
RESEARCH PAPER

Methylation potential associated with diet, genotype, protein,
and metabolite levels in the Delta Obesity Vitamin Study

Jacqueline Pontes Monteiro • Carolyn Wise • Melissa J. Morine • Candee Teitel • Lisa Pence •

Anna Williams • Beverly McCabe-Sellers • Catherine Champagne • Jerome Turner • Beatrice Shelby •

Baitang Ning • Joan Oguntimein • Lauren Taylor • Terri Toennessen • Corrado Priami •

Richard D. Beger • Margaret Bogle • Jim Kaput

Received: 1 February 2014 / Accepted: 6 April 2014 / Published online: 24 April 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Micronutrient research typically focuses on

analyzing the effects of single or a few nutrients on health

by analyzing a limited number of biomarkers. The obser-

vational study described here analyzed micronutrients,

plasma proteins, dietary intakes, and genotype using a

systems approach. Participants attended a community-

based summer day program for 6–14 year old in 2 years.

Genetic makeup, blood metabolite and protein levels, and

dietary differences were measured in each individual.

Twenty-four-hour dietary intakes, eight micronutrients

(vitamins A, D, E, thiamin, folic acid, riboflavin, pyridoxal,

and pyridoxine) and 3 one-carbon metabolites [homocys-

teine (Hcy), S-adenosylmethionine (SAM), and S-adeno-

sylhomocysteine (SAH)], and 1,129 plasma proteins were

analyzed as a function of diet at metabolite level, plasma

protein level, age, and sex. Cluster analysis identified two

groups differing in SAM/SAH and differing in dietary

intake patterns indicating that SAM/SAH was a potential

marker of nutritional status. The approach used to analyze

genetic association with the SAM/SAH metabolites is

called middle-out: SNPs in 275 genes involved in the one-

carbon pathway (folate, pyridoxal/pyridoxine, thiamin) or

were correlated with SAM/SAH (vitamin A, E, Hcy) were

analyzed instead of the entire 1M SNP data set. This pro-

cedure identified 46 SNPs in 25 genes associated with

SAM/SAH demonstrating a genetic contribution to the

methylation potential. Individual plasma metabolites cor-

related with 99 plasma proteins. Fourteen proteins corre-

lated with body mass index, 49 with group age, and 30 with

sex. The analytical strategy described here identified sub-

groups for targeted nutritional interventions.
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Abbreviations

ANCOVA Analysis of covariance

ANOVA Analysis of variance

BGACDC Boys, Girls, Adults Community Development

Center

CBPR Community-based participatory research

GWAS Genome-wide association studies

HEI Healthy Eating Index

Hcy Homocysteine

NHANES National Health and Nutrition Examination

Survey

FD Saturated fats

SoFAAS Solid fats, alcoholic beverages, and added

sugars

SAH S-Adenosylhomocysteine

SAM S-Adenosylmethionine

TDGOVL Total dark green and orange vegetables and

legumes

WF Whole fruit

WG Whole grains

Introduction

S-Adenosylmethionine (SAM) is the methyl donor for 200

methyltransferase reactions of DNA, RNA, proteins, and

metabolites (Finkelstein 2007; Lennard 2010) involved in a

wide range of metabolic and signaling pathways. The

transfer of the methyl group leads to the formation of S-

adenosylhomocysteine (SAH), which is subsequently

metabolized to homocysteine (Hcy). Plasma levels of

SAM, SAH, and Hcy have independently and in combi-

nations been associated with cardiovascular, neurological,

immunological, and obesity pathologies (Poirier et al.

2001c; Guerra-Shinohara et al. 2004; Strain et al. 2004;

Selley 2007; Van Hecke et al. 2008; Ming et al. 2009;

Obeid et al. 2009; Panza et al. 2009a, b; Linnebank et al.

2010; Muller 2010; Altug Sen et al. 2011). SAM is a

product of the one-carbon pathway that requires nutritional

cofactors folate, vitamin B6 (pyridoxal), and vitamin B12,

and substrates choline, betaine, and methionine all of

which are derived from the diet (Mason 2003; Lim et al.

2007; Rubio-Aliaga et al. 2011; Kasperzyk et al. 2011;

Dominguez-Salas et al. 2013; Wadhwani et al. 2013). The

quality of the diet has been shown to dramatically alter the

levels of SAM, SAH, and homocysteine (Poirier et al.

2001a; Dominguez-Salas et al. 2013) and subsequently

methylation potential for all substrates including DNA.

Variation in genes involved in the one-carbon pathway,

which also alter methylation potential, has been intensively

studied (Hazra et al. 2007; Wernimont et al. 2011; Kas-

perzyk et al. 2011; Molloy 2012).

Gene–environment interactions that alter one-carbon

pathway production of SAM have both short-term and

long-term effects since DNA methylation and other SAM-

dependent products contribute to the regulation of gene

transcription (Klose and Zhang 2007; Gibney and Nolan

2010; Pu et al. 2010). A growing body of evidence from

laboratory animal (Wolff et al. 1998; Cooney et al. 2002;

Dolinoy et al. 2006; Waterland et al. 2007) and human

studies (Heijmans et al. 2008; Gertz et al. 2011) indicates

that changes in DNA methylation in utero or during critical

developmental windows contribute to the developmental

origins of adult diseases (Barker et al. 1993; Godfrey and

Barker 1995; Gluckman et al. 2009; Hochberg et al. 2011).

While many studies have understandably focused on

methylation potential during fetal and perinatal periods

(McGowan and Szyf 2010; Laurent et al. 2010; Beyan et al.

2012), fewer investigations have analyzed methyl substrate

pools during childhood and adolescence.

The USDA Delta Nutrition Intervention Research Ini-

tiative (Delta NIRI), renamed in 2010 to the Delta Obesity

Prevention Research Unit, initiated a community-based

participatory research (CBPR) program (O’Fallon et al.

2000) to develop interventions to address childhood obesity

in communities of the Lower Mississippi Delta (LMD)

region. This project was conducted in conjunction with a

Freedom School Program held at the Boys, Girls, Adults

Community Development Center (BGACDC). BGACDC

has managed and operated a summer day camp for children

and teens for 30 years. CBPR simultaneously conducts

research while applying existing scientific knowledge to

improve prevention practices and healthcare among the

participants and their community (Israel et al. 2005;

McCabe-Sellers et al. 2008). The USDA program has a

long history in the Delta region as evidenced by the many
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consultations held with the community (Harrison 1997;

Smith et al. 1999; Yadrick et al. 2001; Horton et al. 2004;

Ndirangu et al. 2007, 2008), assessments of the food

insecurity in the region (Stuff et al. 2004a, b; Champagne

et al. 2007), local diets (Champagne et al. 2004; McCabe-

Sellers et al. 2007; McGee et al. 2008), and the creation of

a regional food frequency questionnaire (Tucker et al.

2005). The assessments for efficacy had not previously

analyzed biochemical markers to test whether the inter-

vention programs were successful in altering physiological

processes. The USDA and the FDA researchers expanded

the scope of the CBPR program in consultation with

community leaders in Phillips County to include physio-

logical measures from blood analyzed with omics and

genomic methodologies, physical activity monitoring, and

dietary intakes (McCabe-Sellers et al. 2008).

Levels of 9 plasma metabolites, erythrocyte metabolites

S-adenosylmethionine and S-adenosylhomocysteine, 1,129

plasma proteins, and 1M single-nucleotide polymorphisms

were measured. Associations were found between the

SAM/SAH and gene variants and between levels of

metabolites and plasma proteins, which may provide

additional biomarkers of vitamin status. Two SAM/SAH

metabolic groups were found by cluster analysis. The

clusters significantly differed in terms of multiple dietary

variables as well as in genotype within 25 genes involved

in SAM/SAH metabolism.

Methods

Study design

This study is an observational n-of-1 design, and data were

aggregated for population-level statistical analysis (Nikles

et al. 2011), to assess levels of metabolites and proteins

associated with each other, with dietary intake, and with

genetic makeup. Participants in the research studies con-

ducted in the Marvell (AR) School District in 2009 and

2010 were recruited during the youth summer day program

at the Boys, Girls, Adults Community Development Center

(BGACDC). The camp was held at sites in Marvell and

Elaine (Arkansas) and consisted of structured and

unstructured physical activities, reading, leadership, and

other enrichment activities using material and training from

the Children’s Defense Fund’s Freedom School curriculum

(http://www.childrensdefense.org/programs-campaigns/

freedom-schools/). Children arrived by 7:30 a.m. and the

day ended between 3 and 4 p.m. The FDA’s Research

Involving Human Subjects Committee (RIHSC) and the

University of Arkansas for Medical Sciences (UAMS)

Institutional Review Board (IRB) approved this research

protocol.

Breakfast, lunch, and two healthy snacks were provided

per day for 5 weeks of the summer day camp. The snacks

offered were fruits and vegetables. Reduced fat milk and

water rather than sweetened fruit drinks or other sweetened

soft drinks were also provided. Menus were developed in

accordance with USDA guidelines for healthy meals for

children/teens ages 6–14, and the same foods were offered

in both years of the camps although the quantity of food

intake per participant was not monitored at the camp.

The assessments were conducted before the beginning

of the camp (baseline), at the end of 5 weeks of the camp,

and 1 month after camp ended (post-camp). Thirty-six

participants were recruited in the first year, and 19 com-

pleted all three assessments. In the second year, 72 par-

ticipants enrolled and a total of 42 completed all three

assessments. Hence, data were available for 105 individu-

als at 2 baseline measures, 72 at the end of the summer day

camp, and 61 who had at least three assessments in the

2-year study. Results for the three assessments for each of

2 years are reported, and 15 individuals participated in both

years. All participants were healthy African-American

children and adolescents. None of the participants were

taking prescribed medicines, nor did they have overt mal-

nutrition, suffered from active infection, or any known

genetic disease that could alter metabolism. Some partici-

pants voluntarily left the study between assessments, and

no adverse events were recorded.

Assessments at baseline (time point 1), end of camp (time

point 2), and post-camp (time point 3)

Blood was sampled from participants after an overnight

fast at each time point. Blood (3 ml) was collected in

purple top EDTA vacutainer tubes, kept on ice, and cen-

trifuged within 0.5 h of collection. After centrifugation,

plasma, buffy coat, and red blood cells (erythrocytes) were

separated, frozen, and stored at -80 �C. A second 3-ml

blood sample for DNA extraction was collected in a PAX

gene tube (Qiagen 761115) at time point 1.

Height and weight were measured according to previ-

ously used training protocol modified from Lohman et al.

(1998). Body mass index (BMI) was calculated and com-

pared to percentile references of Centers for Disease

Control and Prevention—CDC 2000 curves (Kuczmarski

et al. 2002): 5th percentile B BMI \ 85th percentile

(normal weight), 85th percentile B BMI \ 95th percentile

(overweight), and BMI C 95th percentile (obesity) (WHO

Expert Committee 1995).

Dietary intake

Twenty-four-hour dietary recall interviews were done

using the USDA automated multiple-pass method (AMPM)
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for all children and adolescents at each time point with the

assistance of a parent/guardian (Tucker et al. 2005). The

FNDDS—USDA Food and Nutrient Database for Dietary

Studies software [version 2.0 (2006) and version 3.0

(2008)—Beltsville, MD: Agricultural Research Service,

Food Surveys Research Group] was used for energy and

nutrient intake analyses (http://www.ars.usda.gov/SP2U

serFiles/Place/12355000/pdf/fndds_doc.pdf).

To measure compliance with dietary guidance, the

Healthy Eating Index [HEI (Guenther et al. 2007)] was also

analyzed. The HEI has a maximum score of 100 with

intakes of (1) total fruit (TF), (2) whole fruit (WF), (3) total

vegetables (TV), (4) dark green and orange vegetables and

legumes (DGOVL), (5) total grains (TG), (6) whole grains

(WG) rated to five as maximum in each category, (7) milk,

(8) meat and beans, (9) oils, (10) saturated fat and (11)

sodium rated to a maximum of 10 in each category, and

(12) solid fat, alcohol, and added sugar (SoFAAS) rated to

a maximum of 20. By convention, a total score of more

than 80 was considered ‘‘good,’’ scores of 51–80 indicated

‘‘needs improvement,’’ and scores of less than 51 were

considered ‘‘poor’’ (Guenther et al. 2007; Miller et al.

2011).

Metabolites, proteomic, and genomic analysis

Metabolites

All samples from each year at each time point were ran-

domized at time of analysis. Plasma Hcy was analyzed on

HPLC, and erythrocyte SAM and SAH were analyzed on

UPLC as reported previously (Wise et al. 1997). Lipid-

soluble and water-soluble vitamins were determined sepa-

rately using UPLC/MS/MS coupled to mass spectrometers

(MS) as reported in Morine, Monteiro et al. (submitted).

Complete metabolite analysis was done on 105 samples

from both years at time point 1, 72 samples from both years

at time point 2, and 61 samples from both years at time

point 3. The time point and data points (i.e., samples)

available for statistical analysis are reported in each table.

Statistical analysis was done using age groups (\9 and

C9 years of age) based on USDA guidelines for dietary

intakes for ages 4–8 and 9–13 (http://www.cnpp.usda.

gov/Publications/DietaryGuidelines/2010/PolicyDoc/Appen

dices.pdf.

Proteomics

The plasma proteome was analyzed in 110 samples from 6

different time points from the 2 years of sample collection.

However, data from 61 participants at time point 1 (the

same participants who completed three assessments) were

used in subsequent statistical and computational analyses

due to missing samples at time points 2 and 3. Somalogic

Inc. (Boulder, CO) performed all proteomic assessments

and was blinded to the clinical characteristics of partici-

pants in this study. Samples were analyzed as previously

described (Gold 1995; Brody and Gold 2000; Gold et al.

2010; Ostroff et al. 2010; Brody et al. 2012).

Genomic analysis

Blood for DNA isolation was collected in a 3-ml PAX gene

tube. DNA was isolated as per the manufacturer’s protocol

(http://tinyurl.com/ot2ovuc). Whole-genome genotyping

was done with the HumanOmni1-Quad, version 1.0 kits

(Illumina, San Diego, CA) following the manufacturer’s

protocol as described in Morine, Monteiro et al.

(submitted).

Statistical analysis

All statistical analyses were performed with the use of the

R programming language version 3.0.1 or SPSS version

15.0�. Unless specified otherwise, only those participants

who had completed three questionnaires (n = 61) were

included for ANCOVA (SPSS), adjusted by age, sex,

location, year, and energy intake. Nutrient intakes were

also adjusted for energy intake. Statistical differences in

nutritional intake variables and metabolite levels between

SAM/SAH clusters were determined with analysis of

covariance (SPSS-ANCOVA), adjusting for age and sex

with a significance threshold set at 0.05. To ascertain

whether differences existed within participants’ metabolite

levels and Healthy Eating Index at baseline (first time

point) and at the end of the camp (second time point),

paired t tests were performed for variables with normal

distribution and Wilcoxon method for those with non-

normal distributions using SPSS. The general linear model

for repeated measures was also used in longitudinal ana-

lysis to adjust for confounding variables.

While 1M SNPs were measured in the study, analysis

focused on SNPs within genes with known functional

association with the metabolites measured in the study.

This was accomplished by mining all genes from the

MetaCore database (version 6.10 build 31731) with a direct

functional connection to organic micronutrients. This

resulted in 275 unique genes (S2_Gene_Annotate_Net),

which were represented across 9515 SNPs on the SNP

array. These 9515 SNPs were further filtered to remove

those with a minor allele frequency less than 0.1, and those

that significantly deviated from Hardy–Weinberg equilib-

rium, resulting in a final starting set of 4122 SNPs. Sig-

nificant correlations between genotype in these SNPs and

SAM/SAH levels (averaged across three time points) were

assessed in each SNP using generalized estimating
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equations (GEE), as implemented in the geese function in

the geepack R library (Højsgaard et al. 2006). Genetic

analysis used one genotyping data set for each individual

(16 individuals attended both years of the camp). In fitting

the GEE models, SAM/SAH was modeled as a function of

genotype at each SNP locus, adjusted by age, gender, mean

total grain intake, and controlling for sibling relationships

among the participants (the latter being included as a

background correlation structure in the GEE models),

which were 9 pairs and 1 trio. A significance threshold was

set at 0.1 after correcting for multiple testing using the

Benjamini and Hochberg method (Benjamini and Hoch-

berg 1995).

Proteomic data were only comprehensively collected at

the first time point, and thus longitudinal analysis was not

performed on this data set. The presence of outlier samples

in many of the plasma proteins necessitated the use of

robust linear regression [using the lmFit and eBayes

functions from the limma R library (Smyth 2005)] to

identify proteins associated with age group, sex, and body

mass index (BMI). Fitted linear models controlled for age,

sex, year, and location, and a significance threshold was set

at 0.1 after correcting for multiple testing using the Ben-

jamini and Hochberg method (Benjamini and Hochberg

1995). Associations between proteins and plasma vitamins,

SAM, SAH, and SAM/SAH, were identified using sparse

partial least squares, as implemented in the sPLS function

in the mixOmics R library (Lê Cao et al. 2009). While

robust regression was used to identify proteins associated

with single outcome variables, sPLS allowed for broader

analysis of correlation patterns between multiple proteins

and multiple metabolites. As sPLS was used for explor-

atory analysis of data set covariance patterns, variable

selection was performed by keeping the top 50 variables in

both dimensions, i.e., a lasso penalty was imposed that

shrank all but 50 variable weights in each dimension (Kim-

Anh et al. 2008).

Data mining

Proteins correlated with age, sex, or metabolites were

annotated based primarily on manual curation using Online

Mendelian Inheritance in Man (OMIM—http://www.

omim.org/) or published reports. Functional analysis of

proteins with high similarity in hierarchical clustering

dendrograms (‘‘branches’’ of dendrograms displayed in

Figures) was performed using the MetaCoreTM system

version 6.15 build 62452 (Thomson Reuters GeneGO)

using the Autoanalyze algorithm. Although small gene

clusters are not ideal for drawing broader biological con-

clusions from overrepresentation analysis, we used func-

tional overrepresentation analysis to determine whether the

genes that clustered together in hierarchical clustering also

tended to share common functional roles (as evidenced by

significantly overrepresented pathways). We observed that

SNPs/genes that were members of a cluster often mapped

to different regions of the same chromosome or different

chromosomes (Fig. 2). We extended the analysis to protein

clusters (Fig. 3) for the same reason, to determine whether

the proteins that clustered were functionally related. While

all such analysis is limited because of knowledge repre-

sented in databases (i.e., publication bias), the use of this

strategy expands the single-gene/protein analysis to func-

tional pathways. We provide both single-gene/protein

annotations and the functional pathway data (see tabs in

Supplementary EXCEL files for each figure).

Results

Demographic and anthropometric data

A total of 108 participants attending the summer day camp

in 2 years were initially recruited for the baseline analysis,

and samples from 105 were analyzed at baseline. Nutri-

tional status based on CDC 2000 Body Mass Index classi-

fication showed a high prevalence of overweight and obese

participants in this population: 60 % were considered

healthy weight, 13.3 % were overweight, and 26.7 % were

obese (Table 1). The majority of participants were older

than 9 years, and more females than males attended the

Table 1 Demographic and anthropometric data

Parameters Total count

(%)

p value

Age (years)

6–8 & 11 months 31 days 32 (30.5) \0.001

9–14 73 (69.5)

Gender

Male 42 (40) 0.003

Female 63 (60)

Location

Marvell 52 (49.5) 0.89

Elaine 53 (50.5)

Year

2009 35 (33.3) \0.001

2010 70 (66.7)

Nutritional status

Body mass index

Underweight: \5th percentile 0 (0) \ 0.001

Healthy weight: C5th to \85th

percentile

63 (60)

Overweight: C85th to \95th percentile 14 (13.3)

Obesity: C95th percentile 28 (26.7)
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camp. A higher percentage of participants completed all

three assessments in 2010 (66.7 %) compared with partic-

ipants who attended the 2009 summer camp (33.3 %).

Dietary intake assessments

Food intake results were based on the mean of three 24-h

recalls done at the assessment periods (one 24-h recall per

assessment period) since single food intake measurements

are less reliable than repeated measures. Food intake during

the camp was not monitored. No significant differences in

energy and nutrient intake were observed based on sex.

Younger (\9 years old) participants reported eating higher

amounts of riboflavin (p = 0.014), folate (p = 0.026),

vitamin B12 (p = 008), iron (p = 0.042), and vitamin D

(p = 0.025) when compared to the participants who were

C9 year old.

Healthy Eating Index (Guenther et al. 2007) scores were

also determined from the 24-h dietary intake data

(Table 2). Mean Healthy Eating Index (HEI) score from

those who completed three 24-h recalls was compared

between age and sex, and no statistically different results

were found (data not shown). Total HEI for this population

was below 51, which is indicative of a poor diet (McCabe-

Sellers et al. 2007). Total dark green and orange vegetables

and legumes (TDGOVL), whole fruit (WF), and whole

grains (WG) had the worst pattern of scores in participants

in our study (Table 2) compared to the 2005 Dietary

Guidelines for Americans. The data showed negative

associations between BMI and total fruit, whole fruit and

milk, as well as a positive association between saturated fat

and BMI, although after adjusting for age and sex, only the

milk component was correlated with BMI (p = 0.04).

In separate longitudinal analyses to assess whether the

food provided in the camp had any impact on HEI com-

ponents, 24-h dietary intake data at baseline (time point 1)

versus end of camp (time point 2) were analyzed with

paired t test and the Wilcoxon method. Seventy-three

participants could be paired in these two time points. Total

fruit (p \ 0.001), whole fruit (p = 0.001), and whole grain

scores (p = 0.02) improved after the camp in both years.

No other component presented statistically significant

results.

Plasma and erythrocyte metabolite levels

Based on normality of the data, the mean and standard

deviation or the median and range of for each plasma

metabolite are provided in Table 3. ANCOVA was used to

model the effect of sex, age, year, and/or location on

plasma vitamin levels. Results of the analysis of individual

metabolites and comparison with published literature are

provided in Supplement 1. The key results are:

• Vitamin A. Levels of vitamin A in this population were

significantly above that reported in NHANES [36.4

(35.6–37.2)] (CDC 2012). A negative association was

observed with HEI (r = -0.3; p = 0.01) and a positive

correlation between plasma vitamin A levels and

homocysteine (r = 0.51; p \ 0.001).

• Vitamin D. The population average level of vitamin D

in the participants in this study was 21 ng/ml, which is

just below the 50th percentile of the 2012 NHANES

data (CDC 2012). However, 55 % (39 of 70) had

vitamin D plasma levels below 20 ng/ml and one

participant had a value below 7 ng/ml. The youngest

participants (\9 years old) in the present study had

higher mean vitamin D plasma levels compared with

older participants (p = 0.005).

• Folate. The standard cutoff for low plasma folate is

\3 ng/mL, which is based on microbiological assays

(Raiten and Fisher 1995). In our study using LC/MS

methods, 96.3 % (n = 26 out of 27) of the participants

measured were below this cutoff (Table 4). In addition,

younger participants had higher plasma levels when

compared to the older participants (p = 0.025).

• Thiamin. 70 % (n = 49 out of 70) of the participants in

this study (Table 3) had values lower than the reference

value of 1.6 lg/dl (Lynch and Young 2000). Thiamin

plasma levels were positively correlated with intakes of

total dark green and orange vegetables and legumes

(r = 0.3; p = 0.018). Additional longitudinal analyses

are in Supplement 1.

• Riboflavin. Younger participants had higher levels of

riboflavin compared with older participants

(p \ 0.001). Riboflavin plasma levels also were higher

Table 2 Health Eating Index scores for all components

Health Eating Index (HEI) Scores

(mean ± SD)

Total HEI (100 points) 48.8 ± 7.2

Total fruit (5 points) 2.3 ± 1.1

Whole fruit (5 points) 2.0 ± 1.3

Total vegetables (5 points) 2.2 ± 1.1

Total dark green, orange vegetables legumes (5

points)

0.3 ± 0.6

Total grains (5 points) 4.2 ± 0.7

Total whole grains (5 points) 1.0 ± 0.8

Milk (10 points) 5.8 ± 2.0

Meat and beans (10 points) 8.1 ± 1.9

Oils (10 points) 6.4 ± 1.8

Saturated fat (10 points) 4.5 ± 2.1

Sodium (10 points) 3.6 ± 1.8

Solid fats, alcoholic beverages, and added sugars

(20 points)

8.4 ± 3.2
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in females when compared to males [0.34 lg/dl

(0.04–3.67) versus 0.18 lg/dl (0.05–0.69; p = 0.002)].

• Pyridoxine and pyridoxal. High plasma levels of

pyridoxal and pyridoxine were found in these partic-

ipants (Table 3) compared to the limited number of

reports measuring these metabolites in children and

teens (Midttun et al. 2005; Footitt et al. 2012).

Pyridoxal plasma levels were correlated with total fruit

intake (r = 0.35; p = 0.006). Pyridoxal levels were

inversely correlated with homocysteine levels (Pearson:

r = -0.46; p \ 0.001).

• Vitamin E. The participants in this study (ages 6–14)

had higher levels of vitamin E compared to NHANES

2012 data (Table 3). Plasma vitamin E was not

associated with any HEI components. Average vitamin

E plasma levels from years 1 and 2 decreased between

time point 1 and time point 2 (Supplement 1).

• Homocysteine. One hundred percent of the participants

had Hcy levels under 15 lmol/l (reference values are

\15 lmol/l) and corroborate the results found by

Pfeiffer et al. (2005). For those who had two or three

data points (total of 76), positive correlations were

found between Hcy and (1) mean plasma vitamin A

(Pearson: r = 0.51; p \ 0.001), (2) mean riboflavin

plasma levels (Spearman r = 0.28; p = 0.020), (3)

mean erythrocyte SAM (Pearson r = 0.59; p \ 0.001),

and (4) erythrocyte SAM/SAH ratio (Spearman

r = 0.49; p \ 0.001). Negative correlations were found

between Hcy and (1) mean plasma vitamin E (Spear-

man: r = -0.36; p = 0.001) and (2) mean pyridoxal

plasma levels (Pearson: r = -0.46; p \ 0.001). After

adjustment for age and sex, these metabolites were

statistically associated with Hcy. Bates et al. (2007)

also found a negative correlation between B6 and Hcy.

• Erythrocyte SAM, SAH, and SAM/SAH. Although

SAM and SAH concentrations are often measured

from plasma (Poirier et al. 2001c; van Driel et al.

2009), levels of these metabolites are higher in

erythrocytes (Poirier et al. 2001b; Smulders et al.

2007; Hirsch et al. 2008) and may be less affected by

physiological processes that induce cell death or

turnover. The mean SAM/SAH level was determined

since the ratio did not change with or without

controlling for confounding variables such as

improved whole fruit, total fruit, and whole grain

intake at time point 2. Mean concentrations of

erythrocyte SAM and SAH were 0.97 and

0.88 lmol/L, respectively, in 61 participants with at

least three assessments per year. The mean erythrocyte

SAM/SAH ratio for participants of this study was also

considerably lower (0.98) than the ratios of 2–8

reported in the literature (Poirier et al. 2001a, c;

Smulders et al. 2007; Hirsch et al. 2008; Dominguez-

Salas et al. 2013). These differences may be due to

measurement techniques, age, ancestral background,

or environment factors that influence SAM/SAH ratio.

Table 3 Plasma vitamin levels

Plasma metabolite This study (mean ± SD) Reference value median (range) References

Vitamin A (lg/dl) 64.4 ± 28.9 36.4 (35.6–37.2) (CDC 2012)

Vitamin E (mg/dl) 2.1 ± 1.5 0.82 (0.80–0.84) (CDC 2012)

Vitamin D (ng/ml) 21.7 ± 8.8 25.5 (24.6–26.4)a (CDC 2012)

Thiamin (lg/dl) 0.6 (0.1–10.6) 1.6–4.8b (Leite 2011)

Pyridoxal (ng/ml) 9.3 (0.07–27.3) 0.77–3.06c

1.7 (0.96–4.78)d

(Footitt et al. 2012)

(Midttun et al. 2005)

Pyridoxine (ng/ml) 4.7 (1.3–36.9) Nd–0.15c (Footitt et al. 2012)

Folate (ng/ml) 1.0 (0.25–16.1) 6.1 (15.6–16.6) (CDC 2012)

Riboflavin (lg/dl) 0.2 (0.04–3.7) 0.78 ± 0.11e

0.39 (0.18–1.44)d

(Capo-chichi et al. 2000)

(Midttun et al. 2005)

Homocysteine (lmol/l) 7.0 ± 3.0 7.14 (7.04–7.24)f (CDC 2012)

Mean and standard deviation were performed for variables with normal distribution and median and range for variables with non-normal

distributions
a 50th percentile values (CDC 2012)
b Adults
c Ages 4.3–16
d Adults
e Study participants from Benin
f Age 2
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SAM/SAH ratio: groups and diet influence

The distribution of mean SAM/SAH ratios in 61 partici-

pants was further analyzed using the K-means clustering

algorithm. Significantly distinct clusters of SAM/SAH

(center to center distance 0.991, Fig. 1) were found at

k = 2, but not at k = 3, 4, or 5. Cluster 1 (C1) consisted of

10 participants with higher values for SAM and SAM/SAH

ratio compared with 51 participants in cluster 2 (C2)

(Fig. 1; Table 4). The proportion of males to females dif-

fered (p = 0.021) between C1 (7/3, respectively) versus C2

(16/35, respectively), a finding consistent with gender

differences in SAM/SAH ratios found in adults (Poirier

et al. 2001a; Smulders et al. 2007). C1 had the youngest

participants (age 8.2 ± 1.39 vs. 9.7 ± 2.3; p = 0.049) and

more participants from the first year of the study. C2 had

more participants from the second year of the study

(p = 0.004). Body mass index and weight (normal, over-

weight, obese) were similar between clusters (not shown).

Plasma vitamin A levels also differed significantly

between C1 and C2 (Table 4) with high vitamin A corre-

lated with high SAM/SAH (r = 0.30; p = 0.02). Differ-

ences in homocysteine levels between the two groups

approached significance (p = 0.053) (Table 4) with higher

homocysteine (but still normal) plasma levels and higher

SAM/SAH (r = 0.42, p = 0.001). Pyridoxal plasma levels

(r = -0.37, p = 0.003) and vitamin E plasma levels

(r = -0.26, p = 0.046) were negatively correlated with

SAM/SAH ratio. Other observed differences in metabolite

levels between C1 and C2 were found but they failed to

reach significance at alpha = 0.05.

Analysis of the mean 24-h dietary intakes showed that

participants in C1 were eating, on average, significantly

more vitamin A (retinol equivalents), thiamin, iron, b-

carotene, and energy compared with participants in cluster

2 (Table 4). Sixteen individuals attended the camp in both

years. Of these, 14 had decreased SAM/SAH ratios

Table 4 Metabolite concentrations and nutrient intakes between

SAM/SAH clusters

Cluster 1 Cluster 2 p value

Metabolite

SAM/SAH 1.81 ± 0.48

1.61

(1.41–2.95)

(n = 10)

0.81 ± 0.28

0.79

(0.31–1.31)

(n = 51)

\0.001

SAM (nmol/ml) 1.44 ± 0.31

1.34 (1.1–1.95)

(n = 10)

0.77 ± 0.28

0.73

(0.34–1.59)

(n = 51)

\0.001

SAH (nmol/ml) 0.88 ± 0.14

0.87

(0.63–1.15)

(n = 10)

0.96 ± 0.11

0.95

(0.7–1.31)

(n = 51)

0.022

Homocysteine

(lmol/l)

11.1 ± 4.0

11.9 (5.6–17.5)

(n = 10)

7.3 ± 2.8

6.2 (3.5–14)

(n = 51)

0.053

Vitamin A (lg/dl) 98 ± 35

93 (36–156)

(n = 8)

61 ± 27

56 (11.5–134)

(n = 42)

0.038

Intake variable

Energy intake/BW

(kcal/kg)

67.1 ± 29.5

64.4 (22–112)

(n = 10)

46.0 ± 18.7

41.4

(16.0–102.9)

(n = 51)

0.009

Thiamin intake (mg/

day)

1.50 ± 0.59

1.4 (0.83–2.5)

(n = 10)

1.30 ± 0.40

1.3 (0.59–2.2)

(n = 51)

0.013

Iron intake (mg/day) 12.9 ± 3.4

11.6 (9.5–19)

(n = 10)

10.9 ± 3.4

10.5

(5.4–23.2)

(n = 51)

0.041

b-Carotene intake

(mcg/d)

1,539 ± 2,718

456

(139–8,676)

(n = 10)

787 ± 1,072

381

(30–4,339)

(n = 51)

0.027

Vitamin A intake (RE)

(mcg/day)

518 ± 340

438(200–1,328)

(n = 10)

420 ± 170

370

(125–885)

(n = 51)

0.034

Analyses as per methods. Differences in other metabolites between

clusters did not reach statistical significance

3.0

2.0

1.0

0.0

Cluster

R
B

C
 S

A
M

:S
A

H
 

1 2 

Fig. 1 K means cluster results of SAM/SAH ratios. SAM/SAH was

analyzed using SPSS K-means clustering program. Only K = 2

yielded significant differences between the groups with center cluster

1 to cluster 2 distance = 0.991
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between year 1 and year 2 (Table 5). In addition, levels of

all metabolites except SAH and vitamin D changed sta-

tistically in these participants between year 1 and year 2.

Vitamin B12 and saturated fat intake changed between year

1 and year 2 but only as a trend. Changes in SAM/SAH

ratio due to changes in diet and environment have been

noted by others (Dominguez-Salas et al. 2013).

Genotype analysis

While the SAM/SAH ratio correlated with different dietary

patterns (Table 4) and with indications of specific nutrients

affecting the methylation potential, genetic variation may

also contribute to the observed levels in plasma and

erythrocyte metabolites. Bottom-up analysis of single-gene

variants (e.g., SNPs) is unlikely to explain a complex

phenotype such as the relationships between SAM and

SAH. Genome-wide association analysis, a top-down

approach, typically uses sample sizes much larger than the

number of participants in this study. Hence, the genotype

association with SAM/SAH ratio in this study was done

with a middle-out approach. Middle-out is an emerging

approach that uses a predetermined subset of high-dimen-

sional data that are limited to a system of interest

Table 5 Variables in 14 individuals that changed from higher SAM/

SAH in year 1 to lower SAM/SAH in year 2

Variable Year 1 Year 2 p value

Anthro

Height 139.15 ± 13.08 143.86 ± 11.49 0.043

Weight 37.44 ± 13.63 43.88 ± 13.63 0.016

BMI 18.75 ± 3.38 20.53 ± 4.37 0.034

Diet

Saturated fat 24.34 ± 6.28 24.58 ± 8.62 0.061

Vit B12 3.20 ± 1.15 4.47 ± 2.15 0.052

Plasma metabolites

Homocysteine 11.82 ± 2.27 5.68 ± 1.19 \0.001

Pyridoxine 1.15 ± 3,23 12.33 ± 5,96 \0.001

Thiamin 0.37 ± 0.50 1.30 ± 0.95 0.009

Vitamin A 88.60 ± 35.42 46.76 ± 18.95 0.001

Vitamin B2 3.20 ± 1.15 4.47 ± 2,14 0.003

Vitamin D 24.07 ± 8.69 20.46 ± 6,98 0.163

Vitamin E 5.92 ± 183 5.76 ± 1.88 0.030

Erythrocyte

metabolites

SAM 1.08 ± 0.36 0.62 ± 0.27 \0.001

SAH 0.97 ± 0.16 0.99 ± 0.09 0.653

SAM/SAH 1.12 ± 0.33 0.65 ± 0.30 \0.001

Functional 
groups

C2

C1

Fig. 2 Heatmap of significant SNPs associated with SAM/SAH

ratios. SNPs statistically associated with SAM/SAH ratios (left axis,

displayed high SAM/SAH to low) corrected for multiple comparisons

were identified using procedures described in ‘‘Methods.’’ Two-

hundred and sixty-seven (267) genes were used for genetic analysis

(Supplements 3 and 5)
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(Radulescu et al. 2008; de Graaf et al. 2009; Panteleev

et al. 2010; Secomb and Pries 2011). Specifically, we

matched the genetic system to be analyzed to the plasma

and erythrocyte metabolites measured in this study since

many are involved in the one-carbon pathway (folate,

pyridoxal/pyridoxine, thiamin) or were correlated with

SAM/SAH (vitamin A, E, homocysteine). A commercial

software and database (GeneGO MetaCore) were used to

identify 275 genes in pathways and networks involved in

metabolism of the 11 metabolites measured in this study

(Fig. 2 and gene list tab in Supplement 2). These are

referred to as the micronutrient neighborhood genes.

The genotyping platform used in this study included

9515 SNPs in 268 of these 275 genes. Of the 9515 SNPs,

4122 were selected for analysis based on preprocessing

criteria (see ‘‘Methods’’). Significant correlations between

genotype and ratio of SAM/SAH levels were assessed in

each SNP using generalized estimating equations (GEE),

wherein SAM/SAH was modeled as a function of genotype

at each SNP locus, adjusted by age, gender, mean total

grain intake, and sibling relationships among the partici-

pants (the latter being included as a background correlation

structure in the GEE models). The raw ratio of SAM/SAH

was used instead of the SAM/SAH cluster memberships

due to the higher information content of continuous vari-

ables. Resulting p values were corrected for multiple test-

ing using the procedure proposed by Benjamini and

Hochberg (2000). Forty-six SNPs in 25 genes (annotate tab

in Supplement 2) were found to be associated with the

SAM/SAH ratio. Two SNPs were not assigned to genes in

public databases.

The statistically significant genes identified were

involved in organic ion (e.g., ABCC4), and other transport

systems (e.g., SCL1A1, SCL28A3, SCL29A3) and micro-

nutrient metabolism pathways (e.g., ALDH1A3, BHMT)

including genes involved in vitamin A (BCMO1, RDH5)

and vitamin B6 (PDXK) metabolism. Others have analyzed

associations of plasma Hcy levels and Alu and LINE-1

DNA methylation status with 330 polymorphisms in 52

genes directly involved in SAM/SAH metabolism in an

elderly population (Wernimont et al. 2011). None of the

statistically significant SNPs found in that study overlapped

with the study reported here which may be due to differ-

ences between genetic makeups, diet intakes, and ages of

participants involved in the two studies.

The MetacoreTM functional analysis tools were used to

determine gene ontology processes of genes that clustered

in branches of the heatmap (red arrows, Fig. 2). The sta-

tistically significant SNPs/genes within the major 5 clusters

identified cell signaling, energy metabolism, negative

insulin regulation, ion and lipid transport, and cell adhesion

processes as the main functions of the 25 identified genes

(Net tab in Supplement 2). Hence, the middle-out approach

identified genes within a wider SAM/SAH system than

defined solely by the one-carbon and methylation

pathways.

Proteins correlated with plasma metabolite levels

DNA aptamer technology (Zichi et al. 2008; Gold et al.

2010) was used to measure 1,129 proteins in plasma of 61

participants at baseline. Sparse partial least squares ana-

lysis identified 100 protein aptamers (99 unique proteins)

associated with baseline plasma Hcy, vitamin A, riboflavin,

vitamin E, thiamin, and pyridoxal and erythrocyte SAM,

SAH, and SAM/SAH levels (Fig. 3, Annotate tab in Sup-

plement 3). Although the Pearson correlation coefficients

for each protein–metabolite pair were modest (between

-0.5 and ?0.5), a large number of proteins showed similar

correlation coefficients with Hcy, vitamin A, and riboflavin

and inversely with thiamin and pyridoxal. These proteins

participate in a wide variety of metabolic, neuronal,

immune, growth, and development processes (Fig. 3), and

each is annotated in Supplement 3 (Net tab).

Cluster analysis showed that *85 % of the proteins that

strongly correlated with plasma metabolites (as opposed to

erythrocyte metabolites) were intracellular proteins

released from damaged cells (right branch of heat map). In

contrast, 72 % of the proteins that are predicted to be in the

plasma were in the left branch. The significance of the

cluster results will require further studies but may be

related to developmental reprogramming of tissues expec-

ted for individuals in this age range. Cole et al. (2013)

analyzed 4705 proteins using iTRAQ mass spectroscopy

methods and identified proteins strongly correlated with

vitamin A (retinol binding protein 4), 25-hydroxyvitamin D

(vitamin D binding protein), a-tocopherol (apolipoprotein

C-III), copper (ceruloplasmin), and selenium (selenopro-

tein P isoform 1) in Nepalese children ages 6–8. None of

these proteins were correlated in the study reported here, a

difference that may be due to genetic makeup and envi-

ronment dissimilarities between the two study locations.

MetaCoreTM data mining of proteins with closely cor-

related coefficients (i.e., with similar correlations and

designated by red arrows above the heatmap) identified

functional subnetworks by mapping to gene ontology (GO)

terms (net tab in Supplement 3). For example, the first

branch (NCR2, MAP2K1, HBA/HBB, MAP2K4,

MAP2K1) was associated with lower levels of erythrocyte

SAM and plasma Hcy and was significantly associated with

response to hormone stimulus (p = 8.992 9 10-48) as well

as response to organic nitrogen (p = 1.009 9 10-43, net

tab in Supplement 3). A second branch (KLK6, HIBADH,

NR1D1, NCK1, PDGFC, FGF7, DLL4, LGALS2, PTEN)

correlated with low plasma vitamin A and riboflavin and

was also associated with responses to hormones and
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organic nitrogen. Results for the remaining branches are

provided in Supplement 3. Many individual soluble and

membrane proteins have relatively strong positive associ-

ations with erythrocyte SAM levels (Fig. 3), consistent

with the central role of SAM in methylation reactions in

diverse pathways and functional processes. The breadth of

biological processes associated with vitamins and metab-

olites (Hcy, SAM, SAH) is not unexpected since vitamins

are cofactors for a large and diverse set of enzymatic

functions (Ames et al. 2002).

Proteins correlated with physiological

and anthropometric variables

The availability of the quantitative levels of blood proteins

provided an opportunity to discover correlations with other

physiological or anthropometric variables. Using robust

linear regression, fourteen proteins were found to be

associated with BMI (Table 6) including proteins involved

in appetite regulation (leptin and ghrelin) and inflammatory

processes (CRP, LGALS3BP, CD70, and APCS). Leptin

levels have been positively associated (Chu et al. 2001;

Hansen et al. 2010) and ghrelin is negatively associated

with BMI (Stylianou et al. 2007) in adolescents. However,

ghrelin levels are high before meals (Moran 2009), and the

samples in this study were taken in the fasting state, sug-

gesting that the acute appetite stimulus was highest in the

high-BMI individuals in the study.

Correlation analysis identified 49 proteins associated

with age group and 30 proteins correlated with sex (Sup-

plement 5). Mapping sets of proteins to function revealed a

difference between females and males in glucose transport

(through FASLG, PGK1, IDS) and insulin metabolic pro-

cesses (through IDE). Protein levels indicate that these

subsystems might be more active in males than females, a

finding consistent with different metabolic trajectories

induced by puberty (DiVall and Radovick 2009; Lewis and

Lee 2009) including processes involved in lipid metabo-

lism and fat deposition [e.g., (Staiano and Katzmarzyk

2012; Shapira 2013)]. Due to space limitations, the

Metabolic

Immune related

Neuronal

Growth & development

Plasma or membrane proteins
Intracellular proteins

72.0% (40/54)
28.0% (14/54) 

15.2% (7/46)
84.8% (39/46)

Functional annotation subnetworks

Hcy

VitA

Ribofl

SAM

SAMSAH

SAH

VitE

Thiam

Pyrid

Fig. 3 Heatmap of proteins most strongly correlated with metabo-

lites. DNA aptamer technology was used to analyze 1,129 proteins in

plasma of 107 samples from all time points. Analysis was done at

Somalogic (Boulder, CO). A complete set of data was available for

participants time point 1. See ‘‘Methods’’ for statistical analysis

procedures. Annotation of each protein was done with OMIM or

published reports and is provided in Supplement 1. Plasma membrane

and soluble proteins refer to proteins expected to be in the plasma.

Functional analysis of proteins with similar correlation coefficients

(branches marked by red arrows above the heatmap) was performed

using GeneGO MetaCoreTM programs for identifying gene ontologies

(GO) (S2_Gene_Annotate_Net)
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figures and analysis of these proteins are provided in

Supplement 4.

Discussion

Experimental design and main results

Data from the sequencing of the human genome were to

enable a more comprehensive analysis of physiology,

responses of individuals to drugs, nutrition, and lifestyle

factors, and personalized healthcare. However, many

human experiments continue to use case–control designs,

which implicitly assume that individuals randomized to the

case (intervention) group and to the control group are

genetically identical with similar, if not identical, diets and

lifestyles. The HapMap (The International HapMap 2005;

Frazer et al. 2007), Human Genetic Diversity (http://www.

hagsc.org/hgdp/), 1000 Genomes Projects (Durbin et al.

2010), and every published whole-genome sequence [ref-

erences in (Olson 2012)] demonstrated that individuals are

genetically unique. Metabolomic, proteomic, and clinical

data also demonstrate biochemical individuality (Williams

1956; Robinette et al. 2012).

Table 6 Proteins associated with BMI

Protein_ID Protein OMIM

ID

logFC p value Adj p val Function

LEP Leptin 164160 1,447.51 8.15E-12 9.20E-09 Role in the regulation of body weight by inhibiting food

intake and stimulating energy expenditure

GHR Ghrelin 605353 43.80 3.63E-08 2.05E-05 Involved in regulating growth hormone release. Derived

from a preproghrelin, which also generates a second

peptide called obestatin involved in satiety and

decreased food intake

CD70 TNF ligand member

7

602840 37.96 3.79E-05 0.010705 Potent activator of T cells in vivo

CRP C-reactive protein 123260 1,894.64 1.18E-05 0.004431 Marker of low-grade inflammation—may have a role in

the pathogenesis of atherosclerotic lesions in humans

APCS Amyloid P

component

104770 751.46 5.37E-05 0.012127 Participates in pathogenesis of amyloidosis in vivo

LGALS4 Lectin, galactoside

binding

602518 9.278 0.000398 0.053566 Antibacterial lysis factor expressed in the intestine

CCDC80 Upregulated in

Bombesin-

deficient mice

608298 37.11 0.000494 0.053566 May play a role in energy metabolism and the regulation

of body weight

F9 Coagulation factor

IX

300746 122.52 0.000569 0.053566 Factor IXa activates factor X as part of an intrinsic

activating complex that also consists of factor VIIIa

DSC3 Desmocollin 3 600271 7.18 0.000523 0.053566 Intercellular adhesion molecules belonging to the

cadherin superfamily

APOE Apolipoprotein E 107741 663.39 0.000519 0.053566 Apolipoprotein E mediates the presentation of serum-

borne lipid antigens. Association with multiple chronic

diseases

LGALS3BP Lectin, galactoside

binding, soluble,

binding protein

600626 30.36 0.000215 0.040546 Stimulates the host immune system via induction of IL2

and possibly other cytokines

HSD17B1 17-beta-

hydroxysteroid

dehydrogenase

109684 21.05 0.000616 0.053566 Interconversion of estrone (E1) and estradiol (E2) as well

as the interconversion of androstenedione and

testosterone

PDE11A Phosphodiesterase

11A

604961 27.00 0.000575 0.053566 Catalyze the hydrolysis of 30,50-cyclic nucleotides to the

nucleoside 50-monophosphates. Pde11a knockout mice

show subtle behavioral deficits, hyperactivity in an open

field, impaired social odor recognition memory, and

social avoidance

RTN4R Reticulon 4 receptor 605566 28.38 0.001119 0.090252 Central roles in limiting axonal regeneration in CNS

injury

OMIM = Online Mendelian Inheritance in Man unique ID

LogFC = log of the fluorescence, a measure of relative abundance (see ‘‘Methods’’)

Adj p value = corrected for multiple comparisons
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The experimental design employed in the observational

study reported here provided the same dietary and physical

environment to all participants in a community-based

summer day program for 6–14 year olds. This design

accounts for heterogeneity in genetic makeup, individuality

in metabolites and proteins, and dietary differences by

measuring these parameters and aggregating the data for

population-level analysis (this report) and for group level

analysis (SAM/SAH cluster in this report and Morine,

Monteiro et al. submitted).

Discovery-based methods were used to identify two

groups of participants that were statistically different in

SAM/SAH ratio. A difference in SAM/SAH levels based

on gender was also found consistent with published results

of others (Poirier et al. 2001c; Van Hecke et al. 2008).

Average intakes of energy, thiamin, iron, b-carotene, and

vitamin A (RE) were higher in the participants in the high

SAM/SAH group compared with the low SAM/SAH

group. Longitudinal analysis of 14 participants who

attended 2 years of the summer day camp indicated that

saturated fat intake, vitamin B12 intake, and metabolites

changes might have contributed to differences in SAM/

SAH ratio. Hence, SAM/SAH may be a marker of nutri-

tional status, a conclusion consistent with previous pub-

lished reports with larger numbers of participants (Poirier

et al. 2001a; Barbosa et al. 2008; Dominguez-Salas et al.

2013). Others showed that the SAM/SAH ratio correlated

with differences in methylation at metastable epialleles

based on season and food availability (Waterland et al.

2010). Changes in epigenetic programming at critical

developmental windows such as in utero, early childhood,

or during puberty have been associated with developmental

plasticity, health, and susceptibility to chronic diseases in

adults (Barker et al. 1993; Gluckman et al. 2009; Kuss-

mann et al. 2010). The ability to identify plasma proteins

involved in inflammatory or other metabolic processes that

respond to nutritional interventions may lead to diets that

improve the SAM/SAH ratio and associated physiological

processes.

To determine whether genotypic differences were also

associated with the SAM/SAH levels, we used a middle-

out genetic analysis. Specifically, existing pathway and

network knowledge was mined to identify a micronutrient-

related neighborhood of 275 genes whose protein products

interact with, regulate, or metabolize micronutrients mea-

sured in the study. Forty-six SNPs in 25 genes were found

to be significantly associated with differences in the SAM/

SAH ratio after correction for multiple comparisons.

Expanding single-gene [e.g., (Lee et al. 2011)] or single

pathway [e.g., (Kiyohara et al. 2006; Kelemen et al. 2008;

Wernimont et al. 2011; Signorello et al. 2011)] analysis

allows for a broader interrogation of the system interacting

with the measured metabolites. The discovery-based

middle-out strategy also avoided a pitfall evident in gen-

ome-wide association studies that contain a large multiple-

testing burden due to the presence of many SNPs (and

hence statistical tests) that may not be core to the study.

In addition, a phenotype may be caused by genetic

contributions to many different metabolic processes (Kaput

2008). For example, individuals of the same age or sex had

different proteomic profiles (Supplement 4 and 5) and

individuals with identical SAM/SAH differed in genotype

in one or more of the statistically significant SNPs identi-

fied in this study (Fig. 2). The genetic contribution to a

complex phenotype is therefore dispersed among many

genes and most likely with different population average

effect sizes (Peltonen and McKusick 2001). Effect sizes of

the same variant at each locus may differ between indi-

viduals due to epistatic interactions and gene–environment

interactions (Williams 1956; Olson 2012). Any given

protein or DNA marker needs to be interpreted in con-

junction with other variants in the genome, and the simi-

larity of genotype (and/or metabolite and/or proteomic)

patterns may reveal more than a single genetic variant,

even when corrected for multiple comparisons and even if

the study were highly powered. The effects of diet on

SAM/SAH were analyzed separately from effects of

genotype on SAM/SAH although the ratio was the common

variable in the analysis. The sample size is too small to

calculate the interaction term and the effect size for each

nutrient–SNP combination.

These data and those of others (Waterland et al. 2010;

Dominguez-Salas et al. 2013) are examples for genetic

association and metabolomics studies: using metabolite

levels without knowledge of usual dietary intakes may

result in misclassification of individuals, thereby affecting

association analysis. Lack of dietary intake data (and the

genetic heterogeneity added in large sample sizes) may be

among many reasons for the ‘‘missing heritability’’ (Hardy

and Singleton 2009; Manolio et al. 2009; Hebebrand et al.

2010; Ober and Vercelli 2011) in genetic association

studies. The interpretation of the differences in metabolite

levels was made possible by assessing nutrient intakes, in

this case by using 24-h dietary recalls. While dietary

assessments have been criticized (Thompson et al. 2010)

and are not routinely used in genome-wide studies, any

validated intake data are better than having no information

or data about environmental conditions.

Plasma metabolite levels—population-based data

aggregation

In addition to the main finding of SAM/SAH groups with

different dietary intakes, metabolite levels, and genetic

differences, data were also aggregated for ‘‘population’’-

level analysis. The average diet of the participants was
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classified as poor, which may affect the observed levels of

individual plasma metabolites and protein measured in this

study relative to studies in populations with different

nutritional intakes. For example, total dark green and

orange vegetables and legumes (TDGOVL), whole fruit

(WF), and whole grains (WG) had the worst pattern of

scores in participants in our study compared to the 2005

Dietary Guidelines for Americans. Intake of WG in chil-

dren and adolescents is not well documented and subject to

methodological questions (Newby et al. 2007; Garden et al.

2011); however, studies conducted before (Forshee and

Storey 2003) and after (O’Neil et al. 2011) the release of

the 2005 Dietary Guidelines for Americans (DGA) indi-

cated that WG consumption is low in participants below

18 years of age. Others have found inverse associations

between TDGOVL, WF, WG, and central obesity among

adolescents (Bradlee et al. 2010), and overweight girls ate

fewer servings of fruit than the non-overweight girls from

low socioeconomic status [SES—(Wilson et al. 2009)].

Lower intakes of milk were also found to be associated

with being overweight (Wilson et al. 2009) and having a

high BMI (Garden et al. 2011). Other studies are focused

on adults, making it difficult to compare results (French

et al. 1999; Ello-Martin et al. 2007).

Over 50 % of the participants in this study had low

levels of vitamin D and 70 % were below the recom-

mended range of thiamin. Metabolite–metabolite interac-

tions were detected since positive correlations were found

between Hcy and (1) mean plasma vitamin A, (2) mean

riboflavin plasma levels, (3) mean erythrocyte SAM, and

(4) erythrocyte SAM/SAH ratio. The correlation between

higher levels of vitamin A and higher levels of homocys-

teine is novel but will require further research to under-

stand its significance. Negative correlations were found

between Hcy and (1) mean plasma vitamin E and (2) mean

pyridoxal plasma levels. Bates et al. (2007) also found a

negative correlation between vitamin B6 and homocyste-

ine. These associations were further analyzed by discovery-

based methods and will be reported elsewhere (Morine,

Monteiro et al. submitted).

Correlations of plasma proteins with vitamins, BMI, age,

and sex

Robust linear regression analysis identified proteins asso-

ciated with plasma and erythrocyte metabolites, BMI, age,

and sex. These analyses were limited since sufficient

samples were available only for time point 1 in both years

of the study. The 99 plasma proteins were marginally

associated with levels of individual or combinations of

plasma and erythrocyte metabolites. The results indicate

that no one protein could be a marker for a plasma

metabolite and specifically for a micronutrient. Additional

studies would be needed to test whether combinations of

the proteins associated with metabolite levels may be

markers of micronutrient status. Post-analysis data mining

indicated the many biological processes that might be

influenced by or correlated with changes in plasma levels

of these metabolites including basic metabolic pathways,

hormonal responses, immune, neuronal, and growth

processes.

The prevalence of obesity and overweight in the study

participants was 26.7 and 13.3 %, respectively, while the

national average in the United States for children ages 6–11

is 33 % overweight and obese (http://www.cdc.gov/heal

thyyouth/obesity/facts.htm). Proteomic analysis indicated

that leptin and inflammatory markers CRP, LGALS3BP,

CD70, and APCS were associated with BMI in this pop-

ulation and in other published reports (Chu et al. 2001;

Tam et al. 2010; Hansen et al. 2010). Ghrelin was also

positively associated with BMI which differs from the

work of others (Stylianou et al. 2007). Since ghrelin levels

are high before meals (Moran 2009), the results reported

here may be due to sampling in the fasted state. Different

combinations of proinflammatory markers have been found

in overweight or obese children in studies, e.g., high CRP

levels not only associated with obesity but BMI can predict

CRP levels [rev in (Tam et al. 2010)]. Additional studies

will be needed to determine whether the other proteins

correlated with BMI (Table 6) are specific to the gene–

environment interactions that occurred in this population.

Forty proteins differed between younger (\9) and older

(C9) participants and 30 between males and females. A

noteworthy outcome of this study is that proteomic analysis

may allow for the determination of biological age as

opposed to chronological age since some younger children

clustered with the older children and vice versa (Supple-

ment 4). Manual annotation showed that plasma and

membrane proteins were involved in neuronal-, immune-,

and growth-related processes which associate vitamin

homeostasis with basic cellular and physiological processes

(Ma et al. 2009; Liu et al. 2013; Swartz et al. 2013; Ke-

dishvili 2013). Age and sex differences in proteins

involved glucagon and insulin signaling and glucose

transport suggesting that these processes change during

aging and by sex. These results need to be tested using

metabolomic and proteomic analysis targeted to these

processes in other populations with more participants than

used in this study. Many of the proteins that differed

between males and females would be expected (CGA/

FSHB), and others may provide stimulus to examine early

changes in neuronal, metabolic, and immune system

functions that differ between the sexes. Other studies have

also shown differences in proteomic profiles in plasma

between males and females [e.g., (Silliman et al. 2013)].

Changes in basic metabolic processes during aging
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(Staiano and Katzmarzyk 2012; Shapira 2013) and puberty

(DiVall and Radovick 2009; Lewis and Lee 2009) make it

challenging for creating dietary recommendations to

maintain health.

Community-based participatory research

The translational study described here used community-

based participatory research principles, one of which

emphasizes ‘‘conducting research that is beneficial to the

communities involved’’ (Kannan et al. 2009), a form of

socially engaged nutrition science (Beauman et al.

2005; Cannon and Leitzmann 2005; Schubert et al. 2012).

Consultations with community members and frequent

meetings with community leaders ensured active partici-

pation of the community and participants. The ‘‘standard’’

CBPR methods (Israel et al. 2005) were extended (McC-

abe-Sellers et al. 2008) using a discovery-based analytical

approach that classifies participants by similar homeostatic

profiles and allows for analyses of individuals. While dif-

ficult to quantify, this research study raised the awareness

of nutrition in health of participants and their families

through the research activities and meetings with the

community. Further dialogs with the community are

planned to provide a report of the findings of this research

to continue the dialog on improving health through nutri-

tion and lifestyle choices.

Limitations and reproducibility

Although the sample size of this study was small, signifi-

cant result were obtained for diet intakes, metabolite levels,

proteins, and genetic associations. Proteomic and genomic

data were corrected for multiple comparisons. Neverthe-

less, human genetic, cultural, and lifestyle (including die-

tary intakes) variability will make it challenging to

replicate experimental results: the specific genotype (see

Fig. 2) and diets (averages shown in Table 2) produce

different physiological readouts as shown for proteomic

analysis (e.g., Supplements 3 and 5). Hence, the results

reported here are specific to the genetic makeup of indi-

viduals in the study, their dietary patterns at the time of the

study, geographical location, built environment, and

socioeconomic factors that alter their physiology (Hoch-

berg et al. 2011; United Nations Standing Committe on

Nutrition 2012). Nevertheless, the results presented can be

integrated into other experimental findings assuming that

all reports analyze genetic makeup, diet, and metadata

associated with the experimental setting. Progress in

nutrition and health research would be more rapid with the

development of harmonized protocols that would allow for

the integration of high-dimensional data sets from different

genetic, cultural, and environmental backgrounds.
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