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Abstract Health is influenced by interplay of molecular,

physiological and environmental factors. To effectively

maintain health and prevent disease, health-relevant rela-

tions need to be understood at multiple levels of biological

complexity. Network-based methods provide a powerful

platform for integration and mining of data and knowledge

characterizing different aspects of health. Previously, we

have reported physiological and gene expression changes

associated with adaptation of murine epididymal white

adipose tissue (eWAT) to 5 days and 12 weeks of high-fat

diet (HFD) and low-fat diet feeding (Voigt et al. in Mol

Nutr Food Res 57:1423–1434, 2013. doi:10.1002/mnfr.

201200671). In the current study, we apply network ana-

lysis on this dataset to comprehensively characterize

mechanisms driving the short- and long-term adaptation of

eWAT to HFD across multiple levels of complexity. We

built a three-layered interaction network comprising en-

riched biological processes, their transcriptional regulators

and associated changes in physiological parameters. The

multi-layered network model reveals that early eWAT

adaptation to HFD feeding involves major changes at a

molecular level, including activation of TGF-b signalling

pathway, immune and stress response and downregulation

of mitochondrial functioning. Upon prolonged HFD intake,

initial transcriptional response tails off, mitochondrial

functioning is even further diminished, and in turn the re-

lation between eWAT gene expression and physiological

changes becomes more prominent. In particular, eWAT

weight and total energy intake negatively correlate with

cellular respiration process, revealing mitochondrial dys-

function as a hallmark of late eWAT adaptation to HFD.

Apart from global understanding of the time-resolved

adaptation to HFD, the multi-layered network model al-

lows several novel mechanistic hypotheses to emerge: (1)

early activation of TGF-b signalling as a trigger for

structural and morphological changes in mitochondrial

organization in eWAT, (2) modulation of cellular respira-

tion as an intervention strategy to effectively deal with

excess dietary fat and (3) discovery of putative intervention

targets, such those in pathways related to appetite control.

In conclusion, the generated network model comprehen-

sively characterizes eWAT adaptation to high-fat diet,

spanning from global aspects to mechanistic details. Being

open to further exploration by the research community, it

provides a resource of health-relevant interactions ready to

be used in a broad range of research applications.
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Introduction

Nutrition is an important health-influencing factor. Malnu-

trition, both in the form of insufficient or excess nutrient

intake, is a significant disease risk factor (Must 1999;

Bhaskaram2002). In turn, a health-promoting dietary pattern

is a powerful strategy for health maintenance and/or disease

prevention (Hu 2002). To design optimal, evidence-based

dietary strategies, it is of essence to comprehensively un-

derstand the effects of dietary interventions at a systems

level. Network-based methods for data integration and

mining are emerging as a powerful mean for uncovering

complex relations between diet and relevant health aspects

(Kelder et al. 2015). In addition to elucidating the complex

effects of nutrients at molecular level, network-based inte-

gration of molecular and physiological evidence enables

understanding of molecular mechanisms driving physio-

logical effects and, ultimately, health and disease outcomes.

White adipose tissue (WAT) is particularly interesting

as an organ relaying health outcomes in response to di-

etary interventions. It is constituted of depots distributed

in different parts of the body (Cinti 2005). Its function-

ality to accumulate fat protects the body from toxic ef-

fects of lipids in other tissues, such as muscle or the liver.

The overload of WAT capacity to store lipids results in

continued low-grade inflammation and, ultimately,

pathologies as associated with obesity, such as insulin

resistance and type 2 diabetes (Owens 2014). In par-

ticular, central obesity (accumulation of visceral fat in

humans and epididymal fat in rodents) plays a crucial role

in the development of obesity-related disorders (Zimmet

et al. 2005). To accommodate the accumulation of excess

body fat, WAT expands by increasing adipocyte size

(hypertrophy) and/or number (hyperplasia). Upon pro-

longed high-fat diet (HFD) feeding, adaptive mechanisms

exceed their capacity and metabolic dysfunction becomes

evident at a physiological level (e.g. insulin resistance,

increased plasma cholesterol, and triglyceride levels)

(Hill et al. 1992).

To prevent late-stage metabolic dysfunctions caused by

excess lipids, it is necessary to understand the regulation of

metabolic processes triggered at early stage, before

physiological changes occur (Palou et al. 2004). We have

previously studied time-resolved, HFD-induced epididymal

white adipose tissue (eWAT) gene expression changes in a

mouse model (Caesar et al. 2010). Nevertheless, the short-

and long-term exposure to HFD has not yet been analysed

by bridging molecular regulation to physiological changes

in a single model. Emerging network-based methods now

allow us to consider such multi-level relations in a com-

prehensive manner, departing from independent analysis of

different assay readouts.

Previously, we have reported physiological and eWAT

gene expression changes associated with adaptation to

HFD feeding at 5 days and 12 weeks (Voigt et al. 2013).

While this earlier study focused only on gene and pathway

changes common between early and late timepoints, here,

we extract additional value out of this dataset by studying

relations between molecular and physiological changes in a

single network model and in a time-resolved manner. This

enables discovery of regulatory molecular mechanisms

associated with, and possibly driving the observed

physiological effects during both early and late adaptation

to HFD. To achieve this, we have built an integrative,

three-layered network model, comprising biological pro-

cesses, transcriptional regulators and physiological read-

outs at 5 days and 12 weeks of HFD feeding. The model

captures major regulatory mechanisms underlying adapta-

tion to HFD in eWAT and discovers novel insights into

physiological effects of short- and long-term HFD feeding.

In addition, the resulting network representation enables

further exploration of the data towards studies focusing on

of molecular interactions relevant for HFD response and

eWAT health in general.

Results

Network analysis of biological processes underlying

eWAT adaptation to high-fat diet

In a previous study, we have established that eWAT gene

expression changes that occur after 5 days of HFD feed-

ing are predictive of changes seen after 12 weeks of HFD

(Voigt et al. 2013). Here we apply network analysis to

further interpret these changes and to investigate the re-

lations between the pathways involved during both early

and late adaptation to HFD feeding. The gene expression

changes (HFD vs. LFD) at 5 days and at 12 weeks were

used as an input for Gene Set Enrichment Analysis

(Subramanian et al. 2005) and Enrichment Map (Merico

et al. 2010) (Supplemental data 1, Supplemental data 2).

The resulting network is comprised of nodes representing

enriched biological processes, connected by edges repre-

senting overlap between genes in the enriched processes

(Figs. 1, 2; Supplemental data 3, Supplemental data 4). To

guide visual interpretation of emerging patterns in the

network, related biological processes were manually

grouped based on the combination of topology and

function into the following main clusters: ‘‘stress re-

sponse’’, ‘‘immune response’’, ‘‘cell remodelling’’,

‘‘transcription and regulation’’, ‘‘lipid metabolism’’,

‘‘carbohydrate metabolism’’ and ‘‘mitochondrion and en-

ergy metabolism’’.
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The most central biological process in network at 5 days

is ‘‘signal transduction’’, linking to multiple nodes in

‘‘immune system’’ and ‘‘stress response’’ clusters (Fig. 1).

The majority of processes within the ‘‘immune system’’,

‘‘stress response’’ and ‘‘cell remodelling’’ clusters are

upregulated in HFD, whereas most of processes within

‘‘mitochondrion and energy metabolism’’ cluster are

downregulated. Biological process ‘‘mitochondrion’’ shows

most prominent downregulation in the 5-day network (FDR

p value 2.03E-34). The cluster ‘‘transcription and

regulation’’ is comprised of both up- and downregulated

processes, suggesting complex regulation of gene expres-

sion during early response to HFD.

The network topology at 12 weeks shows higher

clustering compared to 5-day network and a more con-

sistent direction of expression changes among processes

within each cluster (Fig. 2; Supplemental table 1, Sup-

plemental data 2). The ‘‘signal transduction’’ process re-

mains the node with highest betweenness centrality, but

other highly central nodes appear (e.g. ‘‘macromolecular

complex’’ and ‘‘membrane part’’). The majority of clus-

ters remain regulated in the same direction as at 5 days,

except for cluster ‘‘transcription and regulation’’ which is

completely downregulated at 12 weeks. Again, the most

striking observation is the strong, even more prominent

than at 5 days, downregulation of the process ‘‘mito-

chondrion’’ (FDR p value 2.21E-48). Also other pro-

cesses in the ‘‘mitochondrion and energy metabolism’’

cluster show similar trend, suggesting deterioration of

mitochondrial functions as a major hallmark of prolonged

HFD intake.

Multi-level network model of eWAT adaptation

to high-fat diet

Network analysis of biological processes associated with

eWAT adaptation to HFD elucidates their mutual inter-

connectivity and changes during transition from early to

late response. To place these processes in a physiological,

systems context and investigate their regulation, we have

built a three-layered network model comprising (1) biolo-

gical processes, (2) transcription regulators and (3)

physiological parameters (Figs. 3, 4; Supplemental data 8,

Supplemental data 9). The connections between the three

layers are based on overlap between underlying gene sets

(‘‘Methods’’ section).

Fig. 1 Network of biological processes after 5 days of HFD.

Differentially enriched biological processes (HFD vs. LFD) after

5 days of HFD feeding are analysed using Enrichment map

(Cytoscape). The nodes represent biological processes, and edges

represent overlap between genes in the enriched processes. The colour

of the nodes represents the significance and the direction of the

expression (blue—downregulation; red—upregulation; green—both

up- and downregulation). The size of the nodes corresponds to the

size of the gene set. The width of edges is based on similarity

coefficients between the nodes, derived from the overlap of the gene

set underlying the processes. Related biological processes were

grouped into seven main clusters
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The biological processes layer was generated as de-

scribed above. The regulatory network layer included

transcription factors whose targets are enriched among the

differentially expressed genes. In total, 105 and 120 tran-

scription factors are identified as regulators of gene ex-

pression changes at 5 days and 12 weeks, respectively

(Supplemental data 5). Transcription factors with highly

overlapping target gene sets are clustered, resulting in 52

and 111 transcription regulators used as nodes in the net-

work (Supplemental table 2). The third physiological net-

work layer was generated by correlation analysis between

changes in physiological parameters and eWAT gene ex-

pression. This identified two (‘‘body mass (BM) gain’’ and

‘‘total cholesterol’’) and 11 (‘‘body mass (BM) final’’,

‘‘body mass (BM) gain’’, ‘‘body fat (BF) final’’, ‘‘lean body

mass (LBM) final’’, ‘‘eWAT weight’’, ‘‘energy intake

(3 days after diet switch)’’, ‘‘energy intake (whole inter-

vention period)’’, ‘‘kidney weight’’, ‘‘quadriceps weight’’,

‘‘liver triglycerides’’, ‘‘total cholesterol’’) significantly

correlated physiological parameters at 5 days and

12 weeks, respectively (Supplemental data 6).

The connections between three layers reveal differences

in organization of the multi-level network model at 5 days

and 12 weeks. Namely, at the early timepoint, the only

linked physiological parameter (‘‘body mass (BM) gain’’)

connects exclusively to the transcription regulators layer

and there is a high density of links between transcription

regulators and biological processes. In contrast, at the late

timepoint, physiological parameters (‘‘eWAT weight’’,

‘‘energy intake (3 days after diet switch)’’ and ‘‘energy

intake (whole intervention period)’’) connect to both tran-

scription regulators and biological processes, whereas the

links between the latter two layers become sparse.

Regulatory mechanisms associated

with physiological adaptation to high-fat diet

The three-layered network model provides a resource of

associations that can be further mined for mechanisms of

interest (Table 1, Supplemental data 7). Here, we focus on

regulatory mechanisms in eWAT that drive observed sys-

tems physiological changes.

At the 5-day timepoint, we identified ‘‘body mass (BM)

gain’’ as physiological parameter linked to transcriptional

regulators in eWAT, namely OSR2 and HMGA1 (Fig. 3;

Table 1). The target genes of OSR2 and HMGA1 under-

lying this association (transforming growth factor, beta 3

(Tgfb3) and follistatin-like 1 (Fstl1, also known as Tgfb-

inducible protein TSC-36), respectively) both positively

correlated with BM gain, suggesting that BM gain occur-

ring during the early adaptation to HFD may be

mechanistically linked to activation of transforming growth

factor beta (TGF-b) signalling pathway. Consistent with

this hypothesis, both OSR2 and HMGA1 are linked to

Fig. 2 Network of biological processes after 12 weeks of HFD feeding. Similar as in Fig. 1, for timepoint 12 weeks
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‘‘signal transduction’’ node within biological processes

layer, which comprises TGF-b pathway. In addition, an-

other transcription regulator involved in TGF-b signalling

(MDS1 and EVI1 complex locus (encoded by Mecom)) has

been identified at 5-day timepoint, although without direct

link to BM gain.

At the 12-week timepoint, physiological parameters

‘‘eWAT weight’’, ‘‘energy intake (3 days after diet

switch)’’ and ‘‘energy intake (whole intervention period)’’

are linked to molecular changes in eWAT, on both tran-

scription regulators and biological processes levels. Iden-

tified transcription factors linking to ‘‘eWAT weight’’

(SREBF2, MLXIPL, FOXO4, NFYA, SMAD5 and

NCOA6) are involved in lipid and cholesterol metabolism,

mitochondrial dysfunction, apoptosis or cell survival and

TGF-b signalling pathway. On the level of biological

processes, ‘‘eWAT weight’’ links to ‘‘cellular respiration’’,

‘‘cofactor biosynthetic process’’ and ‘‘proteasome com-

plex’’. The six genes underlying association with ‘‘cellular

respiration’’ are all part of the mitochondrial electron

transport chain complex and are negatively correlated with

eWAT weight.

The physiological parameter ‘‘energy intake (whole in-

tervention period)’’ also linked to biological process ‘‘cel-

lular respiration’’ via negatively correlated mitochondrial

electron transport chain genes, and to transcription factors

ETS2, PDE and SOX10. The genes underlying these

transcription factor relations are largely involved in ox-

idative stress, differentiation and development, apoptosis

and cholesterol metabolism. Interestingly, parameter ‘‘en-

ergy intake (3 days after diet switch)’’ linked to a different

set of transcription factors (FOSL1, RCOR1 and SMAD5),

suggesting different regulatory mechanisms of this

physiological aspect at short- and long-term HFD feeding

period.

In all, key regulatory mechanisms occurring in eWAT

during HFD intake involve TGF-b signalling mediated

processes associated with BM gain (early phase) and

shutdown of cellular respiration associated with increase in

eWAT weight and energy intake (late phase).

Fig. 3 Multi-level network model of eWAT adaptation to 5 days of

HFD. The three-layered network model comprising (1) biological

processes, (2) transcription regulators (TFs) and (3) physiological

parameters associated with eWAT gene expression after 5 days of

HFD feeding. The processes layer includes differentially enriched

biological processes as described in Fig. 1. The regulatory network

layer includes TFs whose targets are enriched among the differen-

tially expressed genes (HFD vs. LFD after 5 days of HFD feeding).

TFs with highly overlapping target gene sets are clustered into single

nodes. The physiological network layer includes parameters sig-

nificantly correlated with eWAT expression data. The connections

between the three layers are based on the overlap between underlying

gene sets. The width of edges is based on the overlap between

underlying gene sets. The colour coding of nodes is as described in

Fig. 1, where for TFs, the direction of the expression of their targets is

represented (red—activation, blue—repression)
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Discussion

Network-based analysis approaches are well suited for

study of complex phenotypes, as they enable insight into

relations between different layers of biological complexity

and comprehension of a system as a whole (Barabási et al.

2011). Here, we have built a multi-level network model of

eWAT adaptation to high-fat diet (HFD) to elucidate

regulatory mechanisms driving physiological effects asso-

ciated with excess fat intake in mice. Our network model

spans across three biological complexity levels: biological

processes, transcriptional regulators and physiological

readouts, and is built to represent early (5 days) and late

(12 weeks) phase of adaptation to HFD feeding. In addition

to experimental data, the model incorporates current

knowledge, i.e. pathway information and transcription

factors targets. Such comprehensive view of the HFD re-

sponse allows discovery of regulatory mechanisms under-

lying short- and long-term HFD feeding and uncovers

novel relations between molecular changes in eWAT and

systems physiological effects.

Our work builds upon a previously published dataset,

which focused on the predictive aspect of short-term gene

expression changes for long-term effects of high-fat feed-

ing. Here we extract additional value out of existing data

by integrating data across assays, data types and levels of

biological complexity. By breaking the silos among diverse

types of data and information, we here accomplish a more

complete understanding of the system and its time-resolved

adaptation to HFD, allowing several previously unan-

ticipated hypotheses to emerge.

Short-term adaptation to high-fat diet

The switch to HFD triggers an adaptive response that re-

quires metabolic changes and cell remodelling of eWAT,

accompanied by stress response and inflammation. Such

abrupt and massive changes in cellular functions are re-

layed by extensive activation of signal transduction path-

ways and transcription regulators. On a metabolic level,

adaption in handling energy metabolism occurs, both in the

management of energy resources (lipid and carbohydrate

metabolism) and in the energy expenditure (strong down-

regulation of mitochondrial function). Nevertheless, ob-

served molecular changes do not yet have broad relations

to physiological changes, suggesting that early response of

eWAT to HFD primarily involves cellular adaptation.

The only physiological parameter that can be linked to

early transcription regulation in eWAT is body mass gain.

Molecules underlying this association may therefore be

considered as putative eWAT markers of susceptibility to

increased body mass gain in individual animals. Activation

of TGF-b signalling pathway emerges as the major deter-

minant of this phenotype, providing clues for further

Fig. 4 Multi-level network model of eWAT adaptation to 12 weeks of HFD. Similar to Fig. 3, for timepoint 12 weeks. The dashed lines indicate

a different use of cut-off for the overlap coefficient (see ‘‘Methods’’ section)
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Table 1 Connections between three layers (processes–transcription

factors (TF)–physiological parameters) for 5 days and 12 weeks. The

relationship indicates between which layers the edge occurs, and the

size of overlap shows the amount of genes overlapping. Similarly,

coefficient is a measurement of similarity between the two gene set of

the two nodes connected by an edge

Edge ID Relationship Size of overlap Similarity

coefficient

5 days

BM gain—HMGA1 Physiology–TF 1 0.5

BM gain—OSR2 Physiology–TF 1 1

ESR1—regulation_of_biological_quality TF–processes 3 0.6

FANK 1—Chromosome TF–processes 1 1

FANK1—nucleus TF–processes 1 1

FANK1—RNA_polymerase_II_transcription_factor_activity TF–processes 1 1

HMGA1—cytoskeletal_protein_binding TF–processes 1 0.5

HMGA1—extracellular_region TF–processes 1 0.5

HMGA1—kinase_regulator_activity TF–processes 1 0.5

HMGA1—pattern_binding TF–processes 1 0.5

HMGA1—polysaccharide_binding TF–processes 1 0.5

HMGA1—signal_transduction TF–processes 1 0.5

ING2—negative_regulation_of_biological_process TF–processes 1 1

ING2—regulation_of_biological_quality TF–processes 1 1

ING2—regulation_of_multicellular_organismal_process TF–processes 1 1

ING2—response_to_external_stimulus TF–processes 1 1

ING2—response_to_stress TF–processes 1 1

ING2—response_to_wounding TF–processes 1 1

MECOM—biopolymer_metabolic_process TF–processes 1 1

MECOM—nucleobasenucleosidenucleotide_and_nucleic_acid_metabolic_process TF–processes 1 1

MECOM—RNA_biosynthetic_process TF–processes 1 1

MECOM—signal_transduction TF–processes 1 1

MECOM—transcription TF–processes 1 1

MTPN—regulation_of_biological_quality TF–processes 2 0.5

NCOA6—negative_regulation_of_biological_process TF–processes 1 0.5

NCOA6—regulation_of_biological_quality TF–processes 1 0.5

NCOA6—response_to_external_stimulus TF–processes 1 0.5

NCOA6—response_to_stress TF–processes 1 0.5

NCOA6—response_to_wounding TF–processes 1 0.5

ORS2—receptor_binding TF–processes 1 1

OSR2—anatomical_structure_development TF–processes 1 1

OSR2—multicellular_organismal_development TF–processes 1 1

OSR2—signal_transduction TF–processes 1 1

PPARD—oxidoreductase_activity TF–processes 2 0.666666667

SLC2A4RG—carbohydrate_metabolic_process TF–processes 1 1

SLC2A4RG—cell_surface TF–processes 1 1

SLC2A4RG—integral_to_membrane TF–processes 1 1

SLC2A4RG—membrane_part TF–processes 1 1

SLC2A4RG—organelle_membrane TF–processes 1 1

SLC2A4RG—plasma_membrane TF–processes 1 1

SLC2A4RG—plasma_membrane_part TF–processes 1 1

SLC2A4RG—regulation_of_biological_quality TF–processes 1 1

TAF6—chromosome TF–processes 1 0.5

TAF6—nucleus TF–processes 1 0.5

TAF6—RNA_polymerase_II_transcription_factor_activity TF–processes 1 0.5
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biomarker and therapeutics research. In this context, Tgfb3

and Fstl1 may especially be of interest for follow-up

studies. Considering the role of TGF-b signalling, it is

plausible that its early activation sets in motion structural

and morphological changes in eWAT, possibly extending

to alterations in mitochondrial organization. Namely,

shutdown of mitochondrial and cellular respiration genes

(triggered at 5 days and aggravated at 12 weeks) may re-

sult from reduced density of functional mitochondrial units,

possibly mediated by TGF-b signalling (Krick et al. 2008;

Casalena et al. 2012).

Long-term adaptation to high-fat diet

After 12 weeks of HFD feeding, eWAT has reached a more

settled state. This is reflected in overall network model

topology, downplay of signalling transduction (FDR p val-

ue of enrichment changes from of 2.76E-20 to 1.35E-09)

and particularly in the shutdown of transcription regulation.

Importantly, the link between eWAT molecular

mechanisms and systems physiological effects becomes

evident: 11 systems physiology parameters are significantly

correlated with eWAT gene expression at 12 weeks. The

eWAT effects on physiology are strongly linked to shut-

down of cellular respiration, in line with severe down-

regulation of mitochondrial function (FDR p value of

enrichment drops from 2.03E-34 to 2.21E-48).

In all, the architecture of the three-layered network

model suggests that early adaptation to HFD mainly in-

volves triggering of a series of transcriptional regulatory

events in eWAT, while at the late phase, this initial cellular

response tails off and the relation between eWAT gene

expression and physiological changes becomes more

prominent.

Translational relevance

Our model shows that mice with lower capacity for energy

handling through cellular respiration also have higher

overall energy intake and eWAT weight. Although the

Table 1 continued

Edge ID Relationship Size of overlap Similarity

coefficient

NCOA6—regulation_of_multicellular_organismal_process TF–processes 1 0.5

12 weeks 0.4

Energy intake (KJ/D)(whole intervention period)—cellular_respiration Physiology–processes 6 0.333333333

eWAT weight (g)—cellular_respiration Physiology–processes 5 0.315789474

eWAT weight (g)—cofactor_biosynthetic_process Physiology–processes 6 0.388888889

eWAT weight (g)—proteasome_complex Physiology–processes 7 0.5

ETS2—energy intake (KJ/D)(whole intervention period) TF–physiology 7 0.571428571

FOSL1—energy intake (KJ/D)(first 3 days after diet switch) TF–physiology 8 0.615384615

FOXO4—eWAT weight (g) TF–physiology 8 0.583333333

MLXIPL—eWAT weight (g) TF–physiology 7 0.6

NCOA6—eWAT weight (g) TF–physiology 3 0.5

NFYA—eWAT weight (g) TF–physiology 8 0.5

PDE—energy intake (KJ/D)(whole intervention period) TF–physiology 2 0.5

RCOR1—energy intake (KJ/D)(first 3 days after diet switch) TF–physiology 1 0.5

SMAD5—energy intake (KJ/D)(first 3 days after diet switch) TF–physiology 3 0.666666667

SMAD5—eWAT weight (g) TF–physiology 4 0.5

SOX10—energy intake (KJ/D)(whole intervention period) TF–physiology 4 0.53125

SREBF2—eWAT weight (g) TF–physiology 17 0.5

DEK—membrane_part TF–processes 2 0.625

FXR—lipid_metabolic_process TF–processes 5 0.666666667

HNRNPD—biopolymer_metabolic_process TF–processes 2 0.666666667

KDM3A—extracellular_region TF–processes 4 0.5

KDM3A—response_to_external_stimulus TF–processes 3 0.666666667

KDM3A—signal_transduction TF–processes 4 0.6

NCOA6—response_to_external_stimulus TF–processes 3 0.4
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causality of these aspects is yet to be determined, we hy-

pothesize that dysfunctional cellular respiration may con-

tribute to high eWAT weight and to increased need for

energy intake. If so, this finding may be relevant for di-

agnosis of subjects having these mechanisms compro-

mised, possibly predisposing them to overconsumption on

a long term. The ability to detect such dysfunction early

(e.g. via biomarkers) may be used as a basis for patient

stratification into groups with different susceptibility to

obesity. The molecular-level understanding of regulation of

these processes may in turn point to intervention strategies

to compensate for insufficiency of intrinsic mechanisms to

effectively deal with excess fat diets. To this end, tran-

scription factors associated with eWAT weight and energy

intake may be good candidates for thorough mechanistic

follow-up studies.

To underpin mechanisms underlying predisposition to

overconsumption, it may also be of interest to investigate

genes correlated with the short-term energy intake (i.e.

physiological parameter ‘‘energy intake (first 3 days after

diet switch)’’) in individual mice. Namely, mice in this

study have been fed ad libitum, and the switch to HFD led

to an initial overconsumption, i.e. on average higher levels

of daily energy intake in the 5-day group (Voigt et al.

2013). Regulation and mechanisms associated with short-

term energy intake may shed light on motivational aspects

leading to early onset of overeating behaviour. For in-

stance, the gene underlying the link between short-term

energy intake and transcription factor RCOR1 is Chrm4

(cholinergic receptor, muscarinic 4; correlation coefficient

0.83, p value 0.01). CHRM4 is a member of the muscarinic

acetylcholine receptor family (M1–M5), and one of its

family members (M3) is involved in regulation of food

intake, body weight and peripheral fat deposits (Yamada

et al. 2001; Serby et al. 2006). It would be interesting to

test whether CHRM4 as well directly influences appetite

control in our experimental setting.

In all, our multi-level network model comprehensively

characterizes eWAT adaptation to high-fat diet (HFD),

spanning from global aspects to mechanistic details. The

highlighted insights emerging from the model provide

promising leads to new research avenues: (1) early acti-

vation of TGF-b signalling as a trigger for structural and

morphological changes in mitochondrial organization in

eWAT, (2) modulation of cellular respiration as an in-

tervention strategy to effectively deal with excess dietary

fat and (3) putative role of CHRM4 in appetite control

towards discovery of novel intervention targets. Apart

from identified research leads, the network model is now

open to be further explored by the broad research com-

munity, thereby providing a sustainable resource of

molecular interactions relevant for HFD response and

eWAT health in general.

Methods

Data resources

All microarray gene expression data and physiological data

used in this study have been previously published (Voigt

et al. 2013) and deposited at the Gene Expression Omnibus

database (GSE38337).

Experimental design and diets

Experimental design and diets have been previously de-

scribed in Voigt et al. (2013). Briefly, male C57BL/

6JRccHsd mice, 4 weeks old upon arrival, were fed a

standard CHOW diet during an adaptation period of

2 weeks. Thereafter, mice were stratified by body weight

and assigned into four experimental groups, being fed

ad libitum either a semisynthetic standard low-fat diet

(LFD) or a semisynthetic experimental high-fat diet (HFD)

for either 5 days (n = 10/per diet) or 12 weeks (n = 12/

diet). After 5 days and 12 weeks, respectively, mice were

killed, and plasma and epididymal white adipose tissue

(eWAT) samples were obtained. Microarray analyses were

performed using 4 9 44 k Agilent whole-mouse genome

microarray platform (GSE38337).

Statistical analysis of microarray data

Statistical analysis of microarray data was performed via

online available standardized array analysis program Ar-

rayAnalysis (http://www.arrayanalysis.org/new/) using the

Illumina (limma) module (Eijssen et al. 2013) (Eijssen

et al., accepted for publication). Via this pipeline, p values,

adjusted p values (FDR) and t scores were obtained for

pairwise comparisons of HFD and LFD groups, at 5-day

and 12-week timepoints (Supplementary data 1).

Biological processes enrichment analyses

Enriched biological processes in HFD group compared to

LFD were identified using gene set enrichment analysis

(GSEA) (C5: GO gene set, biological processes) (Subra-

manian et al. 2005). A list of genes and t scores obtained

by limma statistical analysis were used to generate en-

richment scores of processes (Supplemental data 2). Gene

sets smaller than 15 and bigger than 500 were excluded

from further analyses. The obtained enriched p values

were log-transformed (-log10) and adjusted for direction

based on their significance in up- or downregulation (ei-

ther up-, down-, or both up- and downregulated) to derive

colour codes for nodes in network visualizations. Full

GSEA output files containing genes associated with
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specific biological processes and their rank score repre-

senting extent of modulation are provided as Supple-

mental data 10.

Transcription factor target analysis

A list of differentially expressed genes (HFD vs. LFD per

timepoint, FDR\ 0.05) was loaded into Ingenuity Path-

way Analysis (IPA) (Ingenuity� Systems, www.inge

nuity.com) to identify upstream regulators (transcription

factors (TFs)) and corresponding target genes (Supple-

mental data 5).

TF activation scores were obtained by log-transforming

(-log10) the p values and adjusting for their Z score sign.

Because of high overlap between the regulated TF targets

as reported by Ingenuity, the TFs were clustered to group

TFs with similar target genes. Transcription factors with

100 % overlap between their target genes were clustered.

The transcription factor with highest significance was taken

as cluster representative (Supplemental Table 2).

Correlation analysis of gene expression

and physiological parameters

Correlations between the physiological parameters and

transcriptome data were calculated per individual mouse

using Spearman’s rho (Supplemental data 6). An absolute

correlation coefficient [0.8 combined with a p val-

ue\ 0.05 was used as a significance cut-off.

Building of the network model

A three-layered bipartite network model was generated

comprising (1) biological processes, (2) transcription

regulators and (3) physiological parameters associated with

HFD intake for 5 days and 12 weeks. Microarray gene

expression data were used for identification of enriched

biological processes, identifying transcription factors

regulating differentially expressed genes and determining

correlation with physiological processes. Network nodes at

all three layers are based on sets of genes: (1) genes in-

volved in specific biological process, (2) genes regulated

by a transcription factor and (3) genes correlating with a

physiological parameters. Edges between nodes are repre-

senting the overlap between these respective sets of genes

and were generated using Cytoscape version 2.8.3 and

plug-in enrichment map (Merico et al. 2010; Smoot et al.

2011).

Network visualization

The three-layered network was visualized using enrich-

ment map. To increase interpretability of the network

model, p value cut-off 0.05 and overlap coefficient of 0.5

were used as a cut-off prior to visualization. To visualize

the overlap between physiological parameters and pro-

cesses, an overlap coefficient of 0.3 was used. The en-

richment p values were used for colour coding of the nodes

in the network.

The network topology parameters for biological pro-

cesses networks at 5 days and 12 weeks were calculated by

plug-in advanced network analysis in Cytoscape (Supple-

mental Table 1).
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