, as we extracted the data of each available bac-
terial group using the lowest taxonomic level based on
NGS of each included study. We believe that the find-
ings reflect the best available current evidence demon-
strating the relationship between individual bacterial
taxa and obesity or metabolic disorders.
Proteobacteria was the most consistently reported

obesity-associated phylum. Several members of Proteo-
bacteria, such as Proteus mirabilis and E. coli, were po-
tential drivers of inflammation in the gastrointestinal
tract [7, 80, 81]. Low-grade inflammation is a risk factor
for developing metabolic diseases including atheroscler-
osis, insulin resistance, and diabetes mellitus [82]. Be-
sides stool microbiota, obese subjects with T2DM also
showed a high bacterial load with an increase in Entero-
bacteriaceae in plasma, liver, and omental adipose tissue
microbiota [83].
Lactobacillus was reported to be an obesity-associated

taxon and abundance was higher in the stool of patients
with obesity and metabolic diseases. This food-derived
probiotic genus showed relative low prevalence and
abundance in the commensal gut microbiota [52]. Previ-
ous clinical trials of Lactobacillus, alone or in combin-
ation with Bifidobacterium, showed variable efficacy in

weight loss in patients with obesity [9]. These inconsist-
ent results indicated that the underlying mechanisms of
Lactobacillus (at least some of its species) in the treat-
ment of metabolic disorders warrant further investiga-
tion. Other commensal bacteria such as Bifidobacterium
spp., Alistipes spp., and Akkermansia that constitute a
large proportion of the gut microbiota were frequently
observed to be higher in healthy individuals than obese,
metabolically affected subjects. These species might
therefore exert a more durable beneficial effect for the
consideration in managing obesity compared with
Lactobacillus.
Akkermansia muciniphila (Actinobacteria phylum), a

species identified by NGS, was one of the most com-
monly reported lean-associated bacteria in obesity and
metabolic diseases. A. muciniphila was reported to help
modulate the gut lining which could promote gut barrier
function and prevent inflammation caused by the “leaky”
gut [84]. A clinical trial demonstrated that supplementa-
tion with A. muciniphila could reduce body weight and
decrease the level of blood markers for liver dysfunction
and inflammation in obese insulin-resistant volunteers
[10]. Another proof-of-concept study showed that sup-
plementation with five strains including A. muciniphila
was safe and associated with improved postprandial glu-
cose control [85]. These findings highlight the potential
of specific live biotherapeutics in weight control in sub-
jects with obesity and metabolic diseases.
Other genera that were consistently reported to be

more abundant in lean healthy individuals than obese
subjects were Alistipes (Bacteroidetes phylum) and Fae-
calibacterium (Firmicutes phylum). Alistipes could pro-
duce small amounts of short-chain fatty acids (SCFA,
acetic, isobutyric, isovaleric, and propionic acid) [86]
while Faecalibacterium is one of the major butyrate pro-
ducers in the human gut [87, 88]. SCFA have anti-
inflammatory properties [89] and may promote weight
loss through the release of glucagon-like peptide 1 that
promotes satiety and the activation of brown adipose tis-
sue via the gut–brain neural circuit [90, 91]. Butyrate
could activate the GPR43-AKT-GSK3 signaling pathway
to increase glucose metabolism by liver cells and im-
prove glucose control in diabetes mice [92]. They could
also inhibit the expression of PPARγ, increase fat oxida-
tion in skeletal muscle mitochondria, and reduce lipo-
genesis in high-fat diet (HFD) mouse model [93].
We have identified several genera, including Bifidobac-

terium, Roseburia, Prevotella, and Ruminococcus, that
were consistently reported to be lean-associated exclu-
sively in subjects from the East. Bifidobacterium spp. are
widely used probiotics proven to be safe and well-
tolerated and exhibited a significant effect in lowering
serum total cholesterol both in mice and in humans
[94]. Roseburia is another major butyrate-producing
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genus of the human gut [95]. R. intestinalis could main-
tain the gut barrier function through upregulation of the
tight junction protein [96]. Supplementation of R. intes-
tinalis and R. hominis could ameliorate alcoholic fatty
liver disease in mice [97]. Ruminococcus bromii is a key-
stone species for the degradation of resistant starch in
the human colon [98]. Prevotella copri (Bacteroidetes
phylum) was found to improve aberrant glucose toler-
ance syndromes and enhance hepatic glycogen storage
in animals via the production of succinate [99]. How-
ever, a recent study also showed that the prevalence of
P. copri exacerbated glucose tolerance and enhanced in-
sulin resistance which occur before the development of
ischemic cardiovascular disease and type 2 diabetes
[100].
Only limited human studies in the current review re-

ported an increased ratio of F/B in obesity. An increased
ratio of F/B was shown in studies of the high-fat diet
mouse model [6]. No taxon distinction was found to be
specific for any type of metabolic disease. This was in
line with a recent study that showed obesity, but not
type 2 diabetes, was associated with notable alterations
in microbiome composition [58].
The strength of this study is that we applied a robust

method of grouping various types of disease-microbiome
associations into “lean, metabolically healthy state” or
“obese, metabolically diseased state.” Despite various
metabolic disorders may affect the gut microbiota in dif-
ferent manners, the inter-study variation often super-
sedes the intra-study variation between disease and
control groups [101]. Overall, the most striking observa-
tion is the lack of consistency in results between studies.
This probably relates to the limitations of the studies in-
cluded in this review. Also, it relies on the striking sta-
bility and individuality of adult microbiota, changing
over time. Heterogeneity between studies is often a
problem in systematic reviews. Several different methods
were used to assess the microbiota, which makes it diffi-
cult to compare results between studies and likely con-
tributes to the differences in results. While the
standardization of study protocol (sample storage, DNA
extraction, sequencing, analysis methods, and stringent
subject recruitment criteria) could potentially result in
comparable data between studies, this remains a big
challenge across different regions. Moreover, we ex-
cluded studies that used species- or group-specific
primers for microbiota assessment because such
methods could only capture certain bacterial groups.
This limits the total number of studies included. For ro-
bust microbiota results that are comparable among stud-
ies, there need to be efforts for standardization of
sample storage, DNA extraction, sequencing, and ana-
lysis methods among groups undertaking gut microbiota
studies. Finally, longitudinal studies would allow for a

more robust association of changes in the microbiota to
changes in obesity and metabolic disorders.

Conclusions
This systematic review identified consistent evidence for
several lean-associated genera that may have therapeutic
potential for obesity and metabolic diseases. Besides A.
muciniphila, species from genera Faecalibacterium, Alis-
tipes, and Roseburia might also harbor therapeutic po-
tentials against obesity and metabolic diseases. These
results provided a guide for the future development of
certain bacteria into live biotherapeutics that may be
helpful for the management of obesity and metabolic
disorders. Further in-vitro and in-vivo research are
needed to elucidate their role in the management of
obesity and metabolic diseases.

Appendix. Searching strategy
1 obese.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,
dq, nm, kf, ox, px, rx, an, ui, sy]
2 obesity.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,

dq, nm, kf, ox, px, rx, an, ui, sy]
3 overweight.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv,

kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
4 microbiota.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv,

kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
5 microbiome.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv,

kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
6 fecal.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,

dq, nm, kf, ox, px, rx, an, ui, sy]
7 faecal.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,

dq, nm, kf, ox, px, rx, an, ui, sy]
8 gut.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq,

nm, kf, ox, px, rx, an, ui, sy]
9 intestinal.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw,

fx, dq, nm, kf, ox, px, rx, an, ui, sy]
10 1 or 2 or 3
11 4 or 5
12 6 or 7 or 8 or 9
13 10 and 11 and 12
14 metagenomics.mp. [mp=ti, ab, hw, tn, ot, dm, mf,

dv, kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
15 metagenomic.mp. [mp=ti, ab, hw, tn, ot, dm, mf,

dv, kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
16 16s.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,

dq, nm, kf, ox, px, rx, an, ui, sy]
17 14 or 15 or 16
18 13 and 17
19 remove duplicates from 18
20 metabolic disease.mp. [mp=ti, ab, hw, tn, ot, dm,

mf, dv, kw, fx, dq, nm, kf, ox, px, rx, an, ui, sy]
21 10 or 20
22 11 and 12 and 21
23 17 and 22
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24 remove duplicates from 23
25 limit 24 to full text
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