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Abstract Nutritional systems biology is an evolving

research field aimed at understanding nutritional processes

at a systems level. It is known that the development of cancer

can be influenced by the nutritional status, and the link

between vitamin D status and different cancer types is

widely investigated. In this study, we performed an inte-

grative network-based analysis using a publicly available

data set studying the role of 1,25-dihydroxyvitamin D3

(1,25(OH)2D3) in prostate cancer cells on mRNA and

microRNA level. Pathway analysis revealed 15 significantly

altered pathways: eight more general mostly cell cycle-re-

lated pathways and seven cancer-specific pathways. The

changes in the G1-to-S cell cycle pathway showed that

1,25(OH)2D3 down-regulates the genes influencing the G1-

to-S phase transition. Moreover, after 1,25(OH)2D3 treat-

ment the gene expression in several cancer-related processes

was down-regulated. The more general pathways were

merged into one network and then extended with known

protein–protein and transcription factor–gene interactions.

Network algorithms were used to (1) identify active network

modules and (2) integrate microRNA regulation in the net-

work. Adding microRNA regulation to the network enabled

the identification of gene targets of significantly expressed

microRNAs after 1,25(OH)2D3 treatment. Six of the nine

differentially expressed microRNAs target genes in the

extended network, including CLSPN, an important check-

point regulator in the cell cycle that was down-regulated, and

FZD5, a receptor for Wnt proteins that was up-regulated.

The extendable network-based tools PathVisio and Cytos-

cape enable straightforward, in-depth and integrative anal-

ysis of mRNA and microRNA expression data in

1,25(OH)2D3-treated cancer cells.

Keywords Pathway analysis � Network analysis �
Vitamin D � Prostate cancer � Systems nutrition

Introduction

Nutritional systems biology is an evolving research field

aimed at understanding nutritional processes at a systems

level. Integrating the effects of nutritional compounds at

the gene expression level with information about the reg-

ulatory level can shed a new light on their action
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mechanism. Promising regulatory molecules in this respect

are small non-coding RNAs, like microRNAs, which reg-

ulate gene expression post-transcriptionally. Nowadays

high-throughput technologies enable the measurements of

mRNA and microRNA expression on a large scale. Path-

way- and network-based approaches are meaningful for the

integrated analysis of these two types of omics data. The

present study demonstrates how pathway analysis can be

combined with network analysis to perform an integrated

analysis of transcriptomics and microRNA-omics data. The

integrative analysis uses two widely adopted open source

tools for pathway and network analysis: PathVisio (Kut-

mon et al. 2015) and Cytoscape (Shannon et al. 2003).

System nutrition

Nutritional status is known to influence cancer develop-

ment (Andreoli et al. 2011; McMillan 2009). The link

between the vitamin D status and different types of cancer

is widely investigated (Hatse et al. 2012; Shui and Gio-

vannucci 2014). The present study explores the role of the

biologically active form of vitamin D3, 1,25-dihydroxyvi-

tamin D3 (1,25(OH)2D3), in prostate cancer. Several stud-

ies suggest that adequate vitamin D levels have a protective

effect with respect to the development of prostate cancer,

and it is believed that vitamin D has chemopreventive

properties. Recently, a study by Wang et al. (2011)

investigated the 1,25(OH)2D3-mediated intracellular path-

ways by measuring global gene expression in LNCaP

prostate cancer cells. In addition, they examined the

expression of microRNAs in these cells upon treatment

with 1,25(OH)2D3. Wang et al. (2011) clearly showed that

1,25(OH)2D3 can modulate gene and microRNA profiles in

LCNaP cells and affects processes involved in cell cycle

arrest, calcium ion homoeostasis and phosphoinositide-

mediated signalling. In the present study, we will combine

pathway- and network-based methods to decipher the

regulatory action of 1,25(OH)2D3 in prostate cancer cells

on mRNA and microRNA level.

Materials and methods

Transcriptomics and microRNA data sets

In the Gene Expression Omnibus (GEO, http://ncbi.nlm.

nih.gov/geo/, Barrett and Edgar 2006), we found two

studies in which global gene expression was measured in

1,25(OH)2D3-treated prostate cells, accession numbers:

GSE17461 and GSE15947. After a thorough analysis, we

selected the study by Wang et al. (2011) because they used

prostate cancer cells (LNCaP cells), whereas Kovalenko

et al. (2010) used non-tumourigenic prostate cells (RWPE1

cells). Moreover, only in the LNCaP cells the microRNA

expression was measured in addition to the mRNA

expression, thereby adding the needed regulatory level.

The mRNA and microRNA expression measured in the

study by Wang et al. (2011) was used in this analysis.

These data are published and publicly available in GEO

(accession numbers GSE17461 and GSE23814). LNCaP

human prostate cancer cells were plated at a density of

1 9 106 cells per 150 cm2 for 48 h prior to treatment with

100 nM 1,25(OH)2D3; see Wang et al. (2011) for further

details. Total RNA was isolated from the LNCaP cells

using standard protocols. Gene expression was measured

with Nimblegen-HG18-4plex whole-genome microarrays

in 1,25(OH)2D3-treated (n = 3) and non-treated (control,

n = 3) LNCaP cells. Agilent human microRNA v3

microarrays were used to measure microRNA expression in

1,25(OH)2D3-treated (n = 4) and non-treated (control,

n = 4) cells.

Further pre-processing and quality control were per-

formed by Wang et al. (2011) as previously described.

GeneSpring GX10 software was used to check the data

quality of the raw data and to normalize the data with

RNA. They filtered the obtained gene list to remove probes

that showed a low signal value (i.e. bottom 20th percentile)

over all samples. Thereafter they used one-way ANOVA

(p\ 0.05) to find significantly changed genes when com-

paring 1,25(OH)2D3-treated cells versus non-treated cells.

Within each test, correction for multiple testing was per-

formed. A fold change (FC) cut-off at 1.5-fold was used to

obtain a final list of differentially expressed genes.

Also the raw microRNA data were pre-processed in

GeneSpring GX10. In the microRNA list, probes with a

low signal (i.e. bottom 20th percentile) were excluded in all

groups. In addition, only probes which were present in at

least three biological replicates and in all groups were

taken into account. MicroRNAs with fold changes greater

than 2.0 were considered significant when p\ 0.05 using

one-way ANOVA with correction for multiple testing. In

the next analysis steps, the statistically analysed data of

both gene expression and microRNA expression generated

by Wang et al. (2011) were used.

Pathway analysis

Pathway analysis was performed using PathVisio (version

3.1.3), a commonly used tool to create, visualize and

analyse biological pathways (Kutmon et al. 2015). The

human pathway collection from WikiPathways [Kelder

et al. (2012), curated collection with 276 pathways down-

load on 29 January 2015] was used to perform an over-

representation analysis with the transcriptomics data set.

The pathways were then ranked based on a standardized

difference score (Z score). A pathway was considered
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altered when (1) Z score[1.96, (2) permutation p value

\0.05 and (3) minimum number of differentially expressed

genes (|FC|[ 1.5, p value\0.05) in the pathway is five.

Network analysis

Network of interconnected pathways

Cytoscape is a widely adopted network visualization and

analysis tool (Shannon et al. 2003). In this study, the

WikiPathways app for Cytoscape (Kutmon et al. 2014) was

used to load the altered pathways as networks and then

merge them into one large network using Cytoscape’s

merge function. An identifier mapping step was performed

using the BridgeDb app for Cytoscape to unify the iden-

tifiers in the selected pathways (Gao et al. 2014). Thus,

unified pathway elements, i.e. gene products, metabolites

or pathway nodes, that are present in two or more pathways

are linking the pathways to each other in the network.

Network extension

The network of interconnected pathways was extended

with known protein–protein and transcription factor–target

interactions (first neighbours) between the genes in the

pathways and all other differentially expressed genes.

Protein–protein interactions were obtained from the

STRING database (Franceschini et al. 2013, medium

confidence level, score[0.4), and the transcription factor–

target interactions were extracted from the ENCODE pro-

ject (Gerstein et al. 2012). The created network will be

addressed as the vitamin D-extended network.

Active network modules

Active network modules are small, connected subnetworks

that contain genes that show significant changes in

expression. The jActiveModules app in Cytoscape was

used to identify active modules in the vitamin D-extended

network (Ideker et al. 2002). We selected the highest

scoring active module and used the ClueGO app (version

2.1.5) for Cytoscape to perform a functional analysis

(Bindea et al. 2009). It performs an enrichment analysis of

the genes in the active module to find relevant Gene

Ontology (GO) classes. A ClueGO network was created

with kappa statistics, which reflects the relationships

between the GO classes, based on the similarity of their

associated genes.

Vitamin D-microRNA network

Using the CyTargetLinker app in Cytoscape (Kutmon et al.

2013), microRNA–target gene interactions frommiRTarBase

(Hsu et al. 2014, version 4.5) and TargetScan (Grimson et al.

2007, version 6.2) were added to the network. A subnetwork

of differentially expressed microRNAs in the 1,25(OH)2D3-

treated cells with their target genes was created. In this step,

the microRNA and mRNA expression levels were integrated

and visualized together in the subnetwork.

Vitamin D receptor target analysis

In a literature search in NCBI PubMed (www.ncbi.nlm.nih.

gov/pubmed), we manually extracted 178 human vitamin D

receptor (VDR) target genes from 25 different articles and

books. First, the studies of interest were collected based on

the following search terms: ‘‘VDR target gene’’, ‘‘vitamin D

receptor’’, ‘‘VDR’’ or ‘‘gene regulation vitamin D’’. These

search terms were also used to find relevant information in

(online) books at the Maastricht University Library. Second,

relevant studies were selected when the title and/or abstract

included information on VDR target genes. Third, the

methods used to determine the VDR target genes were

manually verified and included ChIP sequencing, RNA

sequencing and microarrays. Finally, all human VDR target

genes from the selected studies were included in the anal-

ysis. Some of the target genes were reported in up to seven

different articles, others only in one; see Supplementary

Material 1. In the interpretation of the network of inter-

connected pathways and the extended network, the presence

and location of the VDR target genes were investigated.

Results and discussion

In this section, the six steps of our analysis will be pre-

sented. The basic principles are shown in Fig. 1. The goal

is the integrative analysis of transcriptomics and micro-

RNA expression data using pathway- and network-based

approaches. Starting with pathway analysis of the tran-

scriptomics data set, it was possible to identify a set of

altered pathways in 1,25(OH)2D3-treated prostate cancer

cells. Those pathways were then combined and merged into

one larger network to study the interplay and connections

between the pathways. To include more of the differen-

tially expressed genes that are not present in any of the

pathways, the network was extended with protein–protein

and transcription factor–target interactions to include the

first neighbours of the gene products in the pathways. To

explore the extended network in more detail, relevant up-

and/or down-regulated network modules were identified to

highlight the active parts in the network. As a last step, the

network was extended with microRNA–target interactions

from validated and prediction databases. In this step, the

microRNA expression data can be included and combined

with the mRNA data and subnetworks of differentially
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expressed microRNAs and their neighbours can be studied

in detail.

Transcriptomics and microRNA data sets

Statistical analysis performed in Wang’s study revealed

that 833 genes were differentially expressed in LNCaP

cells treated with 1,25(OH)2D3. Many of these genes are

known to be vitamin D-responsive genes (Krishnan et al.

2004; Peehl et al. 2004; Wang et al. 2005). A complete list

of the differentially expressed genes is available in the

additional file six of Wang et al. (2011). Four hundred and

twenty genes were found to be up-regulated and 413 genes

down-regulated in the 1,25(OH)2D3-treated cells.

Additionally to the transcriptomics data, Wang et al.

(2011) examined the effect of 1,25(OH)2D3 on microRNA

expression. They identified nine significantly up-regulated

microRNAs in 1,25(OH)2D3-treated cells with a fold

change greater than two. No down-regulated microRNAs

were found.

Pathway analysis

Pathway analysis in PathVisio using the WikiPathways

human collection of curated pathways revealed 15

altered pathways in the 1,25(OH)2D3-treated prostate

cancer cells (see Table 1). The results confirm the con-

clusions of the study by Wang that 1,25(OH)2D3 affects

cell cycle activity. Additionally, the related DNA repli-

cation and damage response pathways are changed.

Interestingly, there are seven cancer-related pathways

that are significantly altered in 1,25(OH)2D3-treated

cancer cells: RB in cancer, gastric cancer networks 1 and

2, integrated pancreatic cancer pathway, integrated

breast cancer pathway, integrated cancer pathway and

signalling pathways in glioblastoma. Out of 833 differ-

entially expressed genes, the significantly altered path-

ways contain 73 regulated genes, 14 up-regulated and 59

down-regulated.

The pathway diagrams of all significantly altered path-

ways are available in Supplementary Material 2.

Fig. 1 Integrative network-based analysis. This overview figure

highlights the different steps in the integrative network-based analysis

used in this study. The goal is to integrate different omics data sets

like mRNA and microRNA expression data (1). First, the mRNA

expression data were analysed using biological pathways and

significantly altered pathways were identified (2). The selected

pathways were then merged into one network (3). In the next step,

the network was extended with protein–protein and transcription

factor–gene interactions with other differentially expressed genes that

are not present in the pathways (4). The extended network was used to

first identify active modules (5a), and then, it was extended with

microRNA regulation, which allowed the integration of microRNA

expression data (5b)
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Network of interconnected pathways

The 15 altered pathways were grouped in a group of

explicitly cancer-related pathways and a group of more

general (mostly cell cycle related) pathways (see Table 1).

The eight more general pathways were merged into one

large network containing 503 nodes and 743 edges (see

Fig. 2a). The nodes consist of 319 gene products, 28

metabolites and 15 nodes linking to other pathways. The

remaining 141 nodes are used to represent groups and

complex interactions.

The network of interconnected more general pathways

contains 81 nodes that are present in more than one path-

way and are therefore linking the different pathways to

each other. TP53, CDKN1A and CDK2, three genes known

to play important roles in the cell cycle process, are linking

Table 1 Ranked biological pathways based on Z score

Pathway Positive Measured Z score p value Cancer/general

Retinoblastoma (RB) in cancer 35 87 12.63 0.001 Cancer

DNA replication 22 42 11.91 0.001 General

Cell cycle 34 100 11.04 0.001 General

Gastric cancer network 1 15 26 10.44 0.001 Cancer

Histone modifications 25 64 10.44 0.001 General

G1-to-S cell cycle control 23 67 9.12 0.001 General

DNA damage response 15 64 5.4 0.001 General

Gastric cancer network 2 9 30 5.13 0.001 Cancer

ATM signalling pathway 10 38 4.87 0.001 General

Fluoropyrimidine activity 8 32 4.16 0.001 General

Integrated pancreatic cancer pathway 27 195 4.08 0.001 Cancer

Integrated cancer pathway 8 35 3.85 0.005 Cancer

Integrated breast cancer pathway 21 157 3.41 0.002 Cancer

Arylhydrocarbon receptor (AhR) signalling pathway 5 27 2.47 0.015 General

Signalling pathways in glioblastoma 10 82 2.02 0.048 Cancer

Pathway statistics identified 15 significantly altered pathways in 1,25(OH)2D3-treated prostate cancer cells (Z score[1.96, p value\0.05 and

minimum number of positive genes is five). Besides eight more general cell cycle-related pathways, pathway analysis also revealed seven cancer-

specific pathways that are changed. Measured is number of gene products in the pathway that are measured in the data set, and positive is the

number of differentially expressed genes in the pathway

Fig. 2 Network of interconnected more general pathways. Pathway

analysis revealed eight significantly altered more general pathways in

1,25(OH)2D3-treated cancer cells. The pathways were merged into

one network using the WikiPathways and BridgeDb apps for

Cytoscape. a The fill colours of the nodes in the network indicate

their affiliation with one of the more general pathways. Yellow nodes

in the network highlight pathway elements linking two or more

pathways to each other. b Fourteen genes in the network are up-

regulated (red) and 59 genes are down-regulated (blue) in

1,25(OH)2D3-treated cancer cells
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five out of eight pathways and therefore are very central

nodes in the network. Seven out of eight pathways are

connected in one large network. Five of the eight pathways

are tightly linked through many shared pathway elements,

DNA replication, cell cycle, G1-to-S cell cycle control,

DNA damage response and ATM signalling pathways. The

AhR signalling pathway connects through four gene

products to four of the other pathways, JUN, BAX,

CDKN1A and CDKN1B. The fluoropyrimidine activity

pathway is linked by two nodes to four other pathways, the

TP53 gene product and the apoptosis pathway node. The

histone modifications pathway is not connected to any of

the other pathways.

The network of interconnected more general pathways

contains 73 differentially expressed genes (see Fig. 2b).

Fourteen genes in the network are up-regulated in

1,25(OH)2D3-treated cells. Only one of the up-regulated

genes is present in more than one pathway, ABL1 a gene

involved in cell differentiation, cell division, cell adhesion

and stress response. Twenty-eight out of 59 down-regu-

lated genes are linking two or more pathways. CDK1 and

CCNB1 are both significantly down-regulated and present

in four out of eight pathways. Both are key players in cell

cycle regulation.

Additionally, the seven cancer-related pathways were

merged into a network; see Supplementary Material 3. This

network contains 540 nodes and 951 edges. Out of 440

gene products, 18 are up-regulated and 66 are down-reg-

ulated indicating a down-regulation of cancer pathways in

1,25(OH)2D3-treated cancer cells. In the following steps,

we will only use the network of interconnected more

general pathways.

Network extension

Although 73 differentially expressed genes are present in

the network of interconnected more general pathways,

many of the differentially expressed genes in the data set

are missing. Therefore, the network was extended with

known first neighbours of the genes in the pathways to

evaluate whether that increases the coverage of the dif-

ferentially expressed genes found.

First, the network was extended with known protein–

protein interactions from the STRING database, and we

found 443 additional significantly changed genes that are

first neighbours of one of the genes in the pathways. In a

next step, we added transcription factor–target interactions

from ENCODE and found 67 new differentially expressed

genes that are directly linked to one of the genes in the

pathways.

The vitamin D-extended network consists of 1013 nodes

and 9200 edges. Five hundred and three nodes were from

the selected more general pathways (73 differentially

expressed), 443 nodes were added as first neighbours from

STRING and 67 nodes were extracted from the ENCODE

transcription factor-target network. So in total, the network

now contains 70 % of the differentially expressed genes

(583 out of 833, 345 down-regulated and 238 up-regulated

genes); see Supplementary Material 4. The first neighbours

also connect the histone modification pathway to the other

pathways in the network.

Active network modules

The vitamin D-extended network comprises all genes in the

selected pathways and a large part of the differentially

expressed genes. Using the jActiveModules app in Cytos-

cape, connected small subnetworks (modules) in the vita-

min D-extended network were identified in which gene

expression was regulated by 1,25(OH)2D3 treatment. The

analysis revealed ten different active modules, the highest

scoring module (score = 18.9) contained 193 down-regu-

lated genes. Forty-one nodes in the module were present in

the significantly altered pathways.

We then used the Cytoscape app ClueGO to find bio-

logical processes in which the genes in the module are

involved to identify important functions of the active

subnetwork. ClueGO created a network of interconnected

GO biological processes based on the similarity of their

associated genes (see Fig. 3). Supplementary Material 5

shows all the relevant GO processes and their associated

genes in the active module. The network of GO processes

contains biological processes involved in DNA processing,

cell cycle activity, organelle organization and phosphory-

lation. This is in accordance with the results of the pathway

analysis, which already pointed strongly towards cell

cycle-related processes.

Vitamin D-microRNA network

Using the CyTargetLinker app in Cytoscape, a regulatory

layer of microRNAs was added to the network. One

thousand four hundred and thirty-nine microRNA nodes

and 25,886 microRNA–target interactions were found

when combining the information from the prediction

database TargetScan (version 6.2—23,091 interaction) and

the validated database miRTarBase (version 4.5—2795

interactions). Six of the nine differentially expressed

microRNAs in the data set were found in this new vitamin

D-microRNA network, hsa-miR-29a, hsa-miR-371-5p,

hsa-miR-1915, hsa-miR-663, hsa-miR-134 and hsa-miR-

542-5p. All six are up-regulated in 1,25(OH)2D3-treated

cancer cells. Consequently, we selected the six up-regu-

lated microRNAs in the network and created a subnetwork

35 Page 6 of 12 Genes Nutr (2015) 10:35

123



with all their targets in the network (see Fig. 4). All

microRNAs target genes in the pathways (diamonds) and

extended first neighbours (ellipses).

Fifty out of 96 targets are present in the altered path-

ways (shown as diamonds in Fig. 4), but only seven

pathway genes are differentially expressed. Five out of

those seven are gene products that link two or more path-

ways to each other. The six up-regulated microRNAs target

genes in all eight more general pathways.

Except for hsa-miR-134, all other microRNAs target up-

and down-regulated genes. Interactions for hsa-miR-371-

5p, hsa-miR-1915 and hsa-miR-134 are only present in the

prediction database TargetScan. The microRNA hsa-miR-

542-5p has only interactions from the validated database

miRTarBase. The microRNAs hsa-miR-29a and hsa-miR-

663 have interactions from TargetScan and miRTarBase;

seven of them are even present in both databases, like hsa-

miR-663 ? JUND or hsa-miR-29a ? CPEB3.

Highlighting biological results

The presented integrative network-based analysis provides

a useful framework to study the effects of 1,25(OH)2D3 on

a process level as well as to define new hypotheses about

the mechanisms of 1,25(OH)2D3 in prostate cancer. In this

section, we would like to highlight several biological

results to showcase the relevance of the approach

described.

G1-to-S phase transition

The pathway analysis revealed that the G1-to-S cell cycle

pathway was among the altered pathways after

1,25(OH)2D3 treatment in LNCaP cells. This pathway had

a Z score of 9.12 (p value = 0.001) and contained 23

differentially expressed genes, 21 down-regulated genes

and 2 up-regulated genes. The pathway diagram visualizing

Fig. 3 ClueGO network for highest scoring active module. The

highest scoring active module in the network with 193 down-

regulated genes was identified using the jActiveModules app. Then,

the ClueGO app was used to find relevant GO processes, and a

network of connected GO terms was created. Each node represents a

GO biological process, and the colours represent the GO group. In

total, 34 GO groups and 8 GO processes not assigned to a group

(shown in grey) are present in the network. Per group one

representing GO biological process is named in the figure
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the differentially expressed genes is present in the Sup-

plementary Material 2. Yang and Burnstein (2003) showed

that 1,25(OH)2D3 could block the transition of the LNCaP

cells from the G1-to-S phase. They showed that after

1,25(OH)2D3 treatment the p27 protein levels increased

and that the nuclear localization of Cdk2 decreased,

resulting in a reduced Cdk2 activity. The gene expression

in the present study confirms the inhibition of the G1-to-S

transition. Among the down-regulated genes in our path-

way is cyclin CCNE2. CCNE2 forms a complex with and

regulates Cdk2. The decreased expression of CCNE2 after

1,25(OH)2D3 treatment might lead to a reduced Cdk2

activity, and in this way, it might prevent G1-to-S

transition.

Cancer-related pathways

Pathway databases like WikiPathways also store disease-

specific pathways. In our analysis, the pathway statistics

result in PathVisio also showed several cancer-related

pathways, which clearly indicates that the 1,25(OH)2D3

treatment affects cancer-related processes. The pathway

diagrams of the integrated cancer and RB in cancer path-

ways in the Supplementary Material 2 clearly show that

several cancer-related processes are down-regulated in

1,25(OH)2D3-treated prostate cancer cells. This confirms

several earlier studies and suggests that prostate cancer

patients may benefit from vitamin D treatment (Hatse et al.

2012; Shui and Giovannucci 2014).

Cytoskeleton organization

The GO analysis in the highest regulated module from the

vitamin D-extended network showed that the differentially

expressed genes in the module are present in cell cycle-

related GO processes. Interestingly, several processes are

associated with the cytoskeleton organization. In our

pathway analysis, the processes related to cytoskeleton

organization are not significantly changed by 1,25(OH)2D3.

However, Max et al. (2014) recently studied gene expres-

sion in rat muscle of newborns after maternal treatment

with vitamin D. They found that cell cycle and cytoskeletal

processes are altered after such a treatment. These pro-

cesses are similar to what we found in prostate cancer cells

Fig. 4 Vitamin D-microRNA network. MicroRNA–target interac-

tions from TargetScan and miRTarBase were added to the vitamin

D-extended network. Six out of nine differentially expressed

microRNAs in 1,25(OH)2D3-treated cancer cells were present in the

vitamin D-microRNA network. Those six up-regulated microRNAs

are highlighted as green rounded rectangles. Together they target 96

gene products present in pathways (diamonds) and added with

protein–protein and transcription factor–gene interactions (ellipses).

Up-regulated genes are coloured in red, and down-regulated genes are

coloured in blue. The edge colour indicates the source, either

TargetScan (blue) or miRTarBase (red). Seven target interactions are

present in both databases
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using GO analysis. Moreover, our approach demonstrates

that extending the network of interconnected pathways

with differentially expressed genes that are not in the

altered pathways can identify processes that are not sig-

nificant in pathway analysis.

VDR target analysis

Transcriptional regulation is a central process in humans,

and VDR is a member of the nuclear receptor family of

transcription factors. VDR is activated by 1,25(OH)2D3

and can form a heterodimer with RXR to regulate tran-

scription of many different target genes. In an extensive

literature search, we identified 178 genes that are known to

be regulated by VDR.

In 1,25(OH)2D3-treated prostate cancer cells, we found

21 VDR target genes that are differentially up-regulated

and two that are differentially down-regulated; see Sup-

plementary Material 1. CYP24A1 is the most up-regulated

gene in the experiment (FC = 56), and this mitochondrial

protein is responsible for the degradation of 1,25(OH)2D3.

An increase in expression after 1,25(OH)2D3 treatment is

therefore expected.

VDR targets in the network of interconnected path-

ways In the network of interconnected general pathways

that has been built from the significantly altered pathways,

ten of the gene products are known VDR targets. Most of

the targets are present in the G1-to-S cell cycle control

pathway. No targets have been found in two out of eight

pathways: histone modifications and fluoropyrimidine

activity. Only two of the targets are up-regulated (CDKN2B

and IGFBP1), and two are down-regulated (CDKN2C and

CDKN2D). Two out of three genes that connect five dif-

ferent pathways are known targets of VDR (CDKN1A and

CDK2), clearly showing that they play an important role in

response to 1,25(OH)2D3 treatment.

There are only three VDR targets in the network of

interconnected cancer-related pathways, MYC, CDKN2B

and CDKN2C. Interestingly, all three genes are differen-

tially expressed in 1,25(OH)2D3-treated prostate cancer

cells. CDKN2B is up-regulated, andMYC and CDKN2C are

down-regulated.

VDR targets in the extended network After the extension

with interactions from STRING and ENCODE, 17 of the

differentially expressed VDR targets are present in the

network. Six of the differentially expressed VDR targets

are not present in the extended network, CLMN, DND1,

ORM1, ORM2, SULT1C2 and STEAP4. ORM1 and ORM2,

for example, encode for the alpha-1-acid glycoprotein, an

acute-phase plasma protein that has been reported as a

possible prognostic factor of survival in cancer patients

(Bruno et al. 2003).

The VDR analysis showed that several known VDR

targets are significantly changed in 1,25(OH)2D3-treated

LNCaP cells and that they are mostly up-regulated. How-

ever, also the expression of other genes is affected by the

1,25(OH)2D3 treatment. This could indicate that they are

regulated either indirectly or independently of VDR.

Including knowledge on VDR targets added an additional

regulatory level to our network analysis.

MicroRNA targets

In the vitamin D-microRNA network, microRNA–target

interactions from TargetScan and miRTarBase were added

to the vitamin D-extended network. Five genes are targeted

by more than one microRNA, CLSPN, FZD5, CACNG4,

SET and MLL2. CLSPN is down-regulated, FZD5 and

CACNG4 are up-regulated, and SET and MLL2 are not

differentially expressed in 1,25(OH)2D3-treated cancer

cells. CLSPN is an important checkpoint regulator in the

cell cycle and is known to be down-regulated by

1,25(OH)2D3 treatment (Verlinden et al. 2007). This is also

shown in the vitamin D-microRNA network. FZD5 (Friz-

zled5), a receptor for Wnt proteins, is known to be affected

by 1,25(OH)2D3 treatment (Doroudi et al. 2014). CACNG4

is a calcium channel, and even though there is no direct

relation to vitamin D known, Wiki-pi, a Web server of

annotated human protein–protein interactions to aid the

discovery of protein function, shows that the known

interaction partners of CACNG4 are enriched in the GO

term ‘‘response to vitamin D’’ (Orii and Ganapathiraju

2012).

Features of our network-based integrative analysis

In this study, we showed how pathway- and network-based

approaches can be used to analyse and integrate different

omics measurements. Pathway analysis is a powerful tool

to analyse experimental data and puts the data into a bio-

logical context. Pathways are not closed systems, but they

interact and influence each other. In our analysis, we

merged all the significantly altered pathways into one

network to be able to get a more complete view of the

changes in the system. Additionally, it is possible to see

pathway elements that link different pathways to each

other.

Biological pathway databases like WikiPathways,

Reactome and KEGG are constantly growing, but there is

still a lot of information missing. Therefore, it is important

to combine pathway knowledge with information about

binary interactions like protein–protein or transcription
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factor–gene interactions. There are many online databases

storing such interactions, and by integrating them in the

network, more of the changes in the data set can be

included in the analysis. Instead of 73 differentially

expressed genes in the pathways, we were able to include

583 differentially expressed genes after extending the

network with protein–protein interactions from STRING

and transcription factor–gene interactions from ENCODE.

There are many different network algorithms that can be

used to investigate the vitamin D-extended network. In our

analysis, we selected two different approaches to demon-

strate the power of network analysis. A commonly used

method to find relevant parts in the network is the identi-

fication of active modules. Active modules are groups of

connected genes that are activated or repressed. Finding

active modules is a hard problem and jActiveModules

involves random sampling, so the calculation results might

slightly differ between two runs. In the vitamin D-extended

network, active modules were identified based on the gene

expression in 1,25(OH)2D3-treated prostate cancer cells

compared to non-treated cancer cells. The highest scoring

module of down-regulated genes seemed to be very robust,

with only a few genes added or removed. Functional

enrichment of the genes in the selected module in GO

biological processes was determined using the ClueGO

app. A network of interconnected GO processes showed

processes involved in DNA processing, cell cycle activity,

organelle organization and phosphorylation. In the net-

work, GO processes are linked and similar or deviating GO

processes become apparent.

In a second network analysis step, we included micro-

RNA–target interactions to make it possible to study the

microRNA and mRNA expression data together. The

microRNA–target interactions were added with the

CyTargetLinker app. We selected one validated (miRTar-

Base) and one prediction (TargetScan) database for this

step. Six out of nine differentially expressed microRNAs

were found in the network. It is now possible to extract the

subnetwork of the six microRNAs and all their targets. This

enables the user to study this relevant part of the network in

more detail.

Biological pathways consist of different types of gene

products and metabolites. The different types of gene

product types (DNA, RNA and protein) are often combined

in one entity, but the different types can also be mapped to

each other. That enables the integration and visualization

of omics data sets from different omics technologies (van

Iersel et al. 2014). However, biological pathways often do

not contain all the different regulatory elements like

microRNAs and transcription factors to keep the pathways

concise and understandable. By using network analysis, we

are now able to combine and integrate the different inter-

action and regulation levels and analyse and visualize

different omics data set, like mRNA and microRNA,

together.

All the approaches in this analysis are highly generic

and can be used for different data sets in human or other

species. The extension systems of software tools like

PathVisio and Cytoscape through plugins or apps allow

users to apply a variety of different methods within the

same framework which facilitates the analysis process and

saves a lot of time.

Challenges and future directions

In the present study, the effect of 1,25(OH)2D3 in prostate

cancer cells was investigated in vitro. Although it shows

how gene and microRNA expression in human prostate

cancer cells can be influenced by vitamin D, it would be of

interest to determine the whole-body effect of vitamin D.

Prostate cancer patients could benefit from vitamin D

treatment, and therefore, clinical studies investigating the

effect of vitamin D supplement on the global gene and

microRNA expression level in various tissues could shed a

new light on the vitamin D health effect. The approach in

the present study can be applied in a similar way to in vivo

vitamin D studies.

Finally, in addition to gene and microRNA expression

data, other types of data could be included into a network-

based analysis. By combining other characteristics like age,

gender, genetic variation, vitamin D blood levels before

and after supplementation or tumour size, patients could be

divided into subgroups which could respond differently to

the vitamin D treatment. Knowledge on the biological

processes or parts of the processes that are affected in

patients could tell whether vitamin D supplementation had

the desired effect or not.

Conclusion

In this analysis, we demonstrated how to integrate mRNA

and microRNA expression in 1,25(OH)2D3-treated prostate

cancer cells in a network-based analysis. By combining

biological pathways, protein–protein interactions, tran-

scription factor–gene interactions and microRNA regula-

tion data, it is possible to study the effect of 1,25(OH)2D3

treatment on a more systematic level.

Our approach showed that 1,25(OH)2D3 in LNCaP cells

affects gene expression in cell cycle-related processes

including the G1-to-S phase transition. Interestingly, also

several cancer-related processes are mostly down-regulated

in the 1,25(OH)2D3-treated cells.

Moreover, the expression of several VDR target genes,

which were among the 178 identified VDR target genes,
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were up-regulated after 1,25(OH)2D3 treatment, for

example CYP24A1, the most up-regulated gene in the

experiment (FC = 56.22), that is mitochondrial protein

responsible for the degradation of 1,25(OH)2D3.

Finally, the gene targets of the significantly expressed

microRNAs after 1,25(OH)2D3 treatment could be identi-

fied by adding microRNA regulation. Six of the nine dif-

ferentially expressed microRNAs target genes in the

extended network, including CLSPN, an important check-

point regulator in the cell cycle that is down-regulated, and

FZD5, a receptor for Wnt proteins that is up-regulated.

Taken together, this work also shows that the network-

based tools, PathVisio and Cytoscape, enable a straight-

forward, in-depth and biologically meaningful integrative

analysis of mRNA and microRNA expression.
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