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Abstract Tea, the major source of dietary flavonoids,

particularly the epicatechins, signifies the second most

frequently consumed beverage worldwide, which varies its

status from a simple ancient cultural drink to a nutrient

component, endowed possible beneficial neuro-pharmaco-

logical actions. Accumulating evidence suggests that oxi-

dative stress, resulting in reactive oxygen species

generation, plays a pivotal role in neurodegenerative dis-

eases, supporting the implementation of radical scavengers

and metal chelating agents, such as natural tea polyphenols,

for therapy. Vast epidemiology data indicate a correlation

between occurrence of neurodegenerative disorders, such

as Parkinson’s and Alzheimer’s diseases, and green tea

consumption. In particular, recent literature strengthens the

perception that diverse molecular signaling pathways,

participating in the neuroprotective activity of the major

green tea polyphenol, (-)-epigallocatechin-3-gallate

(EGCG), renders this natural compound as potential agent

to reduce the risk of various neurodegenerative diseases. In

the current review, we discuss the studies concerning the

mechanisms of action implicated in EGCG-induced neu-

roprotection and discuss the vision to translate these find-

ings into a lifestyle arena.
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Abbreviations

AD Alzheimer’s disease

Ab Amyloid beta peptide

ALS Amyotrophic lateral sclerosis

ARE Antioxidant response elements

COMT Catechol-O-methyltransferase

BBB Blood–brain barrier

DA Dopamine

EC (–)-Epicatechin

ECG Epicatechin-3-gallate

EGCG (-)-Epigallocatechin-3-gallate

EGC (–)-Epigallocatechin

MAPK Extracellular mitogen-activated protein

kinases

ERK1/2 Extracellular signal-regulated kinases

GAP-43 Growth associated protein-43

6-OHDA 6-Hydroxydopamine

HSP90 Heat shock protein 90

HIF-1 Hypoxia inducible factor-1

3-HK 3-Hydroxykynurenine

iNOS Inducible nitric oxide synthase

MEK1 Mitogen-activated protein kinase 1

MPP? 1-Methyl-4-phenylpyridinium

MPTP N-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

OS Oxidation stress

PD Parkinson’s disease

PKC Protein kinase C

PC12 cells Rat pheochromocytoma cells

R-APO R-apomorphine
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ROS Reactive oxygen species

GSH Reduced glutathione

SAPPa Soluble amyloid precursor protein

TNF-a Tumor necrosis-alpha

TfR Transferrin receptor

SNPC Substantia nigra pars compacta

VEGF Vascular endothelial growth factor

UPS Ubiquitin proteasome system

Introduction

Epicatechin (flavan-3-ol compound) is commonly present

in green tea and abundant with phenolic hydroxyl groups

on its aromatic rings, which confer its antioxidant and iron

chelating activities [130]. The importance of green tea

catechins in enhancing cell resistance to oxidative stress

(OS) goes beyond the simple scavenging and iron chelating

activities and is mostly interesting in those pathologies,

where OS and iron are involved [64, 104]. Numerous

studies in the last decade have shown that green tea cate-

chins have in vitro and in vivo activities in preventing and/

or reducing the deleterious effects of oxygen-derived free

radicals, associated with several chronic- and stress-related

human diseases (see reviews [5, 74, 76, 100, 119, 135]).

Several lines of evidence suggest that OS, resulting in

reactive oxygen species (ROS) generation, either through

an enzyme or metal catalyzed process, plays a pivotal role

in clinical disorders, such as atherosclerosis, ischemia-

reperfusion injury, cancer, stroke and neurodegenerative

disorders [24, 33]. Oxidative damage to neuronal mole-

cules and increased accumulation of iron in specific brain

areas are considered major pathological aspects of Par-

kinson’s disease (PD), Alzheimer’s disease (AD) and

amyotrophic lateral sclerosis (ALS) and thus, special

interest has been assigned to the therapeutic feature of

nutritional antioxidants and iron chelators in neurodegen-

erative diseases [23, 32, 74, 76, 97, 135].

A large number of epidemiological studies on PD and

cognitive impairment described a moderate risk reduction

in black (fermented), oolong (semi-fermented) and green

(not-fermented) teas consumers, compared to non-tea

drinkers [39, 84]. The favorable properties ascribed to tea

consumption are believed to rely on its bioactive flavanol

class-related catechins and their derivatives, demonstrated

to act as radical scavengers and exert indirect antioxidant

effects through activation of transcription factors, signaling

regulators and antioxidant enzymes (for reviews see: [40,

76, 141]). In line with this, particular attention has been

placed to study the neuroprotective action of antioxidants,

iron-chelating and anti-inflammatory agents, green tea

catechins and especially, the major component of green tea,

(-)-epigallocatechin-3-gallate (EGCG) [75, 82, 117]. The

revelation of novel molecular targets, possibly implicated

in their neuroprotective action include: calcium homeo-

stasis [45], extracellular mitogen-activated protein kinases

(MAPK) [109] and protein kinase C (PKC) signaling

pathways[58, 95], regulation of antioxidant enzymes [60],

antioxidant response element (ARE) [8], cell death and cell

survival genes and proteins, associated with mitochondrial

function, such as Bcl-2 family members [49, 59, 137, 138],

amyloid precursor protein (APP) processing pathway [58,

96] and iron regulators and sensors encoding genes and

proteins, such as transferrin receptor (TfR) and hypoxia-

inducible factor (HIF)-prolyl-hydroxylases [96, 134, 152].

This review aims to compile recent studies regarding the

molecular mechanism of action, implicated in EGCG-

induced neuroprotective and neuritogenic activities, which

might be a reflective outcome of its effects on neuronal cell

signaling pathways associated with antioxidant and iron

chelating properties.

Green tea catechins: human neuronal efficacy

and epidemiology studies

Green tea belongs to the Theacease family, derived from

two plant varieties, Camellia sinesis and Camellia assamica

[25], is the most widely consumed beverage aside from

water in Japan, China and other Asian nations and presently

becoming more popular in Western countries. The first

scientific recognition of medicinal properties of green tea

was in the sixteenth century, using extracts as therapeutic

mean to cure fever, headache, stomach and articulation pain

[124]. To date, green tea is generally regarded as safe by the

U.S. Food and Drug Administration (FDA) [142] and has

attracted attention for its health benefits, particularly with

respect to its potential for preventing and treating cancer,

cardiovascular diseases, inflammatory diseases, aging and

neurodegenerative diseases [42, 56, 139].

Catechins account for 25–35% of the green tea dry

extract and consist of eight polyphenolic flavonoid-type

compounds, namely, (?)-catechin (C), (-)-epicatechin

(EC), (?)-gallocatechin (GC), (-)-epigallocatechin (EGC),

(?)-catechingallate (CG), (-)-epicatechin gallate (ECG),

(?)-gallocatechin gallate (GCG) and EGCG. The most

abundant catechin is EGCG, estimated that a cup of green

tea (2.5 g of green tea leaves/200 ml of water) may contain

90 mg of EGCG and thus, thought to particularly contrib-

ute to the beneficial effects attributed to green tea, such as

its neuroprotective properties [68, 142].

Several reports indicated that tea polyphenols can be

attained in the brain and exert neuroprotective effect sim-

ply by drinking [60, 93, 94]. The metabolism of green tea

catechins has been studied in various animal models and in
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humans [62, 92]. Orally catechin administration to humans

is absorbed, metabolized and excreted within 24 h [38].

Study with healthy green tea consumers revealed levels of

EGCG, EGC and EC in the plasma in a dose-dependent

concentration, varying between 0.2 and 2% of the ingested

amount, with maximal concentration 1.4–2.4 h after

ingestion [81]. In addition, after ingestion of 1.2 g of green

tea solids (dissolved in two cups of warm water), the

plasma samples collected at 1 h from human volunteers

contain 46–268 ng/ml [62]. The half-life for EGCG is

about 5 h and for EGC and EC, it varies between 2.4 and

3.4 h [145, 146]. EGCG is the only known polyphenol

present in plasma in large proportion (77–90%) in a free

form and its levels is reported to be higher in esophagus

and large intestine, but lower in other organs, likely due to

poor systemic absorption [5]. Preclinical studies in rat

indicated that EGCG is mainly excreted through urine and

bile [5]. Additionally, previous studies reported on insta-

bility of EGCG at the intestinal pH of 8.5 and a low bio-

availability, while antioxidants (e.g. ascorbic acid and

selenium) demonstrated to stabilize EGCG in the lumen

and help to build up its concentration in the intestine. This

suggests that poor absorption from the small intestine may

play an important role in limiting EGCG bioavailability

[21].

Previous study of oral green tea administration estab-

lished the chemical identity of two major tea catechin

metabolites, (-)-5-(30,40,50-trihydroxyphenyl)-c-valerolac-

tone and (-)-5-(30,40-dihydroxyphenyl)-c-valerolactone, in

human urine and blood. These metabolites appeared to be

formed by the intestinal flora in the human colon and then

absorbed [62]. In addition, previously, it was reported that

EC metabolites (epicatechin glucuronide and 30-O-meth-

ylated epicatechin glucuronide) formed after oral ingestion

of EC by rats, had gained entry to the brain [1]. Further-

more, study with labeled EGCG demonstrated a wide dis-

tribution of radioactivity in mouse organs including brain,

after oral administration and small amount of [3H] EGCG

excretion in the urine after direct administration [123].

Recently, the absorption and pharmacokinetic of EGCG in

various brain regions of adult and fetal rats have been

demonstrated by oral and intravenous administration,

indicating that EGCG is the most abundant catechin in

brain tissue [65, 68] and may potentially penetrate through

the blood–brain barrier (BBB) [12]. In vitro model of BBB

demonstrated that various flavonoids and some metabolites

were able to traverse the BBB and that the potential for

permeation was consistent with compound lipophilicity

[149].

Albeit the uncertainty on the capacity of green tea cat-

echins to penetrate the brain, green tea was suggested to

inversely correlate with the incidence of brain aging,

dementia and neurodegeneration, such PD and AD.

Previous epidemiological studies have shown a reduced

risk of PD associated with consumption of 2 cups/day or

more of black tea [7]. In support, Tan et al. [126] found an

inverse association between black tea and PD, based on a

12-year prospective study of over 63,000 men and women,

which was due to black tea ingredients separate from its

caffeine content. In a cross-sectional study, aimed at

investigating an association between consumption of green

tea and cognitive function in elderly Japanese subjects, it

was found that higher consumption of green tea is associ-

ated with lower prevalence of cognitive impairment [55].

Despite the fact that the prevalence of PD is much lower in

tea consumers, the association of green tea drinking and

risk of AD and other neurodegenerative diseases is not well

established. No case–control study has been accomplished

that points to a beneficial effect associated with tea con-

sumption in AD, although recently Ng et al. [84] performed

analysis of green tea intake by comparing baseline data

from 2,501 participants and 1,438 cognitively intact par-

ticipants from 2-year follow-up of Chinese cohort in the

Singapore Longitudinal Ageing Study. Green tea was

inversely associated with cognitive impairment, but not

with cognitive decline, possibly due to the small number of

green tea drinkers in this cohort. These findings emphasize

the importance of well-designed controlled studies to

assess a risk reduction of PD and AD in consumers of green

tea. Indeed, a randomized, double-blind and efficacy study

in Beijing China is under completion (2009), to determine

the safety, tolerability and potential neuroprotective effects

of a green tea polyphenol enriched preparation, in de novo

PD patients without taking any anti-Parkinsonism drug

(sponsored by the Michael J. Fox Foundation for Parkin-

son’s Research). In accordance, another clinical efficacy

study (sponsored by Charite University, Berlin, Germany)

is aimed to evaluate whether a green tea extract containing

95% EGCG, given daily as oral medication over a period

of 12 months, has anti-inflammatory and neuroprotective

properties in patients with relapsing–remitting multiple

sclerosis assessed by magnetic resonance imaging and

clinical examination (estimated study completion date is

April 2009; U.S. FDA resources).

EGCG neuroprotective mechanism of action

Preclinical studies

Although evidence in human studies is limited, there are

accumulated studies and reports on in vitro and animal

models of aging and aged-related neurodegenerative dis-

eases, demonstrated protective effects of green tea cate-

chins. Neuroprotective in vivo studies employing the

Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) have shown that both
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green tea extract and EGCG possess highly potent activities

in preventing mice striatal dopamine (DA) depletion and

substantia nigra (SN) dopaminergic neuron loss [60]. One

possible mechanism underlying the effectiveness of green

tea and EGCG against MPTP neurotoxicity may involve its

catechol-like structure, as it is known that catechol-con-

taining compounds are potent radical anti-oxidants and

ferric ion chelator, such as R-apomorphine (R-APO)

[27, 28, 30]. The catechol structural resemblance may

account for a recently reported inhibitory effect of green tea

polyphenols on [3H] DA uptake by presynaptic transporters.

This inhibition was suggested to block the metabolic

product of MPTP, the neurotoxin 1-methyl-4-phenylpyr-

idinium (MPP?) uptake (because of competition for the

vesicular transporter) thereby protecting DA-containing

neurons against MPP?-induced injury [89]. In vitro studies

also demonstrated inhibition of MPP? and 6-hydroxydop-

amine (6-OHDA)-induced neurotoxicity by EGCG [59].

Furthermore, EGCG, at a low IC50 concentration (0.2 lM),

inhibited the activity of the enzyme catechol-O-methyl-

transferase (COMT) in rat liver cytosol homogenates [69].

DA and related catecholamines are physiological substrates

of COMT. The COMT inhibitors, entacapone and tolca-

pone, clinically prescribed to PD-affected individuals, dose-

dependently inhibited the formation of the major metabolite

of levodopa, 3-O-methyldopa, thereby improving its bio-

availability in the brain [15]. In addition, iron accumulation

has been implicated in a range of neurodegenerative dis-

orders [111] and iron has been reported to accumulate in the

neurons and microglia in SN of PD patients [98, 151]. Thus,

the implication of the iron chelation property of EGCG in

neuroprotection has been strengthened by the observations

that both MPTP and 6-OHDA significantly increased iron

levels in SN pars compacta (SNPC) of mice, rats and

monkeys [79, 127].

Although AD epidemiological studies did not report any

established outcome relative to green tea consumptions, in

vitro observations showed that EGCG prevented amyloid

beta peptides (Ab)-induced neurotoxicity [11, 58], and EC

reduced nascent Ab fibrils, elongation of the fibrils and

destabilization of the formed assemblies [85]. In addition,

EGCG was able to regulate the proteolytic processing of

APP under in vivo and in vitro conditions [58, 96], sug-

gesting that green tea polyphenols might be potentially

promising therapeutic agents not only for PD, but also for

AD. EGCG promoted the non-amyloidogenic a-secretase

pathway of APP in neuronal cell cultures resulting in a

consequential augment in soluble APPa (sAPPa) [58]. In

addition, long-term treatment of mice with EGCG resulted

in decreases in cell-associated, full-length APP levels, as

well as increases in the sAPPa levels in the hippocampus

[58]. New supportive data came from a study conducted in

an Alzheimer’s transgenic mice model (‘‘Swedish’’ mutant

APP overexpressing, APPswTg), showing that EGCG

promoted the generation of sAPPa and decreased Ab levels

and plaques via promotion of the non-amyloidogenic

a-secretase proteolytic pathway [93, 94]. Recently, long-

term administration of EGCG provided prophylactic ben-

efits on rat spatial cognitive learning impairment caused by

Ab cerebral ventricle infusion [37], as well as prevented

lipopolysaccharide-mediated neuronal cell death and

memory impairment of mice, possibly through reduction of

Ab levels via inhibition of b- and c-secretases [57].

Supplementary preclinical models of other neurode-

generative diseases demonstrated that EGCG induced the

prolongation of the symptom onset and life span and

attenuated death signals in ALS mice model, expressing

the human G93A mutated Cu/Zn-superoxide dismutase

(SOD1) gene [54, 144]. Additionally, EGCG has been

shown to be neuroprotective in aged rats [122] and

in animal models of focal and global brain ischemia

[91, 124, 125].

ROS regulation and iron chelating activities

It is well established that catechins possess free radical

scavenging properties and act as biological antioxidants

[82, 83, 90]. Catechins can scavenge both superoxide and

hydroxyl radicals, as well as the 1,1-diphenyl-3-picrylhy-

drazyl radical, peroxyl radicals, nitric oxide, carbon-center

free radicals, singlet oxygen and lipid free radicals, and

peroxynitrite by preventing the nitration of tyrosine [30,

68, 80, 82, 90, 104, 121, 153]. Additionally, these com-

pounds can chelate metal ions, such as copper (II) and iron

(III) to form inactive complexes and prevent the generation

of potentially damaging free radicals [110]. Catechins have

been found to be more efficient radical scavengers than

vitamin E and C [82, 90].

In the majority of the reports, EGCG was shown to be

more efficient as a radical scavenger than its counterparts

ECG, EC and EGC, which may be attributed to the pres-

ence of the trihydroxyl group on the B ring and the gallate

moiety at the 30 position in the C ring (Fig. 1) [31, 82, 83].

Previously, EGCG was shown to attenuate hydroxykynu-

renine (3-HK)-induced cell death and the increase in ROS

concentrations and caspase-3 activity in neuronal culture,

presumably via its antioxidant activity [48]. In rat brain

tissue, green and black tea extracts were shown to inhibit

lipid peroxidation promoted by iron-ascorbate in brain

mitochondrial membranes [61]. A similar effect was also

reported using brain synaptosomes, in which the four major

green tea catechins were shown to inhibit iron-induced

lipid peroxidation [30]. In this regard, it has been shown

that EGCG attenuated paraquat-induced microsomal lipid

peroxidation and increased the survival rate of paraquat-

poisoned mice [41, 148]. In addition, Higuchi et al. [41]
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suggested that EGCG inhibited paraquate-induced mal-

ondialdehyde production in rat liver microsome system

containing FeSO4 by two possible mechanisms: one was by

scavenging of superoxide radicals, which were responsible

for the reduction of ferric (Fe3?) to ferrous (Fe2?) cata-

lyzed by the Fenton reaction. The other, was through iron-

chelating activity, given that the inhibition disappeared

when excessive amount of FeSO4 was added to the reac-

tion, indicating that EGCG inhibited iron driven lipid

peroxidation by pulling out available iron. Thus, the pro-

tective effect of EGCG against neurological diseases may

involve its radical scavenging and iron chelating activities.

Additionally, the inhibition of enzymes, whose activity

may promote OS, or an increase of antioxidant enzyme

activities, might have beneficial significance to EGCG

neuroprotection. Indeed, previous reports demonstrated

that EGCG was found to elevate the activity of two major

antioxidant enzymes, superoxide dismutase (SOD) and

catalase in mice striatum [60] (Fig. 1).

The ability of green tea catechins and in particular

EGCG, to chelate metal ions, such as iron and copper,

may contribute to their antioxidant/neuroprotective activ-

ity by inhibiting transition metal-catalyzed free radical

formation. The two points of attachment of transition

metal ions to flavonoid molecules are: the o-diphenolic

groups in the 30,40-dihydroxy positions in the B ring, and

the keto structure 4-keto, 3-hydroxy or 4-keto and

5-hydroxy in the C ring of the flavonols (Fig. 1) [129,

130]. The ability of green tea catechins to act as rela-

tively potent metal chelators [26, 30] may be of major

significance for the treatment of neurodegenerative

diseases, since iron accumulation has been shown in

neurodegenerative brain areas [97]. Most importantly,

green tea was reported not to affect iron absorption in

healthy human subjects [10]. The localization of iron and

ferritin in PD patients is restricted to specific brain areas

[47, 97, 118] in the SNPC, but not the reticulata [47].

Similarly, AD pathogenesis is associated with iron accu-

mulation and is linked to the characteristic neocortical Ab
deposition, phosphorylation of tau and tangle formation,

which may be mediated by abnormal interaction with

excess free-chelatable iron [22, 132]. Ionic iron can, in

turn, participate in the Fenton reaction with subsequent

generation of ROS, initiating the processes of OS and

inflammatory cascade, resulting in the production of

cytotoxic cytokines (tumor necrosis-alpha (TNF-a), inter-

luekins-1 and -6) in the microglia and surrounding neurons

[78, 103] and activation of transcription factors and

nuclear factor-kappa B (NF-jB) [66, 107]. Indeed, a

marked increase in NF-jB immunoreactivity was found in

the nucleus of dopaminergic neurons of the Parkinsonian

SNPC, compared to normal brains [43]. EGCG was found

to inhibit the nuclear translocation of NF-jB in in vitro

systems: immunofluorescence and electromobility shift

assays showed that introduction of green tea extract before

6-OHDA inhibited both NF-jB nuclear translocation and

binding activity in human neuroblastoma SH-SY5Y cells

[61, 71]. Furthermore, these reduced activity of NF-jB by

EGCG and the theaflavin-3,30-digallate polyphenol from

black tea was associated with inhibition of lipopolysac-

charide (LPS)-induced TNF-a production [147] and the

enzyme inducible nitric oxide synthase (iNOS) [66, 67,

88], which is responsible for the production of the short-

live free radical, nitric oxide, in activated macrophages.
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Fig. 1 Schematic diagram

illustrating the antioxidative and

iron chelating activities of

EGCG. The neuroprotective

effects of EGCG may involve

inhibition of Fenton reaction

and up-regulation of antioxidant

enzymes, such as superoxide

dismutase and catalase, resulted

in attenuation of oxidative stress
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Interestingly, recent studies have identified a novel link

between iron and AD, associated with an enhancement of

endogenous APP translation and subsequent Ab formation,

via activation of an iron responsive element (IRE-type II)

in the 50 untranslated region (UTR) of APP mRNA [99].

Notably, recent study have demonstrated a significant

increase of reactive astrocytosis and iNOS immunoreac-

tivity, which was accompanied by neuronal damage in the

temporal cortex and hippocampus of rats injected with Ab
(25–35) [63]. These findings opened a new potential ther-

apeutic avenue aimed at reducing amyloidosis with radical

scavenger and iron-chelating drugs that modulate APP

mRNA translation. In support, a recent in vitro study

demonstrated that EGCG reduced full-length APP in

SH-SY5Y cells without altering APP mRNA levels,

accompanied by dose-dependent increase in the level of the

iron metabolism-related protein, TfR [96], which share also

the consensus sequence for an IRE in the 30-UTR of its

mRNA [17]. Exogenous iron supplementation reversed

EGCG effects, suggesting a post-transcriptional action,

presumably by the mechanism of chelating intracellular

iron pools (Fig. 1). This is further supported by the

observation that EGCG suppressed translation of a lucif-

erase reporter gene driven by the IRE-type II-containing

sequences of APP [96]. Furthermore, it was found that

EGCG markedly reduced secreted Ab levels in the condi-

tioned medium of Chinese hamster ovarian cells, over-

expressing the ‘‘Swedish’’ mutated APP (CHO/DNL) [96]

and in primary neuronal cells derived from transgenic mice

bearing the APP ‘‘Swedish’’ mutation [94].

More recently, Friedlich et al. [19] have described a

putative IRE in the 50-UTR of PD-related a-synuclein

mRNA and predicted that this RNA structure may have a

potential to function as a post-transcriptional regulator of

its protein synthesis in response to iron and redox events,

resembling the pattern seen with APP and the iron-asso-

ciated proteins, ferritin and TfR. This finding can explain,

in part, previous observation demonstrating that EGCG

prevented iron-dependent up-regulation of a-synuclein in

the SNPC of MPTP-treated mice, resulting in neuropro-

tection of SN dopaminergic neurons [72]. Thus, the radical

scavenging and free-iron chelating activities of green tea

catechins may directly influence aggregation and deposi-

tion of either Ab or a-synuclein in brains of AD and PD

patients, respectively.

Regulation of hypoxia inducible factor (HIF)-1 alpha

pathway

An emerging target for neuroprotection associated with

iron chelation implicates the activation of a hypoxia signal

transduction pathway that culminates in the stabilization of

the transcriptional activator HIF-1 and increased

transcription of genes mediating compensatory survival

processes in response to OS [46, 113]. The presence of

HIF-1 within the cells is under the strict control of a class

of iron-dependent and oxygen-sensor enzymes, named the

HIF prolyl-4-hydroxylases [46]. This family of enzymes

hydroxylates critical proline and asparagine residues in

HIF upon high oxygen levels and iron overload, targeting it

for degradation by the ubiquitin proteasome system (UPS).

In this scheme, iron chelators would stabilize HIF-1 alpha,

which in turn would heterodimerize with its partner, HIF-1

beta in the nucleus, bind to an hypoxia responsive element

in regulatory genes and transactivate the expression of

established protective genes, including the angiogenic

vascular endothelial growth factor (VEGF), erythropoietin,

p21waf1/cip1, glucose transporter-1 and the glycolytic

enzymes aldolase and enolase-1 [114, 150]. Indeed, EGCG

and ECG were shown to induce HIF-1 alpha protein and

HIF-1 activity and increase mRNA expression levels of

glucose transporter 1 (GLUT-1), VEGF, and p21waf1/cip1,

whereas this effect was blocked by iron and ascorbate,

indicating that these catechins may activate HIF-1 through

the chelation of iron [128, 154]. Applying a neurorescue

paradigm in neuronal culture, we have recently found that

EGCG decreased mRNA transcript and protein levels of

the beta-subunit of prolyl-4-hydroxylase and the protein

levels of two molecular chaperones, which are associated

with HIF-regulation/degradation, the immunoglobulin-

heavy-chain binding protein, BiP and the heat shock pro-

tein 90 (HSP90) [133, 134] (Fig. 2). In support, previous

finding demonstrated that EGCG directly binds and inhibits

HSP90 in mouse hepatoma cells [87]. Inhibition of HSP90

is considered a requirement for the rapid hypoxic stabil-

ization of HIF-1 alpha, which otherwise might be degraded

by unspecific pathway [44]. Thus, it is possible that the

protective effect of EGCG under OS/hypoxic conditions

may combine the suppression of hydroxyl radical forma-

tion via Fenton chemistry, as well as inhibition of iron-

dependent prolyl hydroxylase.

Another link between hypoxia and iron is reflected by

the hypoxic-mediated positive regulation of the iron regu-

latory proteins, IRP1 and IRP2 and consequential transac-

tivation of their target mRNAs, ferritin and TfR.

Interestingly, the free iron-induced proteasomal-mediated

degradation of IRP2 involves also activation of a prolyl

hydroxylase and is inhibited by iron chelators [35, 36, 131].

Thus, it is possible that IRP2 is a substrate for this

enzyme, in a similar way as HIF, signaling it for protein

degradation.

The reduction in the chelatable iron pool by EGCG may

result in the inhibition of prolyl hydroxylase activity and

consequently, in the concerted activation of both HIF and

IRP2. As HIF-1 and IRPs coordinate the expression of a

wide array of genes, involved in cellular iron homeostasis,
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survival and proliferation [112], their activation could be of

major importance in novel therapeutic strategy of neuro-

degenerative diseases. In support, recent findings suggest

the application of low molecular weight or peptide inhib-

itors of the HIF prolyl 4-hydroxylases as novel neurolog-

ical therapy [113].

Regulation of cell signaling pathways promoting neuronal

outgrowth

Emerging evidence suggests that the iron chelating and

antioxidant activities of green tea catechins cannot be the

exclusive mechanism responsible for their neuroprotective

action, but rather, their ability to alter signaling pathways

may significantly contribute to the cell survival effect [120,

140]. Modulation of cellular survival and signal transduc-

tion pathways has significant biological consequences that

are important in understanding the various pharmacologi-

cal and toxicological responses of antioxidant drugs. A

number of intracellular signaling pathways have been

described to play central functions in EGCG-promoted

neuronal protection against a variety of extracellular

insults, such as the MAPK [115, 134, 143], PKC [14, 59,

95, 133] and phosphatidylinositol-3-kinase (PI-3 kinase)-

Akt pathways [50, 53, 73]), as described in Fig. 2. Given

the critical role of MAPK pathways in regulating cellular

processes that are affected in neurodegenerative diseases,

the importance of MAPKs as transducers of extracellular

stimuli into a series of intracellular phosphorylation is

being increasingly recognized. OS seems to be a major

stimulus for MAPK cascade, which might lead to cell

survival/cell death. Previous in vitro studies demonstrated

the potency of EGCG to induce ARE-mediated defensive

genes and MAPKs pathways, including various cell sur-

vival signaling regulators, p44/42 ERK 1/2, JNK and p38

MAPK [8, 86]. The role of ERK1/2 signaling seems to be

connected to attenuation of neuronal death and cellular

injury by OS [106]. EGCG counteracted the decline in

ERK1/2 induced by 6-OHDA [59] and induced phosphor-

ylation of ERK1/2 in serum-deprived SH-SY5Y cells

[134].

(-)-EGCG activity also involves the intracellular sig-

naling mediator, PKC [58, 95], thought to have an essential

role in the regulation of cell survival and programmed cell

death [16, 70]. A rapid loss of neuronal PKC activity is a

common consequence of brain neurodegeneration [4, 6].

The induction of PKC activity in neurons by EGCG

(1–10 lM) is thought to be a prerequisite for neuropro-

tection against several neurotoxins, such as Ab [58], serum

withdrawal [73, 95, 133] and 6-OHDA [59] since inhibition

of PKC phosphorylation completely abolished the protec-

tion induced by EGCG and by the PKC activator, phorbol

12-myristate 13-acetate (PMA). These in vitro results were

supported by a previous report [58], demonstrating that

EGCG caused a significant increase of the levels of PKC

isozymes, a and e, in the membrane and cytosolic fractions

of mice hippocampus. These isoforms play a crucial role in

cell survival and differentiation pathways [29] and may be

involved in APP regulatory processing associated with the

pathogenesis of AD [2, 116]. Indeed, previous studies in

brains of AD patients demonstrated reduction of PKCe
activity [77].
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The mechanism by which PKC activation leads to

neuroprotection begins to be elucidated. Studies with extra-

neuronal tissues support a role for PKCa as a kinase of the

antiapoptotic Bcl-2, probably through direct or indirect

phosphorylation of this cell survival protein [101]. Neu-

roprotective experimental studies demonstrated that the

protective effect of EGCG was associated with a reduced

levels of the apoptotic markers, cleaved caspase 3; its

downstream cleaved substrate poly-ADP-ribose-poly-

merase (PARP) and Bad [95, 137, 138]. This is supported

by the observation that EGCG could not overcome neu-

ronal death under PKC pathway blockade, suggesting that

this cascade is essential for the neuroprotective and neur-

orescue effects of EGCG [95].

Recently, we have identified a novel pathway in the

neuroprotective mechanism of action of EGCG, which

involves a rapid PKC-mediated degradation of Bad protein

by the ubiquitin UPS in SH-SY5Y cells [49]. Bad has been

suggested to link survival signals to the mitochondrial cell

death machinery. Thus, the newly described role of Bad

during the initial response to EGCG-induced cell signaling

may illuminate the mechanism of neuroprotective/neuror-

escue action of EGCG. In addition, EGCG was shown to

induce a rapid translocation of the isoform PKCa to the

membrane compartment in human astroglioma or rat

pheochromocytoma PC12 cells [52, 95], as well as

upregulation of PKCe mRNA expression and a concen-

tration-dependent activation of PKCe in serum-deprived in

SH-SY5Y cells [133]. These findings are supported by

animal studies showing that 2 weeks oral consumption of

EGCG prevented the extensive depletion of PKCa and

counteracted the robust increase of Bax protein in the

striatum and SNPC of mice intoxicated with MPTP [73].

A previous study in human epidermal keratinocytes

indicated that EGCG promoted cell survival by increasing

the ratio of the pro-survival Bcl-2 to pro-apoptotic Bax and

inducing phosphorylation of Bad through ERK and AKT

signaling pathways [13]. Using mitogen-activated protein

kinase 1 (MEK1) inhibitor (PD98059), EGCG induced

only the phosphorylation of serine (Ser)136 of Bad, while

using PI-3 kinase inhibitor (LY294002), EGCG induced

only the phosphorylation of Ser112 of Bad. These results

indicated that EGCG affects both the ERK pathway, which

is involved in phosphorylation of Bad at Ser112 and the

PI-3 kinase/AKT pathway, involved in phosphorylation of

Bad at Ser136 (Fig. 2). Nonetheless, a study with high

concentrations with EGCG reported cell proliferation arrest

of tumor cells and inhibition of ERK1/2 and AKT phos-

phorylation, which was associated with reduced phos-

phorylation of Bad [102]. This biphasic mode of biological

activity of EGCG relies on its concentration-dependent

window of pharmacological action: EGCG exhibits pro-

oxidant and pro-apoptotic activity at high concentrations,

which are responsible for its anti-cancer-cell death effect,

while lower doses exert neuroprotection against a wide

spectrum of neurotoxic compounds [137, 138]. A biphasic

mode of action has been described for most of the typical

radical scavengers and antioxidants, such as ascorbic acid

(vitamin C) [34] and iron chelators, such as R-APO [20].

When SH-SY5Y cells were challenged with 6-OHDA or

reduced content of serum, a low concentration of EGCG

(\10 lM) abolished the induction of proapoptotic-related

mRNAs and the decrease in Bcl-2, Bcl-w and Bcl-xL [61,

137, 138]. The neuroprotective effect of EGCG is thought

to be mediated through down-regulation of pro-apoptotic

genes, as shown for mdm2, caspase-1, cyclin-dependent

kinase inhibitor p21 and TNF-related apoptosis-inducing

ligand, TRAIL, rather than up-regulation of anti-apoptotic

genes [137, 138]. In support, a recent study has shown that

at nanomolar concentrations, EC stimulated MAPK and

PI-3 kinase signaling pathway, cAMP-response element

binding (CREB) protein phosphorylation and ERK-

dependent cAMP responsive element activity in primary

cortical neurons, while at micromolar concentrations,

EC-mediated activation of protein kinase pathways was

lost and there was an inhibition of CREB phosphorylation

[108].

In addition, a recent proteomic study [134] has dem-

onstrated that EGCG increased the levels of the cell sig-

naling binding protein, 14-3-3 gamma. By their interaction

with more than 100 binding partners, 14-3-3 protein family

members modulate the action of proteins that are involved

in cell cycle and transcriptional control, signal transduc-

tion, intracellular trafficking, regulation of ion channels

and expression of cytoskeletal components [3]. In this

regards, the neurorescue/neuroprotective activity of EGCG

may be associated with the induction of 14-3-3 gamma,

interacting with kinases of the PKC pathway and Bad and

consequently preventing neuronal death (Fig. 2) [49, 74,

95, 134]. A previous study has demonstrated that overex-

pression of 14-3-3 gamma contributed to the regulation of

the dynamics of glial fibrillary acidic protein (GFAP) fil-

aments, which may facilitate the stability of the cytoskel-

eton and thus, play a specific neuroprotective role in the

brain of AD patients [18]. In fact, recent proteomic analysis

showed that EGCG dose-dependently increased the

expression levels of various stabilizer proteins of chroma-

tin organization and DNA, histone H1 member 4 and

cytoskeletal proteins, such as the actin binding protein,

tropomyosin 3 and beta-tubulin IV [134]. Since cytoskel-

etal proteins play a crucial role in promoting neurite out-

growth [105], these results suggest that the induction of

structural proteins by EGCG is associated with its differ-

entiation features, including neurite extension, cell body

elongation and up-regulation of the growth associated

protein-43 (GAP-43) [95, 133]. These findings support the

290 Genes Nutr (2009) 4:283–296

123



assumption that in addition to antioxidant and iron che-

lating activities, complementary mechanisms are involved

in the neuroprotective effect of EGCG.

Conclusions and viewpoints

Two main aspects are significantly contributing to the

raising concept viewing green tea consumption of rele-

vance to brain health: the factors and events that influence

the incidence and progression of PD and AD are

becoming better defined and understood; in parallel, the

experimental evidence documenting the neuroprotective

properties of green tea catechins, both in cell culture and

animal studies are persistently increasing. It becomes

evident that syndromes, such as AD and PD will require

multiple drug therapy to address the varied pathological

aspects of the disease [136]. Therefore, the poly-phar-

macological activities of green tea catechins may be of

significance for neuroprotection. Earlier, viewed as a mere

anti-inflammatory and antioxidant, EGCG is at the present

time considered a multimodal acting molecule, invoking

various cellular neuroprotection/neurorescue mechanisms

including iron-chelation, scavenging of oxygen and

nitrogen radical species and activation of PKC signaling

pathway and pro-survival genes (Figs. 1, 2). Its non-toxic,

lipophilic nature, and thus presumably brain permeable, is

advocated for ‘‘remove iron’’ from those brain areas,

where it preferentially accumulates in neurodegenerative

diseases. Additionally, the chelation of reactive free-

iron pool by EGCG and consequent reduction in APP

translation would contribute to decrease Ab generation/

fibrillization, which together with the promotion of the

non-amyloidogenic pathway and induction of neurite

outgrowth, may converge in a slowdown in the process of

neuronal loss in AD.

Another novel therapeutic approach may involve drug

combinations, mixing target-acting compounds, thus pro-

viding a practical way to design specific polypharmacology.

The complex symptomatology of neurodegenerative dis-

eases often necessitates the use of more than one multi-

functional drug. Over the years, it has become evident that

some combinations do induce a favorable clinical response,

not achieved by each of the drugs given alone [51].

Currently, choice of drug combinations is based on a trial

and error paradigm guided by the clinical response.

Understanding the biological principles, by which the

combined treatments act, would provide insights into the

pathological mechanisms of neurodegenerative disorders

and enable a more ‘‘rational’’ selection of drugs. Indeed,

recent narrative regimen study described a combined

treatment of memantine, the first drug in a novel class of AD

medications, and tea polyphenol, in excitotoxic mouse brain

injury demonstrating significant neuroprotective effects of

the combined treatment, compared with memantine and tea

polyphenol treatment alone, including reduction in

increased synaptosomal ROS and calcium concentration

and attenuation of decreased anion channel ATPase activity

and mitochondrial potential, accompanied with improved

locomotor activity [9].

Our vision is to translate preclinical and clinical findings

of green tea catechins into a lifestyle arena. Thus, future

efforts in the understanding of the neuroprotective/neu-

rorescue mechanism of action of EGCG must concentrate

on deciphering specific cellular targets, and signaling cas-

cades. Further preclinical studies are needed to clarify if

EGCG and its metabolites, at sufficient concentrations, can

reach the brain and regulate cell-signaling pathways and

whether these effects can be successfully translated into

prospect human studies to affect the progression of neu-

rodegenerative disorders.
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