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Abstract Although cell culture studies have provided

landmark discoveries in the basic and applied life sciences,

it is often under-appreciated that cells grown in culture are

prone to generating artifacts. Here, we introduce the

genotype status (exemplified by apolipoprotein E) of

human-derived cells as a further important parameter that

requires attention in cell culture experiments. Epidemio-

logical and clinical studies indicate that variations from the

main apolipoprotein E3/E3 genotype might alter the risk of

developing chronic diseases, especially neurodegeneration,

cardiovascular disease, and cancer. Whereas the apolipo-

protein E allele distribution in human populations is well

characterized, the apolipoprotein E genotype of human-

derived cell lines is only rarely considered in interpreting

cell culture data. However, we find that primary and

immortalized human cell lines show substantial variation in

their apolipoprotein E genotype status. We argue that the

apolipoprotein E genotype status and corresponding gene

expression level of human-derived cell lines should be

considered to better avoid (or at least account for) incon-

sistencies in cell culture studies when different cell lines of

the same tissue or organ are used and before extrapolating

cell culture data to human physiology in health and disease.

Keywords APOE � Cell culture artifacts � Human-

derived cell lines � Genotyping � Cardiovascular

disease � Neurodegeneration

Cell lines derived from humans or other animals are

commonly used tools which dominate many research fields

in the basic and applied life sciences. Some of the main

reasons for conducting cell culture experiments, rather than

in vivo studies, are their comparatively low input require-

ment in terms of time, labor, and financial resources

(Freshney 2005). Indeed, cell culture studies have provided

landmark discoveries, such as the identification of the

tumor suppressor protein p53 and the description of telo-

meres as important regulators of the cell cycle and cell

senescence machinery (Olovnikov 1973; Lane and Craw-

ford 1979; Shampay et al. 1984). At the same time, how-

ever, it is important to remember that cells grown in culture

have not only been removed from their natural environ-

ment but are often prone to generating cell culture artifacts.

We know, for example, that the oxygen concentrations in

most mammalian organs and tissues range from 1 to 6 %

(with up to 14 % in arterial blood) to ensure physiological

tissue function but at the same time to minimize the pro-

duction of potentially detrimental reactive oxygen and

nitrogen species (Roy et al. 2003; Sullivan et al. 2006;

Shay and Wright 2007; Halliwell and Gutteridge 2007; Oze

et al. 2012). Yet, most cell culture experiments are con-

ducted in an atmosphere unnaturally rich in oxygen due to

the cells’ exposure to normal air which contains 21 %

oxygen (Halliwell 2003). There is good experimental evi-

dence that such a high oxygen concentration often exerts
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detrimental effects on cell metabolism and subsequently

cell growth and survival (Alaluf et al. 2000; Busuttil et al.

2003; Estrada et al. 2012; Long and Halliwell 2012). Other

important contributors to artifactual data are the use of

misidentified cell lines (Nardone 2008; American Type

Culture Collection Standards Development Organization

Workgroup ASN-0002 2010) and the instability of test

compounds added into cell culture media. Whereas the

reaction of autoxidizable test compounds (e.g., ascorbate,

epigallocatechin-3-gallate, quercetin) with components of

cell culture media can produce hydrogen peroxide (Long

et al. 2000; Halliwell 2003; Long and Halliwell 2012),

some test compounds (e.g., curcumin and resveratrol)

rapidly decompose into agents often with unknown bio-

logical activities (Long et al. 2010). Genomic instability of

cells in long-term culture is another area of concern

(Gazdar et al. 2010; Skrobot et al. 2007). Depending on the

experimental conditions, an approximately 30-fold varia-

tion in the spontaneous mutation rate has been determined

for the mouse lymphoma cell line, GRSL13 (Boesen et al.

1994), for example. Such cell culture-induced genetic

alterations might not only affect immortalized cell lines,

but also, for instance, embryonic stem cells (Skrobot et al.

2007; Wu et al. 2011; Amps et al. 2011).

Here, we would like to introduce the genotype status of

human-derived cells as another important parameter that

requires attention in cell culture experiments. The genetic

profile of cells is mechanistically important as it largely

determines their phenotype and thus their response pattern

to environmental changes (Desiere 2004; Ferguson 2008;

Sharp et al. 1997) both in vivo and, as we will argue, also

in vitro. In this regard, the apolipoprotein E (APOE)

genotype is probably one of the best-known genetic factors

with respect to onset and progression of several common

chronic diseases (Davignon et al. 1988; Mrkonjic et al.

2009; Arold et al. 2012). From two SNPs, three alleles arise

(APOE2, APOE3 and APOE4) which encode the main

protein isoforms apoE2, apoE3, and apoE4 (Weisgraber

et al. 1981). Various tissues express APOE, most notably

liver (about 2/3 of total apoE synthesis), immune cells

(macrophages, neutrophils), brain (especially astrocytes),

spleen and kidney (Zhang et al. 2011). In addition, APOE

expression has been detected in heart, testis, prostate,

pancreas, and several other organs (Zannis et al. 1985; Law

et al. 1997). Functionally, the apoE protein acts as a key

regulator of cholesterol and lipid metabolism (Fazio et al.

2000).

Several studies describe an increased risk for cardio-

vascular disease (CVD) in APOE4 carriers (Davignon et al.

1988), probably originating from elevated levels of LDL

cholesterol, although the exact mechanisms underlying the

APOE4-CVD-risk associations are likely to be more

complex (Minihane et al. 2007). Similarly, the APOE

genotype exerts strong effects on the pathological pro-

cesses leading to neurodegenerative diseases (Maezawa

et al. 2006; Kornecook et al. 2010; Arold et al. 2012).

Indeed, the prevalence of Alzheimer’s disease dramatically

increases with the number of APOE4 alleles (Corder et al.

1993), while lifespan is shortened in APOE4 carriers

(Smith 2002; Christensen et al. 2006). Furthermore, recent

evidence indicates that possession of the APOE4 genotype

may not only significantly affect the levels of biomarkers

of oxidative stress and inflammation in animal models and

humans (Dietrich et al. 2005; Vitek et al. 2009; Graeser

et al. 2012), but may also regulate their vitamin D levels as

well as vitamin E uptake (Huebbe et al. 2009, 2011).

Consequently, variations in the APOE genotype are fre-

quently considered in the analysis of clinical data (Corder

et al. 1993; Minihane et al. 2007). In contrast, the APOE

genotype status has rarely been taken into account in the

plethora of published studies conducted in human-derived

cell lines (Dupont-Wallois et al. 1997; Riddell et al. 2008;

Jeannesson et al. 2009). We suggest that it is time to

rethink.

First, the impact that different APOE genotypes can

exert on the metabolism of cells in culture and their phe-

notypic behavior is well established. In agreement with

in vivo data, cells of animal origin transfected with human

APOE and those obtained from human APOE-targeted

replacement mice show distinct APOE genotype-dependent

differences in their cellular responses. Several studies

suggest significantly increased levels of oxidative stress

and inflammatory biomarkers in apoE4-synthesizing cells

(Colton et al. 2002; Jofre-Monseny et al. 2007). In addi-

tion, considerable evidence demonstrates that apoE4 can, at

least under certain circumstances, induce mitochondrial

dysfunction in cells (Chen et al. 2011). Possible explana-

tions for these findings are apoE isoform-dependent dif-

ferences in apoE degradation and in the expression level of

disease-modifying proteins, such as NFjB, Nrf2, and

metallothionein (Ophir et al. 2005; Elliott et al. 2011;

Graeser et al. 2011, 2012). Furthermore, apoE isoform- and

dose-dependent effects, for example, on hydrogen peroxide

scavenging and metal chelation, have been reported

(Miyata and Smith 1996). The exact pathological mecha-

nisms of apoE4 at the cellular level, however, remain to be

elucidated.

Second, a screen conducted in our two laboratories of all

locally available human-derived cell lines reveals sub-

stantial variations in their APOE genotype status (Table 1).

Among those cell lines which were hetero- or homozygous

for the APOE2 or APOE4 allele (and thus diverge from the

most common APOE3/E3 genotype) are popular cancer

and immortalized cell lines, such as HaCat (APOE2/E4),

HeLa (APOE3/E4), PC-3 (APOE2/E2), and U937 (APOE4/

E4) as well as several primary cell lines obtained from
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Table 1 APOE genotype status of human-derived cell lines

No. Tissue

of origin

Cell line Cell line description Primary cell

line (yes/no)

Donor detailsa APOE

genotype
Age

(years)

Gender Ethnicity

1 Aorta VSMC Vascular smooth muscle Yes 11 Months F Caucasian E3/E4

2 Blood HL 60 Human acute promyelocytic leukemia No 36 F Caucasian E3/E3

3 Jurkat Clone

E6-1

Human acute T lymphocytes leukemia No 14 M – E3/E3

4 THP-1 Human acute monocytic leukemia No 1 M – E3/E3

5 U937 Human histiocytic lymphoma No 37 M Caucasian E4/E4

6 Bone HTB

85/Saos-2

Human bone osteosarcoma No 11 F Caucasian E2/E3

7 HTB

94/SW1353

Human bone chondrosarcoma No 72 F Caucasian E2/E3

8 HAC Human articular chondrocytes Yes – – – E3/E3

9 Brain CCF-STTG1 Human astrocytoma No 68 F Caucasian E3/E4

10 Kelly cells Human neuroblastoma No – – – E3/E4

11 SH-SY5Y Human neuroblastoma No 4 F – E3/E3

12 U87 Human glioblastoma/astrocytoma No 44 – Caucasian E3/E3

13 U118 Human glioblastoma/astrocytoma No 50 M Caucasian E2/E4

14 Breast MCF-7 Human breast adenocarcinoma No 69 F Caucasian E3/E3

15 Cervix HeLa Human cervix adenocarcinoma No 31 F African E3/E4

16 Colon CaCo-2 Human colorectal adenocarcinoma No 72 M Caucasian E3/E3

17 HCT 116 Human colorectal carcinoma No Adult M – E3/E3

18 HT 29 Human colorectal adenocarcinoma No 44 F Caucasian E3/E3

19 RKO Human colon carcinoma No – – – E3/E4

20 CCD33Co Human normal colon fibroblasts Yes 7 M Caucasian E2/E4

21 Fusion

cell

line

EA.hy926 Somatic cell hybrid of primary HUVEC and

thio-guanine resistant clone A549

No – – – E3/E3

22 Kidney HEK 293 Human embryonic kidney No Fetus – – E3/E3

23 HK-2 Immortalized human normal kidney

proximal tubule epithelial cells

No Adult M – E3/E3

24 RPTEC Human normal renal proximal tubular

epithelial cells

Yes – – – E2/E3

25 Liver HepG2 Human hepatocellular carcinoma No 15 M Caucasian E3/E3

26 HuH-7 Human hepatocellular carcinoma No 57 M Japanese E3/E3

27 Kyn 2 Human pleomorphic hepatocellular

carcinoma

No 52 M Japanese E3/E3

28 HFH Human fetal hepatocytes Yes – – – E3/E4

29 Lung A549 Human alveolar basal carcinoma No 58 M Caucasian E3/E3

30 16HBE140 Human bronchial epithelial cells Yes – – – E3/E3

31 IMR90 Human normal lung fibroblasts Yes 16 Weeks F Caucasian E3/E3

32 Prostate PC-3 Human prostate carcinoma No 62 M Caucasian E2/E2

33 DU145 Human prostate carcinoma (from brain) No 69 M Caucasian E3/E3

34 LNCaP Human prostate carcinoma (from lymph

node)

No 50 M Caucasian E3/E3
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human donors (Table 1). Despite our comparatively small

sample size, examples of cell lines diverging from the main

APOE3/E3 genotype were found for all human organs and

tissues of origin (e.g., blood, bone, brain, cervix, colon,

heart, kidney, liver, prostate, and skin) included here, with

the exception of human lung and breast tissue-derived cells

(as well as the fusion cell line EA.hy926; kindly provided

by Prof. C. J. Edgell, University of North Carolina at

Chapel Hill). Of note, from the APOE allele distributions

depicted in Fig. 1a, which was not significantly different

between human-derived cell lines and published population

data, it follows that the probability of selecting a human-

derived cell line carrying the most commonly found

APOE3/E3 genotype is about 50–60 %. Conversely, sci-

entists who randomly select a cell line originating from a

human donor have an approximately 40–50 % chance of

conducting experiments with cells whose genotype devi-

ates from the main APOE3/E3 genotype (Fig. 1b).

Third, the actual impact that a particular polymorphism

exerts on cell physiology and disease susceptibility

depends on the level of gene expression (Jeannesson et al.

2009). As mentioned before, various tissues express APOE,

although at different levels (Zannis et al. 1985; Law et al.

1997; Zhang et al. 2011). However, one must be careful of

automatically assuming that cells obtained from human

APOE-expressing tissue show similar levels of APOE gene

expression in vitro. As an immune cell, the human mac-

rophage-like U937 cell line (APOE4/E4) is expected to

express APOE. Previous studies, however, failed to detect

APOE mRNA in this cell line cultured both under standard

conditions or the presence of APOE expression inducers

such as dexamethasone, thus limiting their suitability for

studying CVD and other disease mechanisms (Zannis et al.

1985). Similarly, no endogenous APOE gene expression

has been found in HeLa cells (APOE3/E4) (Smith et al.

1988). In a direct comparison of three human prostate

Table 1 continued

No. Tissue

of origin

Cell line Cell line description Primary cell

line (yes/no)

Donor detailsa APOE

genotype
Age

(years)

Gender Ethnicity

35 Skin HaCat Immortalized human normal keratinocytes No 62 M Caucasian E2/E4

36 NEB-1 Immortalized human normal Epidemolysis-

Bullosa cells

No – – – E3/E3

37 CRL 2115 Human normal skin fibroblasts Yes 27 M Caucasian E3/E3

38 GM16678 Human RCP-3 skin fibroblasts Yes 4 Months F Caucasian/

Lebanese

E3/E3

39 HDFn Human dermal fibroblasts Yes Neonatal – – E3/E4

40 KF116 Human keloid fibroblasts Yes – – – E3/E3

41 KF112 Human dermal fibroblasts (from breast) Yes 35 F Chinese E2/E3

42 PHK Human keratinocytes Yes – – – E3/E3

The APOE genotype was determined either by RFLP analysis (Singapore) or by TaqMan� method (Germany). A subset of data was taken from

(Dupont-Wallois et al. 1997; Riddell et al. 2008; Jeannesson et al. 2009)
a Donor details were obtained from various cell line repositories [Japanese Collection of Research Bioresources (http://www.cellbank.nibio.go.

jp), ATCC (http://www.atcc.org), NIGMS Human Genetics Cell Repository, Coriell Institute (http://ccr.coriell.org/Sections/Collections/NIGMS/

?SsId=8), Cell Lines Service (http://www.cell-lines-service.de/content/index_eng.html); all accessed electronically on 28/11/2011]; details for

cell lines KF116 and KF112 were obtained from the Wound Healing and Stem Cell Research Group (NUS)

Fig. 1 APOE comparison between human world population (Singh

et al. 2006) and human-derived cell lines. a Allele frequency for

APOE2, APOE3, and APOE4. Selected data sets were analyzed by v2

test (n.s., non-significant). b Probability to select an APOE3/E3

compared to any of the other APOE genotypes (i.e., APOE2/E2,

APOE2/E3, APOE3/E4, APOE4/E4, APOE2/E4)
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carcinoma cell lines, APOE was highly expressed in PC-3

cells (APOE2/E2), detectable in DU145 cells (APOE3/E3)

but absent in LNCaP cells (APOE3/E3) (Venanzoni et al.

2003), thus again highlighting the importance of deter-

mining both APOE genotype and expression level for

minimizing biased data interpretation. Interestingly, PC-3

cells were highly tumorigenic, DU-145 cells were moder-

ately tumorigenic, and LNCaP cells were only weakly

tumorigenic (Venanzoni et al. 2003). It is tempting to

speculate that the tumorigenic potential of the three human

prostate carcinoma cell lines was influenced not only by the

actual apoE expression level but also by the differences in

the APOE genotype status.

Taken together, we think that the data and arguments

summarized above warrant a more widespread consider-

ation of the APOE genotype status by research groups

working with human-derived cell lines. In addition to

immortalized cell lines, this approach is particularly

important when working with primary cells as their APOE

genotype might vary with each new donor. Of course, as

the cause of most diseases is not monogenetic, a cell’s

response to experimental stimuli depends not only on the

presence of a particular APOE genotype, but on the pre-

sence and interplay of various risk genes in a given envi-

ronment (Jeannesson et al. 2009). Considering that many

chronic disease processes are driven, at least partly, by

inflammation and oxidative stress, we suggest that SNPs of

genes associated with both phenomena are probably also

worth monitoring. Screening human-derived cell lines for

the presence of polymorphisms in the tumor necrosis factor

alpha (Elahi et al. 2009; Qidwai and Khan 2011) and

paraoxonase-1/-2 genes (Shih and Lusis 2009; Schrader

and Rimbach 2011) might be particularly interesting in this

context. Ultimately, it might be necessary to genotype a

particular human-derived cell line for several, and some-

times even all, gene variants that are known to be important

in cell metabolism. As discussed for U937 and the set of

human prostate carcinoma cells, the obtained genotype

data should be ideally supplemented with information

regarding the actual gene expression (i.e., effective protein

level). Obviously, the final course of action should always

be context-driven.

From a practical point of view, genotyping can be

accomplished comparatively easily by RFLP or TaqMan�

probe analysis (Table 1) or by one of the other methods

published in the recent literature (Hixson and Vernier

1990; Calero et al. 2009; Rihn et al. 2009). Similarly to cell

line authentication data, information regarding the geno-

type status of human-derived cell lines should be made

easily available, perhaps in the form of an online database.

We believe that the genotype status and the corresponding

gene expression level of human-derived cell lines could

help the scientific community to better avoid (or at least

account for) inconsistencies in cell culture studies when

different cell lines of the same tissue or organ are used and

before extrapolating cell culture data to human physiology

in health and disease.
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