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Abstract Genome-wide association studies (GWASs)

have become a very important tool to address the genetic

origin of phenotypic variability, in particular associated

with diseases. Nevertheless, these types of studies provide

limited information about disease etiology and the molec-

ular mechanisms involved. Recently, the incorporation of

metabolomics into the analysis has offered novel oppor-

tunities for a better understanding of disease-related met-

abolic deregulation. The pattern emerging from this work is

that gene-driven changes in metabolism are prevalent and

that common genetic variations can have a profound

impact on the homeostatic concentrations of specific

metabolites. A particularly interesting aspect of this work

takes into account interactions of environment and lifestyle

with the genome and how this interaction translates into

changes in the metabolome. For instance, the role of PY-

ROXD2 in trimethylamine metabolism points to an inter-

action between host and microbiome genomes (host/

microbiota). Often, these findings reveal metabolic dere-

gulations, which could eventually be tuned with a nutri-

tional intervention. Here we review the development of

gene–metabolism association studies from a single-gene/

single-metabolite to a genome-wide/metabolome-wide

approach and highlight the conceptual changes associated

with this ongoing transition. Moreover, we report some of

our recent GWAS results on a cohort of 265 individuals

from an ethnically diverse population that validate and

refine previous findings on gene–urine metabolism inter-

actions. Specifically, our results confirm the effect of

PYROXD2 polymorphisms on trimethylamine metabolism

and suggest that a previously reported association of

N-acetylated compounds with the ALMS1/NAT8 locus is

driven by SNPs in the ALMS1 gene.

Keywords Metabolome wide associations � Genome

wide associations � Metabolomics � Nutrition

Introduction

One of the important aspects of nutrition and health today

is to determine the biochemical effects of diets on indi-

viduals’ metabolism and to unravel the underlying mech-

anism of action. However, this task is very challenging

because of the web of interactions among food bioactives,

but also the complex mosaic of both genomic and
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metagenomic (i.e., gut microbiota) effects and environ-

mental factors. Indeed, both system-wide (i.e., whole

organism) and organ-specific changes in biochemical pro-

cesses have components driven by these factors (Martin

et al. 2009a, b; Nicholson et al. 2005; Claus et al. 2011;

Mestdagh et al. 2011; Merrifield et al. 2011; Wikoff et al.

2009).

It is widely considered that the identification of meta-

bolic signatures associated with specific genotypes in free-

living populations remains challenging due to the relatively

low amplitude of these associations when compared to

inherent intra- and inter-individual variability that results

from dominant factors (i.e., lifestyle, food habits and

aging). In spite of this variability, studies that match met-

abolic profiles and genotype have been reported. These

studies are usually based on large cohorts recruited for

other purposes, such as epidemiological studies in general,

but also on areas such as aging, environment and disease.

Moreover, GWAS with metabolic traits is always depen-

dent on the set of metabolites analyzed. This is critical and

is usually driven by previous knowledge in the goals of the

main study. In general most of the studies include families

of compounds such as fatty acids, carnitines, sphingomy-

elins and amino acids. The amounts of these circulating

compounds and their regulatory pathways are likely to be

affected by specific nutritional interventions.

Genome-wide association studies (GWASs)

Over the last 10 years, miniaturization, automation and

massive fabrication have dramatically decreased the cost of

microarray-based whole-genome genotyping (Hoheisel

2006) with so-called genotyping chips. With more than one

million of carefully selected genetic probes, these modern

genotyping chips are able to explore the vast majority of

common genetic variations in humans (Li et al. 2008).

With these rapid advances, it has been possible to extend

genotype–phenotype association studies from specific tar-

get genes to the entire genome leading to the development

of so-called genome-wide association studies (GWASs)

(McCarthy and Hirschhorn 2008; McCarthy et al. 2008).

For a GWAS all study participants are genotyped with a

genotyping chip and parallel statistical association tests

between the genotype at each of the *1 million probed

genetic sites, and the phenotype of interest are performed.

By analyzing the strength of the association along the

entire genome, it may then be possible to identify a gene,

or even a specific region within a gene, that drives variation

in the phenotypic trait. An important consequence of per-

forming so many independent association tests (i.e., one

test for each of the one million genotyped sites) is that

associations with very low p-values are expected to occur

by chance. Multiple-testing correction procedures, such as

Bonferroni and false discovery rate corrections, are there-

fore indispensible. Depending on the correction applied,

p-values lower than 10-7.5 are necessary to achieve sta-

tistical significance in a typical GWAS. To achieve such

strong association signals, GWASs usually require substan-

tially larger cohorts than single-gene association studies.

The development of gene–metabolism studies

from single-compound/single-gene studies

to a holistic approach

The existence and heritable nature of inter-individual dif-

ferences in human metabolism and their potential impact on

human nutritional requirements has long been recognized.

But in the last 5–10 years the study of gene–metabolism

interactions has undergone a profound transition in which

classical phenotype-to-genotype work on single-metabolite/

single-gene associations is increasingly replaced by more

holistic approaches that aim to survey the entire genome for

drivers of overall metabolic patterns. To illustrate this

transition and its implications for the future of gene–

metabolism research, we here discuss selected examples of

successful studies that represent various stages of this

transition.

The classic approach to gene–metabolism research is

well represented by the work on two metabolic phenotypes,

favism and lactose intolerance. Individuals suffering from

favism may display symptoms of acute non-immune

hemolytic anemia after eating broad beans. Through

laborious biochemical work conducted in the first half of

the last century (see the review by Beutler (2008) for a

historical perspective), it was finally discovered that suf-

ferers of favism have a deficient glucose-6-phosphate

dehydrogenase (G6PD) enzyme that results in a malfunc-

tion of the pentose phosphate pathway. This pathway is

essential for the red blood cells’ protection mechanism

against oxidative stress. In people who lack G6PD, oxi-

dative stress triggered by the compounds vicine and

divicine contained in fava beans can therefore cause irre-

versible damage to red blood cells, resulting in hemolysis

and, potentially, kidney failure.

In the case of lactose intolerance, some individuals carry

a genetic variation (Enattah et al. 2002) in the regulatory

region of the LCT gene that leads to the continued

expression of the lactase enzyme beyond weaning, at which

stage the production of this enzyme stops in most mam-

mals. Individuals carrying this variation (i.e., the lactase

persistence form of the LCT gene) continue to produce the

lactase enzyme and secrete it into the duodenum. There this

enzyme breaks down the disaccharide lactose into mono-

saccharides glucose and galactose monosaccharides, which
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can then be absorbed into the body. Individuals who carry

only non-persistence variants of the gene stop to make the

lactase enzyme, so that the lactose passes through the

duodenum undigested and enters into the colon where it is

metabolized by resident bacteria. The bacterial fermenta-

tion process generates large quantities of gases causing

bloating and discomfort.

For both favism and lactose intolerance, the metabolic

phenotypes and heritable nature of the metabolic pheno-

types are known since antiquity. In this sense the gene–

metabolism research on this topic started from a phenotypic

observation, and the discovery of the underlying genetic

variation represented the endpoint of extensive studies into

the biochemistry and physiology of these phenotypes.

A next stage in the evolution of gene–metabolism

research is represented by single-gene/single-metabolite

studies. In these studies the gene of interest, often an

enzyme, as well as the affected metabolite is known prior

to the start of the main studies, and the principal goal of the

studies is to understand how a specific genetic variation

impacts medical outcomes via a specific metabolic mech-

anism. A typical example is the investigation of inter-

individual differences in caffeine metabolism. Caffeine is a

widely consumed stimulant, the breakdown of which pro-

ceeds primarily via a P450 enzyme (P4501A2) encoded by

the CYP1A2 gene. A single nucleotide polymorphism in

intron 1 of CYP1A2 appears to influence the inducibility

of this gene and the efficiency to metabolize caffeine

(Rasmussen et al. 2002; Sachse et al. 1999). These studies

aim to understand how genetic differences ultimately cause

differences in behavioral and medical phenotypes as

diverse as coffee consumption (Cornelis et al. 2007) and

reproductive health (Sata et al. 2005). The advantage of

this type of study is that statistical analysis is relatively

simple to perform and that due to the limited number of

individual statistical tests, multiple-testing correction does

not dilute a potential association signal, thus allowing the

discovery of significant association with comparatively

small study panels. The obvious and inherent drawback of

the single-gene studies—often conducted on just a single

SNP within the gene—is that the effect of other genetic

polymorphism that might exist in the genome with eventual

bigger functional effects will go unnoticed.

The arrival of the GWAS triggered a radical transfor-

mation of gene–metabolism research. With this technol-

ogy, it becomes possible to perform an unbiased search of

the entire human genome to identify all common genetic

factors that affect a specific metabolic phenotype. Early

GWASs were often directed toward common medical

conditions such as cardiovascular disease (CVD) or dia-

betes. Perhaps as a consequence of this, initial gene–

metabolism GWASs focused on metabolic phenotypes

such as blood cholesterol or triglyceride levels, for which

links to health outcomes were already well established

(Kathiresan et al. 2008a, b).

These early GWASs both replicated gene–metabotype

association that was previously identified in single-gene/

single-metabotype studies and identified new genes that

were not previously implicated in the metabolism of the

targeted compounds. With the usefulness of the GWAS

approach demonstrated, whole-genome genotyping of the

participants in medical study cohorts has become common

practice. As a result, new GWASs on blood lipid pheno-

types are now conducted on cohorts of more than 100,000

subjects. This increase in panel sizes leads to a parallel

increase in statistical power, so that more genetic factors

can be identified. As a result, 95 genetic loci distributed

throughout the genome are now known to be associated

with blood lipid phenotypes (Teslovich et al. 2010).

Roughly two-thirds of these loci were previously not

implicated in blood lipid metabolism. These discoveries

have opened up new avenues for mechanistic studies that

have since demonstrated the functional relevance of several

of these loci and have expanded knowledge on the meta-

bolic and regulatory lipid networks. (For a detailed review

of relevant examples see (Kathiresan and Srivastava 2012).

GWASs with blood lipid phenotypes had thus a significant

impact on cardiovascular health research. Despite the large

number of identified genetic loci, the overall variance in

blood lipid phenotypes that is explained by the combined

genotypes at these loci remains relatively small (*10 %)

(Teslovich et al. 2010). Therefore, prediction of individual

blood lipid levels or the design of medical intervention

schemes based on an individual’s genotype at these loci is

not useful for the general population.

Targeted metabolomic phenotypes in GWAS

Up to this point, GWASs have provided a lot of informa-

tion on the genetic contribution to one specific metabolic

phenotype (e.g., the blood concentration of cholesterol),

but few about related metabolic phenotypes. To address

this point, the number of targeted metabolites from various

metabolic pathways was increased. The investigation of

gene’s impact on broader metabolic patterns rather than

just a single compound became possible.

A good example of this update in GWAS strategy can be

found in the recent work of Gieger et al. (2008) that

investigated broader lipid metabolic patterns with implica-

tions for CVDs. The work was conducted on Kooperative

Gesundheitsforschung in der Region Augsburg (KORA) F3

GWA study cohort that had undergone whole-genome

genotyping with SNP chips.

Targeted metabolic profiles of [300 metabolites were

generated from serum samples collected for each individual.
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Parallel metabolite concentration measurements were per-

formed with the help of isotope-labeled reference com-

pounds. The study resulted in a list of five strongly

associated genes (FADS1, PLEK, PARK2, ANKRD30A

and LIPC), which could be partially linked to the expected

role of each gene in metabolism. For instance, the FADS1

gene codes for fatty acid delta-5 desaturase, a key enzyme in

the metabolism of long-chain polyunsaturated and omega

3/6 fatty acids. The minor allele variant of this gene

(rs174548) is associated with a decreased efficiency for

the delta-5 desaturase reaction, which in turn results in

decreased serum levels of phosphatidylcholines, plasmalo-

gen/plasminogen and phosphatidylinositol. In addition,

glycerophospholipids carrying less than 4 unsaturated bonds

in their fatty acid chains are increased in individuals who

carry the less efficient variant of FADS1, while sphingo-

myelins are decreased, suggesting a modification in phos-

phatidylcholines’ homeostasis. These observations not only

constituted a full replication of the association of this locus

with arachidonic acid metabolism as previously reported

(Schaeffer et al. 2006; Malerba et al. 2008), but also

underpinned changes in the efficiency of the delta-5 desat-

urase reaction. This study further demonstrated that meta-

bolic phenotype characterization can be improved by the use

of ratios of metabolite concentrations. To some extent

metabolic ratios reflect the rate of biochemical reactions that

link these metabolites. Genetic variants that affect the effi-

ciency of a specific enzyme should be best reflected in the

ratio of this enzyme’s relative substrates and products rather

than in the absolute concentration of either of them. This

metabolite ratio approach was introduced by Altmaier et al.

(2008), and its utility was demonstrated by a pronounced

increase in the strength of the association that was observed

for FADS1. Here, changes in the catalytic activity of FADS1

due to its polymorphism may alter the levels of eicosatrie-

noyl-CoA (C20:3) and arachidonyl-CoA (C20:4), which in

turn translates into changes on the PC 36:3 and PC 36:4

concentrations. This use of metabolite concentration ratios

also proved to be very efficient in the identification of two

new loci: the short-chain acyl-coenzyme A dehydrogenase

(SCAD) and medium-chain acyl-coenzyme A dehydroge-

nase (MCAD). Both genes code for enzymes of fatty acids

b-oxidation, but affect substrates of different chain length.

The strongest association with the SNP rs2014355 in SCAD

is the ratio between two short-chain acyl-carnitines (C3/C4),

while the strongest with SNP rs11161510 in MCAD is found

for C12/C8 ratios (medium-length chain). The directional

effect observed for these polymorphisms (e.g., high con-

centration of long fatty acids versus reduced concentration

of short-chain fatty acids) suggests a reduction in the

dehydrogenase activity.

In summary, the use of metabolic ratios in GWAS

presents several advantages, such as an increase in gene–

phenotype association strength and a better understanding

of the metabolic variation associated with the phenotype.

However, the use of targeted metabolomics approaches

(indeed, traditional in this kind of applications) becomes a

limitation as it narrows down the possible phenotype

variations to a limited set of compounds.

Holistic metabolomics phenotypes in GWAS

Gene–metabolism research evolved with holistic studies on

the genetic and on the phenotypic side. This type of studies

is currently ongoing in multiple research groups, and a first

report has been recently published (Nicholson et al. 2011).

For their study, Nicholson and coworkers collected 1D-

NMR data of urine and plasma and divided the resulting

NMR data into 526 spectral peaks with the intensity of

those peaks serving as input values for 526 parallel

GWASs. The division of the spectra into these peaks was

performed without prior assignment of the peaks to specific

metabolites. Notably, this first study, which was conducted

on a rather small panel of less than just 150 subjects, has

already resulted in the discovery of two very strong gene–

metabolism interactions. The first association is between an

N-acetylated compound and a genetic locus containing the

ALMS1, NAT8, TPRKB and DUSP11 genes. This single

locus explains[50 % of the observed variance in the urine

concentration of this compound, and rare mutations in

the ALMS1 gene are known to generate severe kidney

dysfunctions. The second association between urine tri-

methylamine (TMA) concentration and variants in the

PYROXD2 gene explains a somewhat smaller, yet still

significant, proportion of the observed variance in the

concentration of this metabolite. Special poignancy is lent

to this second association by the recent discovery that tri-

methylamine oxide (TMAO), a metabolic product of TMA,

is a major risk factor for the development of CVD (Wang

et al. 2011). Briefly, the dietary precursor of TMA, phos-

phatidylcholine (PC), is found in meat, milk, fish and eggs.

Gastric enzymes release the choline moiety from PC, and

gut bacteria convert choline into TMA, which is then

absorbed into the human body. Part of this TMA is then

converted to TMAO by flavin-containing monooxygenases

(FMOs) particularly by FMO3 (Holmes et al. 2008) in the

human body. While it is not immediately clear how exactly

the genetic variation in PYROXD2 influences the amount

of urine-secreted TMA, it seems that the metabolism of a

precursor to a major metabolic marker for cardiovascular

risk deserves further research.

Clearly, the study by Nicholson et al. is just the first

study of its kind, but it already suggests that genetic factors

with very strong impact on certain human metabolites

have remained unnoticed and that holistic genome-wide/

22 Genes Nutr (2013) 8:19–27
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metabolome-wide association studies provide a powerful

tool to identify them. Notably, the strength of the observed

associations is so great that they easily overcome the

multiple-testing corrections necessitated by the large

number of parallel GWASs inherent in metabolome-wide

studies.

Table 1 Selection of reported gene-metabolism associations

Gene Association Metabolic trait Metabolic process

ACADM Acyl-Coenzyme A dehydrogenase Hexanoylcarnitine/oleate Mitochondrial fatty acids b-oxidation

AGXT2 Alanine-glyoxilate aminotransferase-2 b-Aminoisobutyrate b-Aminoisobutyrate/pyruvate reaction

(Alanine synthesis)

ALMS1 Alstrom syndrome N-Acetylated compounds –

APOA1

APOC3

APOA4

APOA5

Apolipoprotein cluster Triglyceride levels and

phosphatidylcholine ratios

(PC 36:2/PC 38:1)

Protein composition of HDL in plasma

ATP10D Phospholipid-transporting ATPase Glucosylceramides 16:0 and 24:1 Ceramide transport

CPS1 Carbamoyl-phosphate synthase Glycine Protein/nitrogen metabolism

ELOVL2 Elongase Eicosapentaenoic acid (EPA),

docosapentaenoic acid (DPA),

docosahexaenoic acid (DHA)

Elongation of polyunsaturated (n-3) fatty

acids

FADS1 Fatty acid delta-5 desaturase affecting

polyunsaturated and omega 3/6 long-

chain fatty acids (PUFA)

Eicosatrienoyl-CoA (C20:3)

arachidonyl-CoA (C20:4)

Regulation of LDL, HDL cholesterol and

triglyceride levels

GCKR Glucose kinase regulator protein Glucose/mannose Glucose homeostasis

LASS4 Ceramide synthase Sphingomyelins 18:0, 20:0, 20:1,

Ceramides 20:0

Ceramide synthesis

LIPC Breaking down triglycerides to mono-

and diacylglycerols and fatty acids

Phosphatidylethanolamine PE aa

C38:6

Regulation of HDL cholesterol and

triglycerides

MCAD Medium-chain acyl-coenzyme A

dehydrogenase

Acyl-carnitines (C12/C8) Fatty acids b-oxidation

MTNR1B High-affinity receptor for melatonin Glucose (fasting) Inhibitory effect of melatonin on insulin

secretion

NAT2 Risk locus for coronary artery disease.

Response to drug toxicity

1-Methylxanthine/

4-acetamidobutanoate; formate/

succinate ratio

Regulation of triglyceride levels

NAT8 Cysteinyl-conjugate N-acetyltransferase N-Acetyl compounds Acetylation of cysteine S-conjugates to

mercapturic acids.

PANK1 Pantothenate kinase Coenzyme A

synthesis

Insulin Glucose metabolism

PARK2 Parkin (ligase) Lysine Glutamate/aminoacid metabolism

PLEK Pleckstrin protein Sphingomyelin C14:0 Protein/lipid interactions

PYROXD2 Pyridine nucleotide-disulfide

oxidoreductase

Trimethylamine (urine), dimetylamine

(plasma)

Oxidoreductase enzyme

SCAD Short-chain acyl-coenzyme A

dehydrogenase

Acyl-carnitines (C3/C4) Fatty acids b-oxidation

SGPP1 Sphingosine-1-phosphatase 1 Sphingomyelins 14:0, 15:0, 23:0, 24:0,

22:1, 24:1dihydrosphingomyelin

16:0 and 18:0

Recycling of sphingosine into long-chain

ceramides

SLC7A9 Glycoprotein-associated amino acid

transporter

Glutarylcarnitine/lysine Involved in the high-affinity, sodium-

independent transport of cystine and

neutral and dibasic amino acids

SPTLC3 Serine palmitoyltransferase Cer16:0, 22:0, 23:0, 24:0, 24:1,

saturated and unsaturated ceramides,

sphingomyelins 17:0, 16:1

Ceramide synthesis and transport

Gieger et al. 2008; Illig et al. 2010; Nicholson et al. 2011; Suhre et al. 2011
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A comparison of these recent studies to those on favism

and lactose intolerance discussed above indicates how

dramatically gene–metabolism research has changed over

the past decade and a half. In the past, linking variations in

metabolism to a specific gene was often the endpoint of

extensive mechanistic and epidemiological studies. By

contrast, the newest generation of whole-genome/whole-

metabolome studies is typically the starting point that now

guides these studies. In parallel, the nature of the metabolic

phenotypes addressed by these studies has changed as well:

from acute metabolic phenotypes that can be readily per-

ceived by the affected individual, as is the case for lactose

intolerance and favism, to subtle, long-term health-risk

phenotypes that are not easily perceived by the affected

individual and that might even have evaded detection by

routine medical testing (e.g., TMAO levels and CVD).

For this latter type of metabolic phenotype, early gene- or

metabolome-based identification of individual risk factors

will be essential to address these risks before any, poten-

tially irreversible, symptoms manifest themselves.

In summary, the literature illustrates that GWAS is a

powerful approach to study the genetic predisposition for

metabolic disorders (Table 1 collects key examples of the

gene–metabolism interactions that have been discovered or

Fig. 1 a Manhattan plot

resulting from a GWAS that

uses as input phenotype the

intensity of a 1H-NMR chemical

shift centered at 2.032 ppm.

This chemical shift peak has

been assigned to an

N-acetylated compound,

possibly N-acetylated proteins.

The plot shows a strong

association with a large number

of SNPs on chromosome 2.

A close-up (b) of the genomic

regions shows that the center of

the association peak lies clearly

on the ALMS1 gene and not on

the neighboring NAT8 gene.

The QQ-plot (c) shows that a

large number of SNPs are

strongly associated with this

compound. The fact that all the

significant associations come

from the same locus

(panel a and b) underlines the

existence of strong LD in this

genome region

24 Genes Nutr (2013) 8:19–27
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validated using the GWAS approach). The use of this

genetic–metabolomic information may be useful in a pre-

ventive care context, enabling the proposal of appropriate

dietary interventions to modulate these long-term meta-

bolic imbalances and preventing the onset of disease.

Replication of gene–metabolism associations

In one of our recent studies, we carried out a GWAS with

urine metabolic traits in a cohort of 265 subjects from the

general population of the São Paulo metropolitan area of

Brazil (Galindo-Cuspinera et al. 2009; Genick et al. 2011).

This population is particularly interesting because of its

high degree of ethnic and environmental diversity. Subjects

were aged 18–47 (mean, 32.8), and the panel was balanced

according to gender (49 % of subjects were male and 51 %

female) (Supplement I). We deployed an analytical strat-

egy similar to the one previously selected by Nicholson

et al. (2011). The NMR data complexity was reduced by

binning the spectra into evenly spaced chemical shift

regions of 0.004 ppm width. Parallel GWAS on all

chemical shift bins resulted in a very pronounced associ-

ation between the NMR signal at 2.032 ppm (indicative of

an N-acetyl group) and SNPs located in the ALMS1 and

NAT8 genes on chromosome 2 (Fig. 1). This observation

Fig. 2 a Manhattan plot

resulting from a GWAS that

uses as input phenotype the

intensity in 1H-NMR chemical

shift centered at 2.856 ppm.

This chemical shift peak has

been assigned to Trimethyl-

amine. The plot shows a strong

association with a series of

SNPs on chromosome 10. These

SNPs are located in or around

the gene PYROXD2, which

encodes a probable pyridine

nucleotide-disulfide

oxidoreductase. b QQ-plot

corresponding to the Manhattan

plot shown in subfigure (a). The

plot underlines the significance

of the association and indicates

that the strength of the

association is not driven by

lambda inflation

Genes Nutr (2013) 8:19–27 25
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replicates the association observed by Nicholson et al.

(2011). Moreover, our results show that the associations

with SNPs located within the ALMS1 gene are much

stronger than with those within the neighboring NAT8

gene. We suspect that the greater genetic diversity of our

study population has resulted in a breakdown of the linkage

disequilibrium in the ALMS1/NAT8 region of the genome,

which resulted in a sharper association peak. While the

molecular function of ALMS1 is not known, genetic vari-

ations within ALMS1 have been implicated in a number of

kidney health disorder phenotypes (Chambers et al. 2010)

including a rare genetic disease called Alström syndrome

(Li et al. 2007). We further confirmed the association

(Nicholson et al. 2011) observed for trimethylamine

(TMA), thus confirming the strong impact of genetics on

the metabolism of a precursor to the major cardiovascular

risk factor TMAO (Wang et al. 2011).

Our results support that TMA concentration in urine is

strongly associated with natural genetic variations in and

around the gene for the putative pyridine nucleotide-

disulfide oxidoreductase gene PYROXD2 (Fig. 2). Yet, the

question about how PYROXD2 affects the amount of TMA

in urine remains unsolved. Both ALMS1/NAT8 and PY-

ROXD2 regions of the human genome show signs of strong

and recent evolutionary pressure (Tang et al. 2007). The

extent of this pressure in combination with the geographic

distribution of the genetic variations indicates that carrying

a particular variant of these genomic regions must have

provided significant advantages in adapting to the different

climatic, dietary and infectious environments. These novel

findings demonstrate that genetic variations in both the

ALMS1/NAT8 and PYROXD2 regions lead to marked

differences in the concentration of relatively abundant

human metabolites. We can also hypothesize that changes

in the gut microflora composition may play an important

role along this process of adaptation. Ultimately, these

differences in metabolic/genetic heritage may translate into

different health status and disease predisposition for dif-

ferent groups of individuals. GWAS has been able to

highlight associations between the genetic polymorphism

of the host and a metabolic pathway modulated by gut

microbiota. Moreover, this pathway has been demonstrated

to have important health implications, in particular for

CVD.

Perspectives for genome-wide association studies

to nutritional research

In summary, GWAS applications with metabolic traits

offer potential for nutritional research. In typical case–

control studies, frequent in Nutrimetabonomics (Rezzi

et al. 2007; Martin et al. 2009a; Heinzmann et al. 2011; van

Velzen et al. 2008; 2009), the genetic effects on homeo-

stasis regulation may introduce undesired variance in

metabolic profiles. These effects may obscure diet-induced

metabolic changes, which may be of relatively low

magnitude.

The incorporation of metabolite ratios has proven to be

effective to strengthen genome–metabolome associations,

which are of particular interest in short cohort studies. As it

has been described, genome–metabolome associations, in

particular those based in urine metabolic profiles, are char-

acterized by very large effect sizes (Nicholson et al. 2011).

This gives an opportunity to develop genome-wide/meta-

bolome-wide studies with sample sizes typical of standard

metabolomic studies. In this context, the use of metabolite

ratios appears as an interesting approach to understand the

metabolic information at the pathway level. The analysis of

these ratios, showing higher association with a particular

gene, may provide information about which compounds

belong to the same pathway or, eventually, are being regu-

lated by the same genetic mechanism. This can provide

more insight into the functionalities and roles of different

metabolites. Moreover, this understanding is not limited to

the host. Cases such as the relationship between TMA

synthesis and PYROXD2 clearly show the possible inter-

action between two genomes (host/gut microbiome) in more

detail, and its expression in the host metabolism.

In the future, GWAS with metabolic traits might offer

good potential for personalized nutrition. Through this

methodology it is now possible to link metabolic pheno-

type with genetic background while providing new meta-

bolic pathway target for tailor-made nutritional solutions.

With this knowledge at hand, the time for proposing cus-

tomized nutritional interventions to recover unbalanced

pathways to a healthy status is coming closer.
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