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Abstract 

Paternal high-fat diet (HFD) can alter the epigenetics of sperm DNA, resulting in the transmission of obesity-related 
traits to the offspring. Previous studies have mainly focused on the HFD-induced changes in DNA methylation 
of imprinted genes, overlooking the potential involvement of non-imprinted genes in this process. SETD2, an impor-
tant epigenetically-regulated gene known for its response to environmental stress, remains poorly understood 
in the context of high-fat diet-induced epigenetic changes. Here we examined the effect of obesity from a HFD 
on paternal SETD2 expression and methylation in sperm, and embryos at the blastocyst stage and during subsequent 
development, to determine the alteration of SETD2 in paternal intergenerational and transgenerational inheritance. 
The result showed that mice fed with HFD for two months had significantly increased SETD2 expression in testis 
and sperm. The paternal HFD significantly altered the DNA methylation level with 20 of the 26 CpG sites being 
changed in sperm from F0 mice. Paternal high-fat diet increased apoptotic index and decreased total cell number 
of blastocysts, which were closely correlated with DNA methylation level of sperm. Out of the 26 CpG sites, we 
also found three CpG sites that were significantly changed in the sperm from F1 mice, which meant that the methyla-
tion changes at these three CpG sites were maintained.

In conclusion, we found that paternal exposure to an HFD disrupted the methylation pattern of SETD2 in the sperm 
of F0 mice and resulted in perturbed SETD2 expression. Furthermore, the paternal high-fat diet influenced embryo 
apoptosis and development, possibly through the SETD2 pathway. The altered methylation of SETD2 in sperm 
induced by paternal HFD partially persisted in the sperm of the F1 generation, highlighting the role of SETD2 
as an epigenetic carrier for paternal intergenerational and transgenerational inheritance.
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Introduction
More than one billion adults in the world are overweight, 
and obesity is a chronic metabolic disease associated 
with a high prevalence of hypertension, diabetes, osteo-
arthritis, cancer, and cardiovascular disease [1]. A high-
fat diet (HFD) is a major cause of obesity, which can also 
have harmful effects on male reproductive functions, by 
decreasing sperm count and motility, reducing semen 
quality, increasing sperm DNA damage and impairing 
sperm acrosome reactions [2]. Obesity can also cause 
disorders in embryonic development and impaired health 
of offspring [3, 4].
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Previous studies have shown that epigenetic changes 
in sperm caused by paternal obesity could be passed 
on to offspring, leading to a range of diseases including 
reproductive impairment and metabolic disorders, such 
as insulin resistance in both male and female offspring, 
hyperleptemia, and lipid accumulation in ovaries of 
female offspring [5–9]. Progeny of male mice fed a HFD 
also exhibited dysregulation of olfactory transduction 
pathways in fat and islet tissues, and beta cell dysfunc-
tion [10]. Epigenetic information carriers such as histone 
modifications, DNA methylation, miRNAs and tRNAs in 
sperm from obese mice were altered, and those changes 
were directly related to diseases in progeny [11, 12].

DNA methylation of imprinted genes is an important 
epigenetic information carrier that mediates parental 
inheritance. During nuclear reprogramming of early 
embryos, DNA methylation of imprinted genes largely 
maintains the original modification pattern [13, 14]. 
Small changes in the differentially methylated regions 
(DMR) of imprinted genes can cause serious damage to 
the health of offspring. For example, minor change in 
the DMR methylation of IGF2, an imprinted gene, could 
result in a doubling or halving of IGF2 transcription [15–
17]. Whether this influence also exists for non-imprinted 
genes remains unclear. SETD2 is an important gene that 
is regulated epigenetically and plays a crucial role in 
responding to environmental stress [18]. It is the only 
histone transferase for H3K36me3 that also participates 
in molecular processes such as maintaining genome sta-
bility, chromatin conformation, and gene transcription 
initiation and elongation [19, 20]. Here we focused on 
the effect of a paternal HFD on SETD2 in sperm, and off-
spring, to determine the role of SETD2 in parental inter-
generational and transgenerational inheritance.

Methods
Animals and reagents
Mice were maintained under controlled temperature 
(22  ℃ ± 1℃) and humidity conditions with a 12:12  h 
light: darkness cycle. Two groups of 4-week-old male 
ICR mice were randomly assigned to receive either a CD 
(Research Diets, D12450B) containing 10% of the kcal as 
fat or a HFD (Research Diets, D12492) containing 60% of 
the kcal as fat. After eight weeks of feeding, males from 
each group were then mated (1:1 ratio) with 12-week-old 
female estrus ICR mice fed the CD. The pregnancy rate of 
the CD or HFD group was the number of the pairs who 
gave birth divided by the number of mating pairs. All off-
spring mice were fed the CD. Euthanize mice using cer-
vical dislocation. All procedures performed in mice were 
approved by the Laboratory Animal Care Committee of 
Xi’an Jiaotong University. Unless otherwise specified, all 
reagents are purchased from Sigma-Aldrich.

Hematoxylin and eosin (H&E) staining 
and immunohistochemistry
Testes were fixed in modified Davidson’s fixative for 18 h, 
then in 10% formaldehyde solution for 24  h. The testis 
was cross-sectioned from the middle, and dehydrated 
with graded alcohol, cleared in xylene and embedded in 
wax, then cut into 4 µm sections. After dehydration and 
dewaxing, sections were mounted with neutral gum, and 
digitally imaged with a microscope (Olympus, Tokyo, 
Japan). For immunohistochemistry of SETD2, dewaxed 
testis sections were heated in a pressure cooker for 
30 min in EDTA buffer, then endogenous peroxide activ-
ity was quenched with 3%  H2O2 for 15   min. The slides 
were blocked with 10% BSA for 30  min, and incubated 
with the SETD2 primary antibody (Abclonal, 1:500 dilu-
tion, Wuhan, China) overnight at 4℃. The slides were 
washed with PBS, incubated with enhanced enzyme-
labeled goat anti-rabbit IgG (Abclonal) for 1  h at room 
temperature (RT), and then visualized using a DAB sub-
strate kit (ZSGB Biotech, Beijing, China) counterstained 
with hematoxylin. Images were captured using a light 
microscope (Olympus).

Collection of sperm and embryos
The bilateral vas deferens and epididymis were dissected, 
and placed in a 2  mL of Dulbecco’s phosphate-buffered 
saline (DPBS, Univ, Shanghai, China). The vas deferens 
and epididymal capsule were cut open with ophthalmic 
scissors, incubated at 37℃ for 10 min, and the tissue frag-
ments were separated from the sperm, which were then 
collected by centrifugation at 3,000 × g for 10 min at 4℃. 
The supernatants were discarded and the pellets were 
suspended in 1 mL of DPBS. One mL of 50% Percoll was 
placed in a 15 mL centrifuge tube, and 1 mL of washed 
sperm was added (1 mL of 50% Percoll for approximately 
every 100 million spermatozoa). Tubes were placed on ice 
for 10 min, then centrifuged at 800 × g for 20 min at 4℃. 
The 50% Percoll layer was discarded and the sperm was 
recovered. The sperm was washed with 2  mL of DPBS 
and centrifuged at 3,000 × g for 5 min at 4℃. The super-
natants were carefully removed and discarded, and then 
collected the sperms. Sperm was counted using a sperm 
quality testing system (XD-6000X, XINDA, Xuzhou, 
China).

Twelve-week-old female ICR mice were injected with 
5  IU of serum gonadotrophin (NSHF, Ningbo, China), 
followed by the injection of 5  IU of chorionic gonado-
trophin after two days to induce superovulation, and 
then mated with males from the CD or HFD group. 
Next morning, the female mice with vaginal plugs were 
used for collecting embryos. Embryos at the blastocyst 
stage were collected from the uterus and the method is 
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described as follows. Using ophthalmic forceps, grasp 
the cervix and cut it with ophthalmic scissors. Gently lift 
the uterus with the forceps and cut the uterine ligaments 
with the scissors until reaching the uterine tip, then cut 
between the fallopian tubes and ovaries to extract the 
uterine horn. In a glass dish containing flushing fluid, use 
ophthalmic scissors to remove any accessory structures 
attached to the uterine horn, and rinse it thoroughly to 
recover the embryos. During embryo flushing, place the 
uterine horn on a flat dish and use ophthalmic scissors to 
longitudinally cut open the junction of the uterine tube. 
Using a syringe filled with flushing fluid, insert the nee-
dle into the cervical opening and flush the uterine cav-
ity, allowing the embryos to be washed out with the fluid 
flow, using about 1.0 mL of liquid on each side. Apoptotic 
index in blastocysts and total cell number (TCN) in blas-
tocysts were counted as previous report [21].

RNA extraction, cDNA synthesis and qPCR
Total RNA was extracted from the 50 mg (weighed with 
electronic analytical balance, Beyotime, Shanghai, China; 
E0241) sperm pellets with 1  mL of TRIzol by repeated 
pipetting for 5 min and vortexing for 30 s. Beta-mercap-
toethanol (40 μL) was added, mixed well, and tubes were 
incubated at 65℃ for 45 min, then immediately placed on 
ice for 1 min. Chloroform (200 μL) was added, the tubes 
were shaken for 15  s, then allowed to stand for 10  min 
at RT. Tubes were centrifuged at 12,000 × g for 15 min at 
4℃. The aqueous phase was removed, mixed with 500 μL 
of isopropanol, kept at 4℃ for 15 min, then centrifuged 
at 12,000 × g for 10  min at 4℃. The supernatants were 
discarded and the pelleted RNA was washed with 500 μL 
of 75% ethanol and 500 μL of absolute ethanol, and cen-
trifuged at 5000 × g for 5 min at 4℃. Supernatants were 
discarded and the pellets were allowed to dry at RT. The 
RNA was dissolved in 20 μL of RNase-free water. Reverse 
transcription to cDNA and qPCR were performed as 
previously described [21, 22]. Details of the primers are 
described in Table S1.

Western blotting
Total protein was extracted from sperm (50  mg) using 
a lysis buffer containing 7  M urea, 2  M thiourea, 1% 
CHAPS, 1% n-octyl-glucopyranoside, 0.5% IPG buffer, 
18 mM DTT, and 2.4 mM PMSF. Sperm pellets were sus-
pended in lysis buffer and gently shaken for 1  h at RT, 
then centrifuged at 3,000 × g for 5 min at 4℃. The super-
natants containing the solubilized sperm proteins were 
recovered. RIPA buffer was used to extract proteins from 
embryos, and lysates were centrifuged at 3,000 × g for 
5 min at 4℃ to recover the proteins. Protein aliquots were 
separated by SDS–polyacrylamide gel electrophoresis 
and transferred to polyvinylidene difluoride membranes. 

The membranes were blocked with 5% nonfat milk pow-
der in Tris-buffered saline containing 0.05% Tween-20 
(TBST) for 1 h, and then incubated with SETD2 primary 
antibody (Abclonal, 1:500 dilution) for 24  h at 4℃, fol-
lowed by thorough washing in TBST. The blots were then 
incubated with secondary antibody (Abclonal) for 1 h at 
RT and proteins were detected using an enhanced chemi-
luminescence kit (Millipore, Billerica, MA, USA).

Methylation analysis
Bisulfite conversion of DNA samples (500 ng) was done 
using the EZ DNA methylation kit (Zymo Research, 
Irvine, CA, USA). The CpG sites were tested by pyrose-
quencing. Specific primers were designed for CpG loci 
at the SETD2 promoter region using PyroMark soft-
ware (Qiagen, Hilden, Germany). The PCR product was 
sequenced using PyroMark Q48 (Qiagen). The methyla-
tion level for the target region was quantified using the 
PyroQ-CpG software (Qiagen).

Statistical analysis
Body weight, relative level of mRNA and protein, meth-
ylation level, and total cell numbers in blastocysts were 
determined and compared by unpaired Student’s t test 
using Graph Pad Prism (version 9; Graph Pad Inc.; San 
Diego, CA, USA). A P < 0.05 was considered statistically 
significant. All the data are presented as mean ± SEM.

Results
F0 mice fed a HFD exhibited abnormal SETD2 expression 
in sperm
F0 mice were fed a HFD or normal diet (CD) for two 
months, and the HFD group (n = 20) had significantly 
higher body weight than the CD group (n = 20) (Fig. 1A). 
Testicular tissue from CD mice was closely arranged and 
the seminiferous tubules were neatly arranged, while in 
the HFD group, the seminiferous tubules were loosely 
arranged and the number of spermatogenic cells was 
lower (Fig.  1B). Immunohistochemistry showed that 
SETD2 level in the testis was significantly higher in the 
HFD group than in the CD group (Fig.  1C&D). Sperm 
was extracted and subjected to qPCR and western blot-
ting, and the expression of SETD2 in the HFD group was 
significantly higher than that in the CD group (Fig.  1E, 
F&G).

F0 mice fed a HFD showed abnormal methylation 
of the SETD2 promoter region in sperm DNA
Sperm from the two groups (8 male mice in each group) 
was extracted, and 26 sites with at least three CpG-rich 
sequences (Seq1, Seq2, Seq3) in the SETD2 promoter 
region were selected for determination of methylation 
level by pyrosequencing. Seq1 contained nine CpG sites 



Page 4 of 10Wei et al. Genes & Nutrition           (2023) 18:12 

(S1, sites 1- 9); Seq2 contained ten CpGs sites (S2, sites1-
10); and Seq3 contained seven CpG sites (S3, sites 1–7) 
(Fig.  2A). Methylation level determination followed by 
principal component analysis (PCA) and heatmap con-
struction showed significant differences in methylation 
levels in sperm DNA from F0 mice fed a HFD com-
pared to CD (Fig.  2B, C). Analysis of Seq1 showed that 
S1-site1 was significantly lower in the HFD group than 

in the CD group, while S1-sites 2–6, 8 & 9 were signifi-
cantly higher with HFD than CD (Fig. 2D). Methylation 
of CpG sites at Seq2 was significantly higher with HFD 
than CD (Fig.  2E). No significant difference in meth-
ylation at S3-sites 1–5 was found between HFD and CD 
mice, while it was significantly higher at S3-sites 6 and 7 
in HFD (Fig.  2F). HFD altered DNA methylation in the 
promoter region of SETD2 in sperm DNA; 20 of the 26 

Fig. 1 Effect of HFD on SETD2 expression in testis and sperm of F0 mice. A Significant weight gain of F0 male mice fed HFD over two months. 
B Morphological analysis of F0 mice testis in CD group (n = 10) and HFD group (n = 10) with H&E staining. C Detection of SETD2 in F0 mice testis 
from the two groups (n = 10 in each group) by immunohistochemistry, and D the relative level of SETD2 expression in F0 mouse testis in the two 
group. E Relative expression of SETD2 mRNA in F0 mouse sperm determined by qPCR (n = 10 in each group). F Determination of SETD2 protein 
from F0 mouse sperm by western blotting (n = 3 in each group), and G relative expression level of SETD2 protein in F0 mouse sperm from the two 
group (n = 10 in each group). ** above the bars indicates P < 0.01, and * above the bars indicates P < 0.05
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CpG sites were significantly changed in the HFD group 
compared to the CD group.

Apoptotic index and TCN in blastocysts were closely 
related with the methylation level of SETD2 in sperms
F0 male mice from the CD and HFD groups were 
mated with female CD mice, then the apoptotic index 
and TCN in blastocysts was analyzed. The apoptotic 
index in blastocysts from the HFD group was signifi-
cantly higher than from the CD group, and the TCN 

in blastocysts from the HFD group was significantly 
lower than from the CD group (Fig.  3A-C). Also we 
found that the apoptotic index and total cell numbers 
in blastocysts were closely related with the methylation 
level of SETD2 in sperms of F0 (n = 8 in each group) 
(Fig.  3D). To evaluate the pregnancy rate, F1 litter 
size, total numbers and weights of the pups, 40 adult 
female CD mice weighing 26–28 g in estrus were caged 
(1 male + 1 female) with male CD mice (n = 20) or HFD 
mice (n = 20) for one day. As a result of the mating, 14 

Fig. 2 Paternal HFD altered methylation profile of SETD2 promoter region in sperm from F0 mice. A Genomic structure and relative position 
of the region sequenced are shown, and a total of 26 sites with at least three CpG sequences in the SETD2 promoter region were selected 
for methylation profiling. The numbering of the CpGs below the sequence corresponds to each of the CpGs analyzed. The methylation level 
of the 26 sites was measured by pyrosequencing followed by principal component analysis (B) and heatmap analysis (C). The methylation levels 
of the two groups are shown for Seq1 (D), Seq2 (E) and Seq3 (F). *** above the bars indicates P < 0.001, ** above the bars indicates P < 0.01, and * 
above the bars indicates P < 0.05
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female mice in the CD group and 12 female mice in 
the HFD group gave birth (Fig. 3E). There was no sig-
nificant difference in the average litter size between the 
two groups (Fig. 3F). The total number of pups from the 
HFD mouse mating was lower than from the CD group 
(142 vs 167, Fig.  3G). After feeding with CD for two 
months, the body weights of the F1 mice from the two 
groups were not significantly different (Fig. 3G, I).

Paternal HFD altered methylation profile of SETD2 
promoter region in F1 sperm
Sperm was extracted from F1 male mice (8 male mice in 
each group), and the DNA methylation levels at the 26 
sites were measured. The PCA and heatmap profiles were 
similar between the two groups (Fig. 4A, B). The methyl-
ation level at 23 of the 26 CpG sites was not significantly 
different between the two groups (Fig.  4C, D&E); how-
ever, the CpG sites, S1-site2, S1-site8, and S2-site3 were 
significantly higher in the HFD group than the CD group, 

Fig. 3 Paternal HFD reduced total cell numbers in blastocysts. Representative images of blastocysts in each group showing TUNEL assay results 
for apoptotic cells (green). Apoptotic index (B), and total cell numbers (C) in blastocysts fertilized by F0 mouse sperm between the two groups. D 
Correlations between the methylation level of SETD2, apoptotic index, and total cell numbers in blastocysts. Spearman’s correlation coefficients are 
represented by colors ranging from blue (−1) to red (+1). Pregnancy rate (E), litter size (F), and number of pups born (G) between the two groups 
is shown. Body weights of the F1 males (H) and females (I) from the two groups. *** above the bars indicates P < 0.001, ** above the bars indicates 
P < 0.01, and * above the bars indicates P < 0.05
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which seemed to maintain the changes seen in the sperm 
DNA of F0 mice (Fig. 4C, D).

Discussion
The SETD2-H3K36me3 axis plays an important role in 
genetic mutation and epigenetics, which is an important 
regulatory system for organisms to respond to environ-
mental stress [18]. SETD2 knockout in mice led to abnor-
mal embryonic vascular remodeling and death [23]. Here 
we found abnormal expression of SETD2 in the testis of 
mice fed a HFD. A previous study reported that a HFD 
damages the intestinal barrier so that toxic metabolites 
can enter the body from the intestine, cross the blood-
testis barrier, and cause inflammation [24]. Activation 
of SETD2 by inflammatory stimulation could mediate 
H3K36me3, thus promoting stimulus–response tran-
scription [25]. Here, the abnormal expression of SETD2 
in the testis might be attributable to inflammation 
induced by HFD.

Paternal stress can affect offspring through histone 
modification, DNA methylation, imprinted gene meth-
ylation and increased content of non-coding RNAs 
in sperm [12, 26, 27]. In fact, sperm contains only a 
very small amount of histone and mRNA, and most 
sperm DNA methylation undergoes reprogramming 
after fertilization [28]. Whether SETD2 is involved in 

intergenerational or transgenerational inheritance as an 
important gene regulating epigenetics and responding to 
environmental stress has not been reported. In this study, 
we showed for the first time that a HFD could signifi-
cantly alter the mRNA and protein expression of sperm 
SETD2, and also change the DNA methylation pattern in 
the SETD2 promoter.

In order to explore whether HFD alteration of DNA 
methylation at the SETD2 promoter region in F0 sperm 
could be passed on to F1 mice through the sperm, we 
measured the DNA methylation level at 26 CpG sites 
in sperm DNA from 2-month-old F1 mice, and found 
three CpG sites in the F1 sperm DNA that retained some 
of paternal HFD-induced changes as in the sperm of F0 
mice. This result indicates that a paternal HFD can not 
only alter the SETD2 methylation pattern of F0 sperm 
and the level of H3K36me3 in embryos, but also affect 
SETD2 methylation in F1 sperm, suggesting that the 
effects of a HFD in male mice is traceable in the sperm 
epigenome. Although the paternal HFD-induced epige-
netic memory patterns in the sperm SETD2 methylation 
profile were significantly different in F0 mice between the 
two groups at 20 of the 26 CpG sites, 17 of the 20 changed 
CpG sites did not differ significantly in HFD vs CD F1 
mice, indicating that the epigenetic memory induced by 
paternal HFD could be partially lost in the offspring.

Fig. 4 Paternal HFD altered methylation profile of SETD2 promoter region in F1 sperm. Methylation levels of the 26 sites in F1 sperm 
by pyrosequencing followed by principal component analysis (A) and heatmap analysis (B). Methylation level of Seq1 (C), Seq2 (D) and Seq3 (E) F1 
sperm between the two groups. * above the bars indicates P < 0.05
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Some studies demonstrated that paternal expo-
sure to malnutrition, such as high fat, low protein, 
or low folate or environmental toxicants, impaired 
sperm function and altered DNA methylation pat-
terns [29–31]. Paternal exposure to cigarette smoke 
increased the global methylation of sperm DNA and 
altered the DMR of the imprinted gene, DLK1, in the 
F1 generation, which may be inherited and may per-
turb long-term metabolic function [32]. Recent stud-
ies found that sepsis impaired sperm function and 
altered the DNA methylome, causing disruptions of 
immune responses in male offspring [33, 34]. Most 
of the reported studies on sperm DNA methylation 
have mainly used non-targeted detection of DNA 
methylation, or targeted detection of methylation of 
individual imprinted genes, with very little focus on 
non-imprinted genes [35–38]. In this study, pyrose-
quencing was used to detect the DNA methylation 
of SETD2 in sperm, and revealed that paternal HFD-
induced epigenetic changes in the SETD2 methyla-
tion pattern could be transferred to the F1 generation. 
This discovery opens a window onto new opportuni-
ties for uncovering environmental factors mediat-
ing sperm epigenetics from a new perspective. Some 
past studies posited that gene methylation was nega-
tively correlated with transcriptional silencing, and 
CpG methylation of enhancer/promoter sequences 
could abolish specific factor binding as well as tran-
scriptional activation, but this conclusion was not 
absolutely true [39–41]. High-throughput sequenc-
ing methods have examined the effect of partial gene 
methylation on transcription factor binding and found 
that about one-third of the gene methylation sites were 
preferentially favored by transcription factors [41]. 
In the present study, we found that the methylation 
level of the sperm DNA at the SETD2 promoter region 
was negatively correlated with the expression level of 
SETD2, which also was consistent with the hypothesis 
that gene methylation was not always negatively cor-
related with gene expression.
SETD2/H3K36me3 plays a crucial role in regulat-

ing cell apoptosis and chromatin accessibility [42]. 
When cells suffer severe DNA damage, SETD2 is acti-
vated and localized near the broken DNA, catalyzing 
H3K36me3, thereby regulating DNA damage repair 
and maintaining genomic stability [43]. Apoptosis-
related genes such as FAS and P53 were targeted by 
SETD2/H3K36me3 [44]. Mutations in SETD2 can lead 
to increased genomic instability, hinder DNA dam-
age repair, and disrupt apoptotic pathways [42–44]. 
Here, we found that a paternal high-fat diet signifi-
cantly altered the methylation levels and expression of 

the SETD2 promoter region in sperm, which may be 
related to the metabolic disorder in the testes induced 
by a high-fat diet. Here, our results showed that a 
paternal high-fat diet increased the apoptotic index 
and decreased the TCN in blastocysts, and a positive 
correlation between SETD2 methylation levels and 
blastocyst apoptotic rate, and a negative correlation 
with the TCN in blastocysts, indicating that a paternal 
high-fat diet mediate embryo apoptosis through sperm 
SETD2 regulation.

In conclusion, we found that male F0 mice fed a HFD 
showed abnormal SETD2 expression, as well as an 
abnormal methylation pattern of the SETD2 promoter 
region in sperm. We also showed that paternal HFD 
affected the SETD2 methylation pattern of F1 sperm, 
suggesting that dietary changes in F0 male mice fed a 
HFD were traceable in the sperm epigenome as SETD2 
methylation patterns in F1 offspring.
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