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Abstract DNA methylation occurs at CpG dinucleotide

sites within the genome and is recognised as one of the

mechanisms involved in regulation of gene expression.

CpG sites are relatively underrepresented in the mamma-

lian genome, but occur densely in regions called CpG

islands (CGIs). CGIs located in the promoters of genes

inhibit transcription when methylated by impeding tran-

scription factor binding. Due to the malleable nature of

DNA methylation, environmental factors are able to

influence promoter CGI methylation patterns and thus

influence gene expression. Recent studies have provided

evidence that nutrition (and other environmental expo-

sures) can cause altered CGI methylation but, with a few

exceptions, the genes influenced by these exposures remain

largely unknown. Here we describe a novel bioinformatics

approach for the analysis of gene expression microarray

data designed to identify regulatory sites within promoters

of differentially expressed genes that may be influenced by

changes in DNA methylation.
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Introduction

DNA is methylated by the covalent addition of methyl

groups to the 50 position on cytosine residues, usually when

the cytosine is followed by a guanine residue—i.e. in a

CpG dinucleotide. Although CpG dinucleotides are under-

represented in the genome, there are dense accumulations

of CpGs (CpG islands; CGI) in the promoter regions of

many genes. When CpG dinucleotides in CGI located near

the transcription start site of a gene are methylated, this is

usually associated with gene repression. Other epigenetic

marks, especially post-translational modifications of his-

tone tails, also contribute to regulation of gene expression.

Therefore the pattern of CpG methylation impacts upon

phenotype by altering gene expression. For example, in the

agouti mouse methylation of specific CpG sites within the

intra-cisternal A particle (IAP) region of the Agouti gene

can influence coat colour, body weight and longevity [20].

Aberrant DNA methylation is associated with several dis-

eases, e.g. cancer, occurs during ageing and has been

implicated as one possible mechanism involved in the

developmental origins of adult health and disease.

The main patterns of DNA methylation are established

during early embryonic and fetal life, but methylation

marks are plastic and can be influenced by environmental

factors especially when these factors are applied during

development [4, 10, 11, 16, 20–22]. Although most

research to date has been carried out using animal models,

it is likely that environmental factors also influence

DNA methylation, and therefore phenotype, in humans. In

patients with hyper-homocysteinaemia, genomic DNA

methylation is lower than that in controls [7]. Hyper-

homocysteinaemia is characterised by increased cellular

concentrations of S-adenosylhomocysteine (SAH), which is

an inhibitor of DNA methyltransferase 1 (DNMT1)—the
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enzyme responsible for maintaining DNA methylation.

Supplementing the diet of such patients with folate, which

provides methyl groups for the synthesis of S-adenosyl-

methionine (SAM; the universal methyl donor) and alters

the SAM:SAH ratio, restored genomic DNA levels to

normal and also ‘corrected’ CpG methylation within the

IGF2-H19 locus [7].

A large proportion (70–80%) of global DNA methyla-

tion occurs in non-coding regions, exons and repetitive

DNA sites within the genome [8] and little is known about

the functional consequences of changes in genomic DNA

methylation. In contrast, methylation at specific CpG sites

in or around the promoter regions of genes can influence

transcription so it is imperative to understand which loci

within the genome are susceptible to environmentally-

determined modification of DNA methylation patterns. A

candidate gene approach has been used successfully in

studies of cancer aetiology and pathophysiology, where it

is reasonable to predict that targets would include tumour

suppressor genes since their silencing is of obvious aetio-

logical significance. Such an approach is likely to be less

successful for other complex diseases where potential

candidate genes are less readily identified. A candidate

gene approach is also less appropriate in the context of

(relatively mild) nutritional exposures, where the effects on

gene expression may be small and widespread across the

genome. In addition, since dietary factors can influence

gene expression by several other mechanisms [12], the

relationship between changes in gene expression and cor-

responding changes in DNA methylation patterns are

difficult to decipher. To help address this problem, we have

developed a novel strategy to identify target loci that have

shown differential gene expression in response to nutri-

tional exposure, which potentially could be due to altered

DNA methylation. To do so, we used a mouse model in

which dams were fed a folate deplete diet prior to and

during pregnancy, and investigated the effects of folate

depletion in utero on fetal liver gene expression at

17.5 days’ gestation. In this paper we outline our strategy

and describe how we have used bioinformatic tools to

analyse these gene expression array data to identify regu-

latory sites within promoters of differentially expressed

genes that could potentially be influenced by differential

DNA methylation.

Strategy

Figure 1 provides an overview of the strategy employed

to find gene targets with possible aberrant methylation.

Firstly, to identify target genes, microarray data were

analysed to identify a list of differentially expressed

genes. We used the automatic transcriptomics analysis

pipeline that was developed by NuGO (the European

Nutrigenomics Organisation) and that is accessible from

the NuGO Blackboxes through Genepattern. The pipeline

employs several packages from the Bioconductor project

(http://www.bioconductor.org) and includes procedures

for quality control, normalisation and statistical analysis

of microarray data. The resulting annotated gene list was

Raw array data  

Genes with significant 
differential expression

Pilot genes of specific 
pathway(s)

Pilot TFBSs

All promoters with CGIs

Candidates for 
methylation analysis

Interpretation

Preprocessing
(Genepattern)

Pathway analysis
(GenMAPP, GeneGO Metacore,  

Pathvisio)

TFBS analysis
(Genomatix)

Genes with promoters 
containing specific TFBSs  

and CGIs

Pilot promoters with CGIs

Promoter identification
(Genomatix)

CGI identification
(CPGIE)

Scan for pilot TFBSs
(Genomatix)

Repeat

Fig. 1 Overview of strategy developed to identify target genes whose

expression may have been altered by DNA methylation aberrations.

Genepattern can be accessed through any NuGO Blackbox (NBX).

Web address for bioinformatics tools are as follows: Genomatix;

http://www.genomatix.de, CpG Island Explorer; http://bioinfo.hku.

hk/cpgieintro.html
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filtered on fold change and P values to identify genes

with altered expression. As (relatively mild) nutritional

exposures are likely to lead to subtle changes in gene

expression when compared with pharmaceutical inter-

ventions, we routinely filter for genes with a 20% change

in expression, i.e. either above 1.2 or below -1.2. As we

are interested only in genes for which the changes in

expression are statistically significant, we filter using a

threshold of P = 0.05. P values were corrected for mul-

tiple testing using the Benjamini and Hochberg [1]

approach. From this analysis we obtained a list of genes

showing significant differential expression. By mapping

these genes to pathways, it was possible to filter the list

further by selecting only those genes occurring in path-

ways of interest, i.e. those pathways plausibly linked

biologically to the processes being considered. Examples

of useful pathway tools are Pathvisio [18], GenMAPP

[15] and GeneGO’s Metacore [5]. Pathway analysis can

only be as good as the pathway information used. To

allow evaluation of gene expression changes in processes

directly related to DNA methylation we created a one-

carbon metabolism pathway on WikiPathways [13] and

used that in PathVisio and GenMAPP.

The next stage was to identify the promoter sequences of

the selected genes. The promoter is the site responsible for

regulation of gene transcription and houses several regula-

tory DNA motifs including transcription factor binding sites

(TFBS) and, in many cases, CGI. Characterising the pro-

moter is therefore essential to understand the regulatory

networks responsible for differential gene expression. Pro-

moter identification within genomic sequences can be

difficult, although there are bioinformatic tools that can be

used to predict mammalian promoters (reviewed in [24]).

To be sure that a predicted promoter is indeed a promoter

requires wet-lab verification. We use the validated promoter

database of the commercially available Genomatix software

(http://www.genomatix.de). Promoter sequences in this

database are scored as gold (experimentally verified 50

complete transcript), silver (transcript with 50 end confirmed

by PromoterInspector prediction) or bronze (annotated

transcript, no confirmation for 50 completeness) and this

scoring system can be used to eliminate less likely candi-

dates. At this stage, one may choose to leave out promoters

with less relevant transcripts, e.g. those where the func-

tional role of the gene product is unknown.

CpG sites are relatively under-represented in the mam-

malian genome but occur in unusually dense groupings in

CGI. These are areas of the genome between 0.5 and 4 kb

in length, with [50% GC content and an observed/expec-

ted CpG ratio of over 0.6. In the human genome, roughly

half of all genes contain CpG islands. CpG sites within

CpG islands tend to be largely unmethylated in normal

tissues. Furthermore, hypermethylation of CpG islands

within promoters of tumour suppressor genes is observed

commonly in tumour cells [6]. Therefore, we used presence

of a CGI as one criterion in our strategy to identify

potential target genes that may have been regulated by

DNA methylation.

There are several freely available web based tools,

such as MethPrimer (http://www.urogene.org/methprimer/

index1.html) [9] that can predict the presence of a CGI

within a given sequence. However, most of these tools can

analyse only one sequence at a time. Given that the list of

candidate genes arising from array data can be quite large,

even after filtering at the pathway level, this approach is

unnecessarily laborious and time consuming. This problem

can be addressed by using CpG Island Explorer (http://

bioinfo.hku.hk/cpgieintro.html) [19], which is freely

available for download and is able to predict the presence

of CGI in multiple sequences simultaneously. It is based on

the algorithm and Perl script created by Takai and Jones

[17], which is still considered as the gold standard in CpG

island searching.

Identification of methylation-sensitive TFBS

Hypermethylation of CGI is associated with gene silencing

and this is generally associated with a ‘closed’ chromatin

structure that reduces access of transcription factors and

other transcriptional machinery to the DNA. However, it is

also known that methylation of single specific CpG sites

can be associated with decreased expression of some genes

[2, 14]. In some cases, methylation of these specific sites

prevents binding of transcription factors essential for gene

expression. Therefore part of our strategy to identify genes

whose expression may be altered due to DNA methylation

changes was to search for the presence of CpG sites within

TFBS of promoters.

Promoter function is governed by the binding of tran-

scription factors to the DNA sequence. An isolated TFBS is

often not functional. Werner [23] argued that TFBS act in a

modular fashion allowing the support of protein complexes

for transcriptional activation. His definition of a tran-

scription factor (TF) module is ‘two or more transcription

factor binding sites in a defined order and orientation that

comprise promoter modules’. If one TFBS within a module

is functionally impaired, by a point mutation in the DNA

sequence or due to methylation of a CpG site within the

binding site, this causes the complete TF module to be

inactivated.

We employed Genomatix software, specifically MatIn-

spector, to investigate TFBS within promoters since this

software is optimized for searching for matrices of TFBS

within sequences [3]. Further analysis of the resultant TF

module data list was used to identify modules with TFBS
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that contained conserved CpG sites. From the list of mod-

ules we identified common TF modules that occurred

regularly in our data set. Promoters containing common

modules in which TFBS have CpG sites are potential targets

for altered DNA methylation in response to a dietary (or

other environmental) exposure since it is likely that these

genes are regulated by a common mechanism. However, it

is important to be aware that it is also likely that the TFs

common to these modules could themselves be the cause of

altered expression of these genes. One potential way to

resolve this issue is to check the original array expression

data for changes in expression of the TF in question. If the

TF do not display differential expression, then it is more

likely that the observed changes in gene expression are due

to altered CpG methylation within TFBS.

Summary

We have developed a novel in silico strategy to identify

target genes that could potentially be regulated by DNA

methylation in response to a dietary (or other) exposure.

This strategy utilises the expression data from whole

genome transcriptomics arrays together with a compre-

hensive bioinformatics workflow to narrow the list of

gene targets for DNA methylation analysis. This strategy

is powerful and attractive in identifying genes that are

susceptible to DNA methylation changes, and therefore

may be of particular utility in pinpointing common genes

susceptible to aberrant DNA methylation using different

array datasets from a range of studies. With this approach,

it may be possible to identify specific DNA motifs that

are susceptible to aberrant DNA methylation in response

to environmental (nutritional) factors.
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