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Abstract Demyelination is a pathological process char-
acterized by the loss of myelin around axons. In the central
nervous system, oligodendroglial damage and demyelina-
tion are common pathological features characterizing white
matter and neurodegenerative disorders. Remyelination is a
regenerative process by which myelin sheaths are restored
to demyelinated axons, resolving functional deficits. This
process is often deficient in demyelinating diseases such as
multiple sclerosis (MS), and the reasons for the failure of
repair mechanisms remain unclear. The characterization of
these mechanisms and the factors involved in the prolif-
eration, recruitment, and differentiation of oligodendroglial
progenitor cells is key in designing strategies to improve
remyelination in demyelinating disorders. First, a very
dynamic combination of different molecules such as
growth factors, cytokines, chemokines, and different sig-
naling pathways is tightly regulated during the remyelina-
tion process. Second, factors unrelated to this pathology,
i.e., age and genetic background, may impact disease
progression either positively or negatively, and in partic-
ular, age-related remyelination failure has been proven to
involve oligodendroglial cells aging and their intrinsic
capacities among other factors. Third, nutrients may either
help or hinder disease progression. Experimental evidence
supports the anti-inflammatory role of omega-6 and
omega-3 polyunsaturated fatty acids through the

This paper is part of Genes and Nutrition’s “Topical Collection on
Ageing.”

A. M. Adamo (BX))

Department of Biological Chemistry, IQUIFIB
(UBA-CONICET), School of Pharmacy and Biochemistry,
University of Buenos Aires, Junin 956,

C1113AAD Buenos Aires, Argentina

e-mail: amadamo @qb.ffyb.uba.ar

competitive inhibition of arachidonic acid, whose metab-
olites participate in inflammation, and the reduction in T
cell proliferation. In turn, vitamin D intake and synthesis
have been associated with lower MS incidence levels,
while vitamin D—-gene interactions might be involved in the
pathogenesis of MS. Finally, dietary polyphenols have
been reported to mitigate demyelination by modulating the
immune response.
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Abbreviations

OLs Oligodendroglial cells

CNS Central nervous system

MS Multiple sclerosis

EAE Experimental autoimmune encephalomyelitis
CPz Cuprizone

OPCs Oligodendroglial progenitor cells

PDGFRa  Platelet-derived growth factor receptor o
GFAP Glial fibrillary acidic protein

Svz Subventricular zone

PLP Proteolipid protein

MBP Myelin basic protein

CNPase  2',3'-Cyclic nucleotide 3'-phosphodiesterase
TNFa Tumor necrosis factor-a

IL Interleukin

NPCs Neural precursor cells

EGFR Epidermal growth factor receptor

LINGO-1 Leucine-rich repeat- and Ig domain-containing
NOGO receptor-interacting protein 1

Shh Sonic hedgehog

Hes Hairy/enhancer of split

aTf Apotransferrin

IGF-1 Insulin growth factor-1
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PUFAs Polyunsaturated fatty acids

TGF-3 Tumor growth factor-f3

PPAR Peroxisome proliferator-activated receptors
25(OH)D  25-Hydroxyvitamin D

Introduction

Myelin biology dates back to 1,717, when Leeuwenhoek
established the existence of nervules surrounded by fatty
parts (Rosenbluth 1999). Two and a half centuries later,
such fatty parts were shown to belong to a highly spe-
cialized membrane, i.e., myelin, generated by mature oli-
godendroglial cells (OLs) in the central nervous system
(CNS) and by Schwann cells in the peripheral nervous
system. Myelin is a very special membrane, with unique
molecular composition and architecture. One of its main
functions is to isolate axons and cluster sodium channels at
Ranvier nodes, thus allowing for saltatory transmission of
action potential between nodes (Waxman 2006). Myelin
development and saltatory nerve conduction constitute the
basis for fast information processing in a relatively small
space.

Demyelination is a pathological process consisting in
the loss of myelin sheaths around axons. In the CNS,
demyelination is usually a consequence of OL damage and
is referred to as primary demyelination, as opposed to that
occurring as a consequence of primary axonal loss, regar-
ded as secondary demyelination or Wallerian degeneration
(Franklin and Ffrench-Constant 2008).

Demyelinating diseases

From a clinical standpoint, white matter disorders involv-
ing myelin affect approximately a million people around
the world and include a wide range of pathologies. Two
key causes of primary demyelination are the following: (1)
genetic abnormalities affecting OLs (leukodystrophies) and
(2) inflammatory damage affecting myelin and OLs.

Genetic abnormalities affecting glia comprise inherited
lysosomal storage diseases, including metachromatic leu-
kodystrophy and Krabbe disease; peroxisomal disorders,
including X-linked adrenoleukodystrophy; and deficiency
or misfolding of select myelin proteins, including Peliza-
eus—Merzbacher disease, among others. Multiple sclerosis
(MS) is the most prominent among inflammatory demye-
linating diseases and, unlike leukodystrophies, is charac-
terized by the presence of focal neurological lesions. It is,
however, a complex disease whose clinical features vary
among patients.
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Multiple sclerosis clinical progression is variable, gen-
erally beginning with reversible episodes of neurological
disability between the third and fourth decades of life and
progressing to continuous and irreversible neurological
disability between the sixth and seventh decades (Trapp
and Nave 2008). MS symptoms are the result of myelinated
tract interruption in the CNS. Several lines of mice carry-
ing myelin protein null mutations provided the proof that
axonal degeneration is a consequence of chronic demye-
lination (Trapp and Nave 2008). In this context, remyeli-
nation is defined as the process through which myelin
sheaths are restored to demyelinated axons, which is
associated with functional recovery (Franklin 2002). Re-
myelination is the response to demyelination and is nec-
essary for axon survival. Thus, it should be considered as a
regenerative process, similar to other regenerative pro-
cesses taking place in other tissues. In toxic-based models
of demyelination, as opposed to experimental autoimmune
encephalomyelitis (EAE) or virus-induced demyelination,
full remyelination takes place spontaneously, which allows
for a thorough study of the mechanisms involved in
demyelination/remyelination processes.

Demyelination is undoubtedly part of MS pathology;
however, in recent years, neuronal loss and axonal loss
have been proven to be a consequence of chronic demye-
lination and the main driving force for neurodegeneration
(Trapp and Nave 2008) in demyelinating disorders.

Underlying mechanisms in demyelination/
remyelination processes

Animal models widely used to study demyelination pro-
cesses include (1) EAE, (2) virus-induced models such as
Theiler’s murine encephalomyelitis virus, and (3) toxin-
induced models, such as cuprizone (CPZ) administration
and focal demyelination through lysolecithin injection.
These experimental models have provided a vast amount of
information on remyelination. Findings in this field have
established that (1) the number of oligodendrocytes present
in a remyelinated area is larger than the number of these
cells present in the area previous to demyelination, which
indicates that new oligodendrocytes are generated (Pray-
oonwiwat and Rodriguez 1993), and (2) post-mitotic oli-
godendrocytes that survive the lesion produced by the
demyelinating agent do not contribute to remyelination
(Keirstead and Blakemore 1997). The question raised from
these findings refers to the origin of these new oligoden-
drocytes. There is a consensus in the hypothesis that most
of them, probably all of them, derive from oligodendroglial
progenitor cells (OPCs) widely spread throughout the CNS
(Wood and Bunge 1991; Blakemore and Keirstead 1999),
which are usually identified through the expression of
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proteoglycan NG2 or platelet-derived growth factor
receptor-oo. mRNA (Wilson et al. 2006). In addition, re-
myelination can be mediated by periventricular cells, such
as progenitors derived from the rostral migratory stream or
from glial fibrillary acidic protein—positive B-type stem
cells present in the adult subventricular zone (SVZ) (Menn
et al. 2006). It is worth pointing out that these alternative
sources of OPCs only contribute to remyelinating areas that
are anatomically close to the SVZ, and, even in these cases,
their relative contribution is uncertain. For remyelination to
actually take place, it is necessary to populate the demye-
linated area with enough OPCs, either those resident in the
area or those that can be recruited from neighboring white
matter (Carroll and Jennings 1994). Recruitment involves
both the proliferation and migration of OPCs, which, once
in the area, have to differentiate to mature OLs with
myelinating capacity in order to complete remyelination.

The toxin-induced models mentioned above have pro-
ven NG2-positive cell recruitment from the SVZ to the
demyelinated area. These cells differentiate and become
mature OLs sequentially expressing myelin proteins such
as proteolipid protein (PLP), myelin basic protein (MBP),
and 2',3’-cyclic nucleotide 3’-phosphodiesterase. These
findings prove that remyelination mechanisms are tightly
regulated and involve a wide range of molecules, including
cytokines (Mason et al. 2001) and chemokines (Patel et al.
2010), transcription factors (Qi et al. 2001), growth factors
(Aguirre et al. 2007; Murtie et al. 2005), micro-RNA
(Junker et al. 2009), and different signaling pathways (John
et al. 2002).

Cytokines mediate the inflammatory response that pro-
motes pathogen removal and thus prevents excessive tissue
damage. However, excessive cytokine production may lead
to exacerbated inflammation and consequent cell death. In
the CNS, in particular, certain cytokines play a key role in
regenerative processes. Tumor necrosis factor-a (TNFa),
through TNFa receptors R1 and R2, activates cell death, on
the one hand, and NFxB-mediated survival, on the other.
MS patients tend to have higher levels of TNFo, both in
cerebrospinal fluid and in serum, than control patients. In
turn, these values correlate with disease severity (Beck
et al. 1988; Maimone et al. 1991). Interleukin (IL)-1p is
another pro-inflammatory cytokine related to the physio-
pathology of demyelinating diseases such as MS and,
similarly to TNFa, is associated with the worsening of
CNS pathology (de Jong et al. 2002).

Chemokines induce chemotaxis, which is necessary to
attract cells to take part in the immune response at the
infected or injured site. Certain chemokines, such as
CXCL12 and CXCLI1, are induced during CNS develop-
ment and coordinate the proliferation, migration, and dif-
ferentiation of neural precursor cells (NPCs) (Stumm et al.
2007; Tsai et al. 2002), which suggests they might also

participate in CNS regenerative processes. In this way,
Patel et al. (2010) demonstrated that CXCR4 (the receptor
of CXCL12) activation is important for the remyelination
of the CPZ-demyelinated mouse by induction of OPC
differentiation.

Growth factors are biologically active polypeptides
controlling target cell growth and differentiation and are
important during the remyelination process. Thus, it was
demonstrated that epidermal growth factor receptor sig-
naling is involved in both the repopulation by OPCs and
the remyelination of lysolecithin-induced corpus callosum
demyelination (Aguirre et al. 2007).

Signaling pathways possibly involved in the remyeli-
nation process include those mediated by leucine-rich
repeat- and Ig domain-containing NOGO receptor-inter-
acting protein 1 (LINGO-1), Wnt, Sonic hedgehog (Shh),
and Notchl. LINGO-1 has been identified as a negative
regulator of OL differentiation (Mi et al. 2005). The
treatment of OPC cultures with anti-LINGO-1shRNA has
been reported to generate an increase in cell morphological
differentiation. On the other hand, LINGO-1-deficient mice
or mice treated with an anti-LINGO-1 antibody exhibited
greater remyelination and functional recovery when sub-
mitted to EAE (Mi et al. 2007). The same observations
were made when animals were submitted to toxin-induced
demyelination (Mi et al. 2009). As for the Wnt signaling
pathway, Fancy et al. (2009) identified pathway-associated
genes that are induced during remyelination in mice sub-
mitted to experimental demyelination. During remyelina-
tion, Tcf4-mediated activation of Wnt negatively regulates
OPC differentiation (Fancy et al. 2009; Ye et al. 2009).

During CNS development, the secretion protein Shh is
necessary for the commitment of the first wave of OPCs
arising from the ventral region of the spinal cord and
forebrain (Fuccillo et al. 2006). In the adult brain, Shh
delivery induces an increase in the population of OPCs in
the cerebral cortex and corpus callosum (Loulier et al.
2006). Recent studies using lysolecithin-induced corpus
callosum demyelination showed that the Shh signaling is
activated during remyelination and that adenovirus-medi-
ated Shh delivery stimulates OPC proliferation and matu-
ration (Ferent et al. 2013).

The Notch signaling pathway has been implicated in the
selection process of neural progenitors present in the neural
tube of vertebrates (Lewis 1996). Notch is a type I trans-
membrane receptor which responds to the binding of spe-
cific ligands and consequently undergoes a sequence of two
proteolytic cleavages. The y-secretase complex releases the
Notch intracellular domain (NICD), which translocates to
the nucleus and activates the transcription of Notch target
genes (Kopan and Ilagan 2009), such as the bHLH-type
transcriptional repressors known as hairy/enhancer of split
(Hes) genes. Upon binding to canonical Delta, Serrate/
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Jagged, and Lag-2 ligands, Notch activation maintains the
pool of NPCs in their undifferentiated state and allows for
the generation of OPCs (Artavanis-Tsakonas et al. 1999),
thus blocking OL maturation through these ligands (Wang
et al. 1998). In addition, NB-3 and F3/contactin, two neural
cell adhesion molecules, act as non-canonical Notch
ligands participating in OL generation (Cui et al. 2004; Hu
et al. 2003). NB-3 triggers NICD nuclear translocation,
promoting oligodendrogenesis from progenitor cells and
OPC maturation via Deltex1 (Cui et al. 2004). We found
that the treatment of demyelinated rats with a single apo-
transferrin (aTf) (350 ng) injection at the time of CPZ
withdrawal induces a marked increase in myelin deposition
as compared to the spontaneous remyelination observed in
control animals (Adamo et al. 2006). Accordingly, differ-
ent authors have reported the relevant role of aTf during
myelination increasing brain myelin content, including
proteins and their mRNAs (Escobar Cabrera et al. 1997,
1994, 2000), regulating MBP gene transcription (Espinosa
de los Monteros et al. 1989, 1999), synergizing with insulin
growth factor-1 (IGF-1), and enhancing myelination in
myelin-deficient rats (Espinosa-Jeffrey et al. 2002). We
recently observed that both canonical and non-canonical
Notch signaling pathways are involved in demyelination/
remyelination. Notch activation was observed to trigger
Hes5 expression as a consequence of lysolecithin-induced
focal demyelination of corpus callosum, which might
promote OPC proliferation. During aTf-induced remyeli-
nation, the expression of F3/contactin appeared to mediate
Notch activation and thus induce aTf-mediated OL matu-
ration (Aparicio et al. 2013).

In summary, remyelination occurring after demyelinat-
ing injuries is a very complex process involving different
cellular populations, regulated by several molecules (e.g.,
growth factors, cytokines) and involving multiple signaling
cascades (e.g., Notch signaling, Shh signaling). Knowledge
of these events has significantly advanced in the last dec-
ades. However, many aspects remain unknown, and re-
myelinating therapeutic approaches remain limited and
constitute a challenging field of research.

Remyelination and aging

Remyelination occurs efficiently in some situations and
fails in others. This irregularity in remyelination has been
studied using toxin-induced demyelination models. In this
context, age was demonstrated to be one of the most
important factors influencing CNS remyelination after a
demyelinating event. In particular, the rate of remyelina-
tion is what changes in the aging CNS rather than its extent
(Shields et al. 1999). The decrease in CNS remyelination
rates occurring as a consequence of aging is a major
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complication for remyelinating therapies, in particular for
long-lasting demyelinating disorders such as MS. It is also
important to consider the age-related modifications of the
innate immune and growth factor responses to the demy-
elination process which interfere with myelin repair (Hinks
and Franklin 2000; Zhao et al. 2006). Studies of OPC
response during remyelination of toxin-induced demyelin-
ation in the caudal cerebellar peduncle from young and old
adult rats indicate that the inefficiency of remyelination
associated with aging is due to the impairment of OPC
recruitment and the subsequent failure of OPCs in differ-
entiating into myelinating OL (Sim et al. 2002). In this
regard, it was demonstrated that the epigenetic control of
gene expression related to aging regulates remyelination.
Therefore, in young animals, remyelination occurs as a
consequence of the downregulation of inhibitors of OPC
differentiation, concomitantly with the recruitment of his-
tone deacetylases to promoter regions. In old animals, this
recruitment is inefficient and thus hinders efficient re-
myelination due to a decrease in the ability of OPCs to
differentiate into mature OLs with myelinating capacity
(Shen et al. 2008). Using heterochronic parabiosis (Villeda
et al. 2011) in a toxin-induced focal demyelination model
of mouse spinal cord, Ruckh et al. demonstrated
improvements in the remyelination of aged brains mediated
by endogenous OPCs whose differentiation capacity was
restored by exposing them to a youthful systemic envi-
ronment. Considering previous hypotheses about the role
of the innate immune system in remyelination (Kotter et al.
2006), these results support the idea that young macro-
phages recruited during remyelination facilitate OPC dif-
ferentiation by removing inhibitory myelin debris (Ruckh
et al. 2012).

Taken together, the above findings give rise to the
notion that age-related remyelination failure may implicate
not only factors associated with aging OLs and their
intrinsic capacities, but also a number of external factors,
even outside the CNS, that affect OPC differentiation
capacity and ultimately impact myelin repair (Redmond
and Chan 2012).

Demyelination/remyelination and nutrients

MS is the most common CNS-specific demyelinating dis-
order affecting young adults, and it is a multifactorial
disease with unclear etiology. In addition to a genetic
predisposition (Ebers and Sadovnick 1994), epidemiologi-
cal studies suggest a strong association between increased
MS prevalence and particular diets (Antonovsky et al.
1965; Cendrowski et al. 1969; Berr et al. 1989; Tola et al.
1994). Studies conducted on dietary factors associated with
MS have included fat consumption, particularly saturated
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animal fat (Payne 2001); breastfeeding duration (Isaacs
et al. 2010); and the intake of sweets (Antonovsky et al.
1965), alcohol (Berr et al. 1989; Sepcic et al. 1993),
smoked meat products (Sepcic et al. 1993), coffee, and tea
(Tola et al. 1994). However, Agranoff and Goldberg (1974)
implicate foods rich in both omega-6 and omega-3 poly-
unsaturated fatty acids (PUFAs) in negative correlations
with MS—omega-3 PUFAs are derived from fish oils,
whereas omega-6 PUFAs are obtained from plants such as
sunflower, corn, wheat germ, and soybean oils. In partic-
ular, it was observed that linoleic (18:2n-6) and arachidonic
acids (20:4n-6) are decreased in plasma, platelets, eryth-
rocytes, leukocytes, and cerebrospinal fluid in patients with
MS (Baker et al. 1964; Sanders et al. 1968; Gul et al. 1970;
Neu 1983). The use of linoleic acid alone or oil containing
linoleic acid and y-linolenic acid (ratio 7:1) in the treat-
ment for EAE—an induced animal model of CD4 T cell-
mediated demyelination characterized by inflammation—
produced a partial suppression of the incidence and
severity of the pathology (Meade et al. 1978). It was further
demonstrated that the y-linolenic acid had a protective,
dose-dependent effect on EAE because of the increase in T
cell tumor growth factor-B (TGF-B) transcription and
prostaglandin E, production (Harbige et al. 2000).

Even though the relationship between the dietary intake
of fat and the risk of MS is not clear, the anti-inflammatory
effects of omega-6 and omega-3 PUFAs are well known.
Both omega-6 and omega-3 PUFAs are competitive
inhibitors of arachidonic acid, whose metabolites are
involved in the inflammation process (Callegari and Zurier
1991; Gil 2002), and were demonstrated to decrease T cell
proliferation (Rossetti et al. 1997). On the other hand,
molecules derived from PUFAs could have positive effects
on the treatment of MS: Lipoxins might reduce inflam-
mation by decreasing neutrophil activity (Yacoubian and
Serhan 2007), while resolvins and protectins, derived from
omega-3 PUFAs, seem to control inflammation in the
nervous system (Serhan et al. 2002). An important role
assigned to PUFAs is that of ligands for peroxisome pro-
liferator-activated receptors (PPARs). PPARs are ligand-
activated nuclear transcription factors whose PPAR, iso-
form is present in human T lymphocytes, and omega-3
PUFAs, acting as PPAR, agonists, ameliorate inflamma-
tion in EAE rats (Niino et al. 2001). Furthermore, omega-3
PUFAs were demonstrated to promote, in vivo, the
expression of myelin-related proteins such as the PLP and
MBP (Salvati et al. 2008).

Considering the relevance of blood—brain barrier integ-
rity in MS physiopathology, Liuzzi et al. (2007) demon-
strated that the in vitro treatment of microglia with omega-
3 PUFAs decreases the LPS-induced production of matrix
metalloproteinase-9, which is involved in the mechanism
of blood-brain barrier disruption, the penetration of

inflammatory cells into the CNS, and, consequently,
demyelination.

Finally and most importantly, clinical trials have been
conducted over the last few years in MS patients, with
results supporting the positive role of dietary PUFAs in
disease progression.

The fact that MS has low prevalence in equatorial
regions and increasing prevalence toward the north and
south poles and that sun exposure is inversely related to the
risk for MS development (Munger et al. 2006) suggest that
vitamin D3 (cholecalciferol) could have a significant
influence on MS progression (Smolders et al. 2008a).
Vitamin D can be obtained directly from dietary sources or
through skin synthesis, in which case sunlight is essential
to the conversion of pre-vitamin D3 to active vitamin D3
through the cleavage of the B-ring. Vitamin D is hydrox-
ylated in the liver to render 25-hydroxyvitamin D
(25(OH)D). A high percentage of MS patients have low
plasma levels of 25(OH)D (Mahon et al. 2003; Nieves et al.
1994; Ozgocmen et al. 2005). In this regard, studies in
USA populations have proven that a 50-nmol increase in
25(OH)D correlates with a 40 % decrease in MS incidence.
Also, while low levels of vitamin D are associated with
relapse and disability in MS patients (Smolders et al.
2008b), high serum 25(OH)D levels reduce the hazard ratio
for new relapses in a dose-dependent manner (Simpson
et al. 2010). It has been proposed that the protective effects
of vitamin D on MS are mostly related to the critical
functions of this vitamin in the immune system. However,
in the cuprizone model of demyelination in rats, which is
independent of lymphocyte infiltration, vitamin D3 sup-
plementation decreases the magnitude of white matter
demyelination and mitigates the activation of microglia
(Wergeland et al. 2011). In a more recent study, involving
141 participants with relapsing—remitting MS, Lin et al.
studied 276 single nucleotide polymorphisms in 21 genes
related to vitamin D metabolism and vitamin D receptor
factor complex formation. They hypothesized that the
interaction between genes and vitamin D may affect the
clinical course of MS and, in particular, that the PKC
family genes may be involved in the pathogenesis of
relapsing—remitting MS modulating the association
between 25(OH)D and relapse (Lin et al. 2013).

On the other hand, vitamin B12 cyanocobalamin can also
have a positive influence on remyelination. B12 adminis-
tered concomitantly with interferon-f favors OL maturation
both in vivo, in non-autoimmune primary demyelinating
ND4 (DM20) transgenics, and in vitro, in the human MO3-
13 cell line and in rat spinal cord oligodendrocytes. These
actions involve a decrease in Notchl signaling and an
increase in the expression of Sonic hedgehog and its
receptor, Patched, which induces OL maturation and helps
improve remyelination (Mastronardi et al. 2004).
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Genetic abnormalities affecting OLs
(Leucodystrophies)

Inflammatory damage affecting myelin and OLs
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REMYELINATION

Growth Factors
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Fig. 1 Primary demyelination may be caused either by genetic
abnormalities affecting OLs or by inflammatory damage affecting
myelin and OLs, as is the case in MS. While some nutrients may play
a protective role against demyelination (green line), others may play a
negative role (red arrow). Remyelination is the physiological
response to demyelination. During remyelination, some molecules
act positively (green arrows) on the process, such as chemokines and

Dietary polyphenols could also mitigate demyelination
by modulating the immune response. In this regard, epi-
gallocatechin-3-gallate, a flavan-3-ol abundant in green tea,
reduces the autoimmune response in the EAE through the
inhibition of immune cell infiltration and the regulation of
pro- and anti-autoimmune CD4(4) T cells (Wang et al.
2012).

In summary, recent experimental evidence suggests that
nutrition could influence the development of demyelinat-
ing/remyelinating processes by mitigating demyelination
and favoring remyelination. Given the nutritional imbal-
ances associated with aging, further advances in the
knowledge of how nutrients impact myelination could be
of major relevance in the treatment of demyelinating
conditions.

Conclusions

In demyelinating disorders in general and MS in particular,
the failure of prompt remyelination is associated with
axonal injury and degeneration, which is accepted as the
major cause of neurological disability in the disease. Re-
myelination process recapitulates myelination during
development, but in a pathological environment. Different
molecules and signaling pathways are involved in the
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growth factors, while others may play a dual role (green arrows for
positive, red lines for negative), such as certain signaling cascades
and cytokines. Among environmental factors, nutrients may also play
a dual role, and finally, aging has an unequivocally negative impact
on the process. The interplay of these factors determines the fate of
the remyelination process, whose failure leads to neurodegeneration

remyelination process, inducing or inhibiting the prolifer-
ation and maturation of OPCs engaged in the generation of
new myelin sheaths around axons. In the same way, non-
disease-related factors, such as age and genetic background,
and environmental factors, such as dietary components,
could act as predisposition factors or exert a protective or
even therapeutic effect during certain disease stages, ren-
dering either negative or positive outcomes (Fig. 1).
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