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Abstract The neuroprotective actions of dietary flavo-

noids involve a number of effects within the brain, includ-

ing a potential to protect neurons against injury induced by

neurotoxins, an ability to suppress neuroinflammation, and

the potential to promote memory, learning and cognitive

function. This multiplicity of effects appears to be under-

pinned by two processes. Firstly, they interact with impor-

tant neuronal signalling cascades leading to an inhibition of

apoptosis triggered by neurotoxic species and to a promo-

tion of neuronal survival and differentiation. These inter-

actions include selective actions on a number of protein

kinase and lipid kinase signalling cascades, most notably

the PI3K/Akt and MAP kinase pathways which regulate

pro-survival transcription factors and gene expression.

Secondly, they induce peripheral and cerebral vascular

blood flow in a manner which may lead to the induction of

angiogenesis, and new nerve cell growth in the hippocam-

pus. Therefore, the consumption of flavonoid-rich foods,

such as berries and cocoa, throughout life holds a potential

to limit the neurodegeneration associated with a variety of

neurological disorders and to prevent or reverse normal or

abnormal deteriorations in cognitive performance.
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Introduction

Macronutrients, such as lipids are vital components of both

neurons and glial cells and their profile (saturated or un-

saturated) has been proposed to play a huge role in brain

function [3]. Furthermore, the brain has a very high energy

demand and as such utilises a large proportion of the

dietary intake of carbohydrates in order to function effec-

tively. However, it is less obvious how other dietary-

derived nutrients or non-nutrient components may impact

on the functioning of the brain. Despite this, a large number

of dietary intervention studies in humans and animals, in

particular those using foods and beverages derived from

Vitis vinifera (grape), Camellia sinensis (tea), Theobroma

cacao (cocoa) and Vaccinium spp. (blueberry) have dem-

onstrated beneficial effects on human vascular function and

on improving memory and learning [15, 16, 32, 60, 69, 76,

80]. While such foods and beverages differ greatly in

chemical composition, macro- and micronutrient content

and caloric load per serving, they have in common that

they are amongst the major dietary sources of a group of

phytochemicals called flavonoids.

Historically, the biological actions of flavonoids,

including those on the brain, have been attributed to their

ability to exert antioxidant actions [51], through their

ability to scavenge reactive species, or through their pos-

sible influences on intracellular redox status [50]. However,

it has been speculated that this classical hydrogen-donating

antioxidant activity cannot account for the bioactivity of

flavonoids in vivo, particularly in the brain, where they are

found at only very low concentrations [59]. Instead, it has

been postulated that their effects in the brain are mediated

by an ability to protect vulnerable neurons, enhance

existing neuronal function, stimulate neuronal regeneration

and induce neurogenesis [60]. Indeed, it has become
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evident that flavonoids are able to exert neuroprotective

actions (at low concentration) via their interactions with

critical neuronal intracellular signalling pathways pivotal

in controlling neuronal survival and differentiation, long-

term potentiation (LTP) and memory [61, 74, 78]. This

review will examine the potential for flavonoids to influ-

ence brain function and will attempt to clarify the mech-

anisms which underpin such actions in the brain.

Inhibition of neuroinflammation

Neuroinflammatory processes in the brain are believed to

play a crucial role in the development of Alzheimer’s and

Parkinson’s disease [19, 47] as well as injury associated

with stroke [81]. Activated microglia and/or astrocytes

release cytokines and other mediators which have been

linked to the apoptotic death of neurons. In particular,

increases in cytokine production (interleukin-1b, IL-1b;

tumour necrosis factor-alpha, TNF-a), inducible nitric

oxide synthase (iNOS) and nitric oxide (NO•), and

increased NADPH oxidase activation [31] all contribute to

glial-induced neuronal death (Fig. 1). The majority of these

events are controlled by upstream mitogen-activated pro-

tein kinase (MAPK) signalling which mediates both the

transcriptional and post-transcriptional regulation of iNOS

and cytokines in activated microglia and astrocytes [6, 45].

Evidence suggests that the non-steroidal anti-inflammatory

drug, ibuprofen, may be effective in delaying the onset of

neurodegenerative disorders, particularly as Parkinson

disease, by reducing inflammatory injury in specific brain

regions [8]. As such, there is a desire to develop new drugs

capable of preventing progressive neuronal loss linked

to neuroinflammation. Recently, the flavanone naringenin

found at high concentrations in citrus fruits has been found

to be highly effective in reducing LPS/IFN-c-induced glial
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cell activation and resulting neuronal injury [70], via an

inhibition of p38 and STAT-1, and a reduction in iNOS

expression (Fig. 2). The structurally related flavanone

hesperetin and other flavonoids appeared incapable of

inhibiting pathways leading to NO• production, although

they were found to partially alleviate neuroinflammation

through the inhibition of TNF-a production [70].

Flavonoids present in blueberry have also been shown to

inhibit NO•, IL-1b and TNF-a production in activated

microglia cells [33], while the flavonol quercetin [9], the

flavones wogonin and bacalein [35], the flavanols catechin

and epigallocatechin gallate (EGCG) [38] and the isoflavone

genistein [4] have all been shown to attenuate microglia and/

or astrocyte mediated neuroinflammation via mechanisms

that include inhibition of: (1) iNOS and cyclooxygenase

(COX-2) expression, (2) NO• production, (3) cytokine

release, and (4) NADPH oxidase activation and subsequent

reactive oxygen species (ROS) generation, in astrocytes and

microglia. All of these effects appear to rely via on an ability

to directly modulate the protein and lipid kinase signalling

pathways [58, 61, 78], for example, via the inhibition of

MAPK signalling cascades, such as p38 or ERK1/2 which

regulate both iNOS and TNF-a expression in activated glial

cells [6] (Fig. 2). In this respect, fisetin inhibits p38 MAP

kinase phosphorylation in LPS-stimulated BV-2 microglial

cells [82] and the flavone luteolin inhibits IL-6 production in

activated microglia via the inhibition of the JNK signalling

pathway [21]. The effects of flavonoids on these kinases may

influence downstream pro-inflammatory transcription fac-

tors important in iNOS transcription. One of these, nuclear

factor-Kappa B (NF-jB), responds to p38 signalling and is

involved in iNOS induction [7], suggesting that there is

interplay between signalling pathways, transcription factors

and cytokine production in determining the neuroinflam-

matory response in the CNS. In support of this, some

flavonoids have been shown to prevent transcription factor

activation, with the flavonol quercetin and the flavanone

naringenin able to suppress NF-jB, signal transducer and

activator of transcription-1 (STAT-1) and activating pro-

tein-1 (AP-1) activation in LPS- and IFN-c-activated

microglial cells [9, 70].

Inhibition of neurodegeneration

The underlying neurodegeneration observed in Parkin-

son’s, Alzheimer’s, and other neurodegenerative diseases is

believed to be triggered by multi-factorial processes,

including neuroinflammation, glutamatergic excitotoxicity,

increases in iron and/or depletion of endogenous antioxi-

dants [5, 22, 67]. There is a growing body of evidence

to suggest that flavonoids and other polyphenols may be

able to counteract this neuronal injury, thereby delaying the

progression of these brain pathology [41, 58, 59]. For

example, a Ginkgo biloba extract has been shown to pro-

tect hippocampal neurons against nitric oxide- and beta-

amyloid-induced neurotoxicity [39]; and studies have

demonstrated that the consumption of green tea may have

beneficial effect in reducing the risk of Parkinson’s disease

[28, 42–44]. In agreement with the latter study, tea extracts

and pure (-)-epigallocatechin-3-gallate (EGCG) have been

shown to attenuate 6-hydroxydopamine-induced toxicity

ROS/RNS DHBT-1

Scavenging by 
Flavonoids

Activation

Inhibition CysDA

NO •

Microglia/Astrocyte

ASK1

JNK1/2

BAD

Akt

/

PI3K

Activation by Flavonoids

STAT-1

TNF-α
Caspase-8

Caspase-9

Caspase-3

Bcl-xL

MEK1/2

CREB

Inhibition by
Flavonoids

IFNγ
IL-1β

TNF-α

CD23
Neuronal
Apoptosis

Neuron

p38

iNOS ERK1/2

Fig. 2 The cellular

mechanisms by which

flavonoids and their metabolites

protect against

neuroinflammation and

neuronal injury induced by 5-S-

Cys-DA, DHBT-1 and related

ROS. Flavonoids inhibit the p38

pathway glia cells leading to a

reduction in iNOS expression

and NO• release. In neurons,

they scavenge neurotoxic

species and induce pro-survival

signalling pathways, such as

ERK1/2 and PI3-kinase/Akt,

leading to an inhibition of

neuronal apoptosis

Genes Nutr (2009) 4:243–250 245

123



[37], to protect against hippocampal injury during transient

global ischemia [34] and to prevent nigral damage induced

by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

[36].

The death of nigral neurons in Parkinson’s disease is

thought to involve the formation of the endogenous neu-

rotoxin, 5-S-cysteinyl-dopamine (5-S-cys-DA) and its oxi-

dation product, dihydrobenzothiazine (DHBT-1) [18, 65]

(Fig. 1). 5-S-cysteinyl-catecholamine conjugates possess

strong neurotoxicity and initiate a sustained increase in

intracellular ROS in neurons leading to DNA oxidation,

caspase-3 activation and delayed neuronal death [65]

(Fig. 1). Such adducts may be generated by reactive spe-

cies [73] and have been observed to be elevated in the

human substantia nigra of patients who died of Parkinson’s

disease [62], suggesting that such species may be potential

endogenous nigral toxins. However, 5-S-cysteinyl-dopa-

mine-induced neuronal injury is effectively counteracted

by nanomolar concentrations of various flavonoids,

including pelargonidin, quercetin, hesperetin, caffeic acid,

the 40-O-Me derivatives of catechin and epicatechin [73]

(Fig. 2). Furthermore, in the presence of the flavanol, (?)-

catechin, tyrosinase-induced formation of 5-S-cysteinyl-

dopamine was inhibited by a mechanism linked to the

capacity of catechin to undergo tyrosinase-induced oxida-

tion to yield cysteinyl-catechin adducts [72]. In contrast,

the inhibition afforded by flavanones, such as hesperetin,

was not accompanied with the formation of cysteinyl-

hesperetin adducts, indicating that it may inhibit via direct

interaction with tyrosinase [72].

Reactive oxygen and nitrogen species have also been

proposed to play a role in the pathology of many neuro-

degenerative diseases [22] (Fig. 1). There is abundant

evidence that flavonoids are effective in blocking this oxidant-

induced neuronal injury, although their potential to do so is

thought not to rely on direct radical or oxidant scavenging

activity [63, 64]. Instead, they are believed to act by mod-

ulating a number of protein kinase and lipid kinase signal-

ling cascades, such as the PI3 kinase (PI3K)/Akt, tyrosine

kinase, protein kinase C (PKC) and MAPK signalling

pathways [58, 78]. Inhibitory or stimulatory actions at these

pathways are likely to profoundly affect neuronal function

by altering the phosphorylation state of target molecules,

leading to changes in caspase activity and/or by gene

expression [78]. For example, flavonoids have been

observed to block oxidative-induced neuronal damage by

preventing the activation of caspase-3, providing evidence

in support of their potent anti-apoptotic action [63, 64]. The

flavanols epicatechin and 30-O-methyl-epicatechin also

protect neurons against oxidative damage via a mechanism

involving the suppression of JNK and downstream partners,

c-jun and pro-caspase-3 [53]. Flavanones, such as hes-

peretin and its metabolite, 5-nitro-hesperetin, have been

observed to inhibit oxidant-induced neuronal apoptosis via

a mechanism involving the activation/phosphorylation of

signalling proteins important in the pro-survival pathways

[71]. Similarly, the flavone, bacalein, has been shown to

significantly inhibit 6-hydroxydopamine-induced JNK

activation and neuronal cell death and quercetin may sup-

press JNK activity and apoptosis induced by hydrogen

peroxide [20, 75], 4-hydroxy-2-nonenal [68] and tumour

necrosis factor-alpha (TNF-alpha) [30].

Modulation of memory and learning

There is now much evidence to suggest that fruit and

vegetable derived phytochemicals, in particular flavonoids,

are capable of promoting beneficial effects on memory and

learning [23–27, 56, 57, 79]. It appears that these low

molecular weight, non-nutrient components are able to

impact upon memory through their ability to exert effects

directly on the brains innate architecture for memory [60].

This innate cellular and anatomical architecture of the

brain, and its role in the acquisition, storage and retrieval of

memories, was originally postulated by Immanuel Kant in

1781 in his revolutionary ‘‘Critique of pure reason’’ [29].

Kant suggested that there must be such ‘architecture’ in the

brain, in order that we may interpret sensory information

(Kant’s so called ‘a priori’ or ‘innate knowledge’). This

may now be interpreted not only psychologically but also

physiologically [40, 46], in that one does not come to

sensory data as a ‘blank tablet’, but rather brings a sort of

relational structure within the nervous system to interpret

sense data [1, 2, 46]. Consequently, the nature of our

sensory impressions is determined a priori by the physio-

logical apparatus of our senses or by the sensory nerve

centres and the memory acquisition, storage and recall

centres of the brain [2]. It is now understood that this

underlying structure has a molecular basis and thus inter-

action with this physiological apparatus may yield changes

in the way we acquire, store and retrieve memory. Fur-

thermore, this innate cellular architecture is well known

to deteriorate with aging, with neuronal populations or

synaptic connections lost over time, leaving the system

less efficient in the processing and storage of sensory

information.

The ability of flavonoids to impact upon this memory

system appears to be, in part, underpinned by an ability to

interact with this molecular and physiological apparatus.

The concentrations of flavonoids and their metabolites

which reach the brain are thought to be sufficiently high to

exert pharmacological activity at receptors, kinases and

transcription factors. Although the precise site of their

interaction with signalling pathways remains unresolved,

evidence indicates that they are capable of acting in a
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number of ways: (1) by binding to ATP sites on enzymes

and receptors, (2) by modulating the activity of kinases

directly, i.e. MAPKKK, MAPKK or MAPK, (3) by

affecting the function of important phosphatases which act

in opposition to kinases, (4) by preserving Ca2? homeo-

stasis, thereby preventing Ca2?-dependent activation of

kinases in neurons, and (5) by modulating signalling cas-

cades lying downstream of kinases, i.e. transcription factor

activation and binding to promoter sequences. By affecting

such pathways they have the potential to induce new pro-

tein synthesis in neurons and thus an ability to induce

morphological changes which have a direct influence on

memory acquisition, consolidation and storage.

Various individual cascades have been linked with this

control of de novo protein synthesis in the context of LTP,

synaptic plasticity and memory (Fig. 3): (i) cAMP-depen-

dent protein kinase (protein kinase A), (ii) protein kinase B

(PKB/Akt) 78, (iii) protein kinase C (PKC), (iv) calcium-

calmodulin kinase (CaMK) 80 and (v) extracellular signal-

regulated kinase (ERK) [61]. All five pathways converge to

signal to the cAMP-response element-binding protein

(CREB), a transcription factor which binds to the promoter

regions of many genes associated with synapse re-model-

ling, synaptic plasticity and memory (Fig. 3). Flavonoids

are now well known to modulate neuronal signalling

pathways crucial in inducing synaptic plasticity [61], and

although each of these pathways are known to be involved

in increasing the number of, and strength of, connections

between neurons, flavonoids appear to interact primarily

with the ERK and PKB/Akt pathways [55, 58, 66]. The

activation of these pathways by blueberry flavonoids, along

with the activation of the transcription factor CREB and

production of neurotrophins such as brain-derived neuro-

trophic factor brain-derived neurotrophic factor (BDNF) is

known to be required during memory acquisition and

consolidation and agents capable of inducing pathways

leading to CREB activation will have the potential to

enhance both short-term and long-term memory [79], by

providing a more efficient structure for interpreting afferent

nerve or sensory information. One mechanism by which

this may come about is through flavonoid-induced increa-

ses in neuronal spine density and morphology, two factors

considered vital for learning and memory [17]. Changes in

spine density, morphology and motility have been shown to

occur with paradigms that induce synaptic, as well as

altered sensory experience, and lead to alterations in syn-

aptic connectivity and strength between neuronal partners,

affecting the efficacy of synaptic communication (Fig. 3).

In support of this, high flavanol and anthocyanin supple-

mentation has been shown to cause activation of mTOR

and an increased expression of hippocampal Arc/Arg3.1

[79], events which are likely to facilitate changes in syn-

aptic strength through the stimulation of the growth of

small dendritic spines into large mushroom-shaped spines.

There is also evidence to suggest that flavonoids may be

capable of preventing many forms of cerebrovascular dis-

ease, including those associated with stroke and dementia

[10, 11]. Flavonoids may exert effects on endothelial func-

tion and peripheral blood flow [54], and these vascular

effects are potentially significant as increased cerebrovas-

cular function is known to facilitate adult neurogenesis in the

hippocampus [14] (Fig. 3). Indeed, new hippocampal cells

are clustered near blood vessels, proliferate in response to

vascular growth factors and may influence memory [49].

Efficient cerebral blood flow (CBF) is vital for optimal brain

function, with several studies indicating that there is a

decrease in CBF in patients with dementia [48, 52]. Brain

imaging techniques, such as ‘functional magnetic resonance

imaging’ (fMRI) and ‘trans-cranial Doppler ultrasound’

(TCD) has shown that there is a correlation between CBF

and cognitive function in humans [52]. For example, CBF

velocity is significantly lower in patients with Alzheimer

disease and low CBF is also associated with incipient

markers of dementia. In contrast, non-demented subjects

with higher CBF were less likely to develop dementia. In this

context, flavonoids have been shown to cause significantly

increased CBF in humans, 1–2 h post intervention [12, 13].

After consumption of a flavanol-rich cocoa drink, the ‘flow

oxygenation level dependent’ (BOLD)-fMRI showed an

increase in blood flow in certain regions of the brain, along
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with a modification of the BOLD response to task switching.

Furthermore, ‘arterial spin-labelling sequence magnetic

resonance imaging’ (ASL-MRI) [77] also indicated that

cocoa flavanols increase CBF up to a maximum of 2 h after

ingestion of the flavanol-rich drink. In support of these

findings, an increase in CBF through the middle cerebral

artery has been reported after the consumption of flavanol-

rich cocoa using TCD [12].

Summary

The neuroprotective actions of dietary flavonoids involve a

number of effects within the brain, including a potential to

protect neurons against injury induced by neurotoxins, an

ability to suppress neuroinflammation, and the potential to

promote memory, learning and cognitive function. This

multiplicity of effects appears to be underpinned by two

processes. Firstly, they interact with important neuronal

signalling cascades in the brain leading to an inhibition of

apoptosis triggered by neurotoxic species and to a pro-

motion of neuronal survival and differentiation. These

include selective actions on a number of protein kinase and

lipid kinase signalling cascades, most notably the PI3K/Akt

and MAP kinase pathways which regulate pro-survival

transcription factors and gene expression. It appears that

the concentrations of flavonoids encountered in the brain

may be sufficiently high to exert such pharmacological

activity on receptors, kinases and transcription factors.

Second, they are known to induce beneficial effects on the

peripheral and cerebral vascular system, which lead to

changes in cerebrovascular blood flow. Such changes are

likely to induce angiogenesis, new nerve cell growth in the

hippocampus and changes in neuronal morphology, all

processes known to important in maintaining optimal

neuronal function and neuro-cognitive performance.

The consumption of flavonoid-rich foods, such as ber-

ries and cocoa, throughout life holds a potential to limit

neurodegeneration and prevent or reverse age-dependent

deteriorations cognitive performance. However, at present,

the precise temporal nature of the effects of flavonoids on

these events is unclear. For example, it is presently unclear

as to when one needs to begin consuming flavonoids in

order to obtain maximum benefits. It is also unclear which

flavonoids are most effective in inducing these changes.

However, due to the intense interest in the development of

drugs capable of enhancing brain function, flavonoids may

represent important precursor molecules in the quest to

develop of a new generation of brain enhancing drugs.
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