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Abstract Worldwide population is aging, and a large part

of the growing burden associated with age-related condi-

tions can be prevented or delayed by promoting healthy

lifestyle and normalizing metabolic risk factors. However,

a better understanding of the pleiotropic effects of available

nutritional interventions and their influence on the multiple

processes affected by aging is needed to select and

implement the most promising actions. New methods of

analysis are required to tackle the complexity of the

interplay between nutritional interventions and aging, and

to make sense of a growing amount of -omics data being

produced for this purpose. In this paper, we review how

various systems biology-inspired methods of analysis can

be applied to the study of the molecular basis of nutritional

interventions promoting healthy aging, notably caloric

restriction and polyphenol supplementation. We specifi-

cally focus on the role that different versions of network

analysis, molecular signature identification and multi-

omics data integration are playing in elucidating the

complex mechanisms underlying nutrition, and provide

some examples on how to extend the application of these

methods using available microarray data.
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The molecular basis of nutritional strategies
to promote healthy aging

Global life expectancy and proportion of people aged over

60 years are increasing. Aging-associated comorbidities

will become the next global public health challenge in the

context of westernization of daily habits and rising preva-

lence of risk factors for non-communicable chronic dis-

eases. This situation is thus calling for prophylactic

strategies to promote healthy aging (Suzman et al. 2015).

Aging is characterized by a progressive appearance of

various dysfunctions that lead to physical and metabolic

frailty, which increase the risk of developing various dis-

eases (Lee et al. 2011). Notably, antioxidant and anti-in-

flammatory capacity are affected with increasing age as is

the release and accumulation of stressors which result in a

state of chronic low-grade inflammation and oxidative

stress conceptualized, respectively, as ‘‘inflamm-aging’’

and ‘‘the free radical theory of aging’’ (Rubinsztein et al.

2011; Baylis et al. 2013; Beekman et al. 2013; Cevenini

et al. 2013; Castellani et al. 2015). Another hallmark of

aging is the progressive decline of the autophagy process,

which normally plays a protective, anti-cytotoxic role by

degrading protein aggregates and dysfunctional cellular

components including mitochondria (Rubinsztein et al.

2011). By doing so, autophagy prevents the release of pro-

oxidative and pro-inflammatory toxins, but also regulates
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inflammation by exerting a control over the NLRP3

inflammasome and interleukin 1b production (Rubinsztein

et al. 2011). Protein synthesis rates are also decreased in

the aging individuals, which, when combined with the

often-inadequate physical activity and nutritional habits of

this population, increases risk of sarcopenia with ensuing

metabolic dysfunctions (Beyer et al. 2012; Fabian et al.

2012).

Age-related dysfunctions thus arise from several

molecular systems that share central molecular effectors

particularly in the sirtuin family (SIRTs, regulators of

cellular energy metabolism and mitochondrial biogenesis)

and adenosine monophosphate-activated protein kinase

(AMPK, central regulator of energy metabolism) and their

downstream targets (Salminen and Kaarniranta 2012;

Merksamer et al. 2013). Dysfunctions in those systems

principally result in decreased capacity to respond to

stressors, to regulate mitochondrial function and energy

metabolism and, through their interaction with the mam-

malian target of rapamycin (mTOR), to impaired autop-

hagy mechanisms (Rubinsztein et al. 2011; Salminen and

Kaarniranta 2012; Merksamer et al. 2013).

Altogether, these alterations affect energy homeostasis

and increase the risk of pathologies that share common

inflammatory and oxidative basis such as obesity, insulin

resistance, type II diabetes and cardiovascular diseases

(Ceriello et al. 2004; Scrivo et al. 2011; North and Sinclair

2012). In the aging brain, the excessive release of oxidative

and inflammatory mediators coupled with impaired

autophagy mechanisms result in microvascular dysfunc-

tions, protein oxidation, lipid peroxidation and DNA

damage, which eventually lead to ischemic damages,

abnormal protein aggregation, neuronal inflammation and

cell death common to a number of neurodegenerative dis-

orders (Rubinsztein et al. 2011; Rege et al. 2014; Salminen

and Paul 2014). Moreover, excessive oxidative stress alters

synaptic transmission and neuronal excitability, which

leads to structural damage of the central nervous system

(CNS) and decline of cognitive functions (Rizzo et al.

2014; Salminen and Paul 2014).

Caloric restriction

The pathophysiological implications of aging are thus

broad and include multiple systems. Promotion of healthy

aging should therefore similarly have multiple pleiotropic

targets of action. Approaches aimed at improving lifestyle

and dietary habits are part of those strategies that have

large spectrum or action. Caloric restriction (CR), referring

to 20–40 % reduction in habitual daily energy intake, is

one such intervention that has largely been investigated

since it was first identified to have potentially life-

increasing benefits in yeast and, more recently, in

mammalian models (Speakman and Mitchell 2011). It was

postulated that CR benefits result from evolutionary

mechanisms that halts cell division and energy-requiring

functions under conditions of energy imbalance (Speakman

and Mitchell 2011). The benefits of CR on slowing or

preventing age-related dysfunctions are the result of its

influence on the many systemic effectors previously men-

tioned as being affected in aging. This is demonstrated by

several studies which showed that CR (1) negatively reg-

ulates the insulin-like growth factor (IGF-1)/insulin

receptor substrate (IRS)/PI3k–Atk pathways, (2) activates

SIRT family members, (3) activates AMPK (through

decreased ATP/AMP ratio), (4) inhibits the mTOR path-

way, (5) improves fatty acid metabolism (via CPT-1 and

SREBP-1), (6) decreases the release of ROS and pro-in-

flammatory compounds and (7) modulates the expression

of genes implicated in neuroprotection (Lee et al. 2000;

Rubinsztein et al. 2011; Speakman and Mitchell 2011; Dai

et al. 2014).

These effectors have been shown to have organ-specific

effects. They partially act in synergy to improve muscle

energy metabolism, prevent muscle loss and mitochondrial

dysfunction in mice (Jang et al. 2012; Lin et al. 2014; Chen

et al. 2015) and induce mitochondrial biogenesis in the

skeletal muscle (of human as well), the heart, the adipose

tissue and the brain (Baur 2010). CR also activates

autophagy (Rubinsztein et al. 2011; Speakman and

Mitchell 2011). In the aging rat brain, CR improved ketone

body metabolism and blood flow, often impaired in neu-

rodegenerative disorders (Lin et al. 2015). CR also delayed

neurodegeneration in aging mice through SIRT1 (Graff

et al. 2013), improved learning through PI3k/Akt pathway

(Ma et al. 2014) and was demonstrated to attenuate amy-

loid b neuropathology in aged mice with Alzheimer’s

disease (Wang et al. 2005). Finally, one of the few inves-

tigation conducted in humans showed that a 3-month CR

intervention improved memory in the elderly (Witte et al.

2009).

Calorie restriction mimetics: the case of polyphenols

Caloric restriction, however, benefits from being initiated

early in life to yield the most positive effects on aging,

particularly neuroprotective effects and was rarely inves-

tigated in human partly because it is often accompanied by

side effects that make it hardly sustainable in the long-term

(Speakman and Mitchell 2011). Alternative interventions

that would mimic—at least partially—the molecular and

physiological benefits of CR are thus of interest (Speakman

and Mitchell 2011). Intermittent CR (or intermittent fast-

ing) is one such alternative previously shown to decrease

oxidative stress levels and improve insulin sensitivity in

humans, but more research has yet to be done in this area
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(Wegman et al. 2015). Polyphenols—a class of antioxidant

phytochemicals mostly found in plant-derived produce

such as fruits and vegetables (and their derivatives such as

juices and wines), nuts, spices and grains (tea and choco-

late)—represent another nutritional alternative to CR.

In rats, resveratrol supplementation prevented age-in-

duced muscle loss (Jang et al. 2012; Joseph et al. 2013),

suppressed pro-apoptotic signaling in senescent heart and

prevented age-related heart dysfunction (Sin et al. 2014).

Moreover, supplementation with polyphenol-rich blueber-

ries increased IGF-1 expression in hippocampus of aged

rats, improving hippocampal plasticity and memory per-

formances (Casadesus et al. 2004). In addition, resveratrol

supplementation in non-human primates increased working

(as did CR) and spatial memory performance (Dal-Pan

et al. 2011). Furthermore, this class of compounds was

shown to mimic the effects of CR at the transcriptomic

levels notably in reducing signs of aging (Barger et al.

2008; Pearson et al. 2008; Vidal et al. 2011). In fact,

polyphenols and resveratrol mediate multiple of the pre-

viously described pathways such as SIRTs, AMPK and

mTOR (Lam et al. 2013). In longitudinal clinical inter-

ventions conducted in humans, increased consumption of

polyphenol-rich and Mediterranean-type food items such as

extra-virgin olive oil and nuts has been associated with

markers of healthy aging such as improvement of cardio-

vascular risk factors and cognition (Valls-Pedret et al.

2012; Martinez-Lapiscina et al. 2013; Zhu et al. 2014;

Houston et al. 2015). Moreover, a resveratrol supplemen-

tation study in healthy aged individuals improved brain

functional connectivity, which correlated with improved

glucose metabolism and memory (Witte et al. 2014).

Challenges facing novel -omics technologies

Nutritional interventions aimed at promoting healthy aging

influence multiple systems and have broad, and probably

largely unknown, range of effectors. Furthermore, most

investigations were conducted in animal models or in aged

cohorts in whom the optimal intervention window to obtain

significant life span improvements might be passed. On the

other hand, longitudinal studies measuring hard endpoints

such as decreases in aging-related morbidities or life span

extension would require large investment of both time and

capital. Understanding of the mechanisms associated with

healthy aging promoting interventions and identifying

potent biomarkers able to monitor the early efficacy of

those interventions in younger cohorts are thus needed

(Belsky et al. 2015). Moreover, interindividual variability

in response to interventions adds to the necessity of iden-

tifying biomarkers of responders (Barberger-Gateau 2014).

Luckily, those needs can be fulfilled by recent high-

throughput -omics capabilities and integrative systems

biology approaches (Corthesy-Theulaz et al. 2005). These

methods offer novel approaches to understanding the

complex molecular mechanisms by which nutrition

affects—patho—physiological processes (e.g., aging) in

this increasingly data-rich field. Nutritional research has in

fact gathered knowledge on the interaction of nutrients/

nutritional habits with an individual’s genome or between

gene polymorphisms and individual responses to nutrients/

nutritional habits. Moreover, data on how nutrition affects

DNA methylation (nutritional epigenomics), gene expres-

sion (transcriptomics) and protein expression or post-

translational modifications (proteomics), and how these

changes affect a large number of metabolites (metabo-

lomics) continue to be produced. As a final layer of com-

plexity, gut microbiota composition (metagenomics) is

increasingly recognized as crucial in modulating the two-

way relationship between nutrition and host phenotypes.

The recent, and ever-growing, availability of -omics

data will widen the window of observation of biological

and pathophysiological processes that often involve mul-

tiple systems from different cell and/or tissue types. To

fully profit from these advances, however, new method-

ologies will need to be developed and deepened in order to

successfully integrate the information provided by the

different levels of -omics into comprehensive models in

order to avoid the risk of drowning under the over-abun-

dance of such data.

The following sections provide an overview of such

integrative approaches and will include an example on how

these methods can be used to uncover new knowledge from

existing microarray data produced to investigate the

molecular impact of CR and resveratrol supplementation

on brain tissues of young and aged mice.

Systems biology

Integrative approaches to studying biological systems are

often the focus of the emerging field of systems biology.

While a definitive and agreed-upon definition of what

constitutes a systems biology method is still missing, it is

generally accepted that the final objective is the study of

complex biological systems using a holistic approach and

relying on system-wide knowledge and high-throughput

data. Examples of the methods employed are network-

based analysis, methods based on molecular signatures,

multi-omics data integration and system-wide modeling.

Herein, we will briefly review how the first three concepts

have been applied to the discovery of the connections

between nutrition and healthy aging. A specific case study

will be presented as an illustrative example, which includes

a novel type of molecular signature combined with network

analysis. We will not cover other important areas of
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systems biology that would be best reviewed separately,

such as the field of multi-scale modeling of biological

systems, that also play a prominent role in the research on

aging (see for example Milanesi et al. 2009).

Network-based analysis

Complex molecular systems such as gene regulation, pro-

tein–protein interactions (PPI) or the metabolic machinery,

can be conveniently represented as networks. In such a

network representation, molecules are shown as nodes, and

the relationship between molecules as edges. Relationships

can be correlations between gene expression levels, PPIs,

and metabolic interactions coming from experimental

studies (and derived from statistical associations) or data-

bases, or curated from the literature.

The study of biological networks and their modeling,

analysis and visualization represent powerful and flexible

tools that can be useful in gathering data produced by high-

throughput techniques and in helping uncover the knowl-

edge thus generated. Information used to build networks

can be qualitative or quantitative (unweighted vs weighted

interactions), causal or correlative (directed vs undirected

edges), qualified according to strength of evidence (inter-

actions with qualifying labels such as ‘‘experimental,’’

‘‘literature,’’ ‘‘indirect,’’ ‘‘correlation-based’’). Further-

more, such networks can be curated to specific cell type,

tissue or condition by, for example, only considering genes

or proteins ubiquitously expressed/present in all tissues and

in the tissue of interest (Tegner et al. 2007).

Two approaches can be used to analyze biological net-

works, namely the seeded and genome-wide approaches

(Parikshak et al. 2015). The seeded approach uses biomo-

lecules of interest (e.g., obtained from experimental or

genetic analysis) typically in the form of a set of differ-

entially expressed genes or proteins, as the basis to build a

network by addition of highly connected neighbors of those

seeds. Upon optional network module detection, functional

annotation analysis can then be carried out using seeds and

their highly connected neighbors as input. This method as

the advantage of adding information missed by the scarcity

of biomolecules experimentally quantified and can poten-

tially increase the significance of the results of a traditional

functional analysis such as GO enrichment analysis.

The genome-wide approach is a slightly more advanced

version in that it identifies modules of highly connected

nodes within a comprehensive genome-wide network.

Biomolecules of interest are then mapped onto the genome-

wide network, and modules significantly enriched with

biomolecules of interest are identified and analyzed for

functional enrichment. The advantage of this approach is

that modules in molecular networks have been shown to

closely overlap with known biological functions (Ravasz

et al. 2002; Parikshak et al. 2015), thus increasing the

effectiveness of the functional analysis step.

A limited number of studies in nutritional research have

used systems biology approaches. For example, seeded

approach to network analysis was applied by Wuttke et al.

(2012). The authors started with a list of CR-related genes

(used as seeds) compiled from the literature and expanded

it by addition of their highly interacting neighbors in order

to predict novel CR-influenced genes in different organ-

isms. Using the expanded gene list, they then performed a

large-scale comparison of datasets (interactomes and tran-

scriptomes) from multiple organisms. This enabled them to

identify the most essential elements as those most con-

served between organisms and conclude that life span

extension operates via ancient rejuvenation process derived

from gametogenesis.

The work of Morine et al. is an example of genome-

wide approach to network analysis in which the authors

studied the transcriptomic signature of adipose tissue of

obese IL-1RI-/- mice subjected to high-fat feeding

(Morine et al. 2013). Following intervention, markers of

insulin sensitivity and inflammation in adipose tissue were

assessed with the aid of a PPI/regulatory network of innate

immunity and identified a significantly enriched module

highlighting potentially novel inflammatory mediators of

adipogenesis.

These studies demonstrated how network analysis can

clarify the multi-systemic impacts of nutrition and how it

could be applied to further the understanding of the

mechanisms underlying healthy aging promoting

interventions.

Molecular signatures

Another powerful tool for the study of -omics data is the

concept of molecular signatures. Network analysis and

signature analysis represent complementary approaches to

the study of complex systems. While network analysis

seeks to capture and manage the complexity of a biological

system, signature analysis summarizes the essential fea-

tures of such a system in the most possible succinct way.

The simplest form of molecular signature is a list of bio-

molecules (genes, proteins or metabolites) carefully

selected for their discriminating value; such signatures

have long been studied for their potential as diagnostic

biomarkers. Since our understanding of the effects of

nutrition on aging in humans would greatly benefit from an

effective form of monitoring, the need for biomarkers in

this area of research is a pressing one. Traditional bio-

marker identification identified a set of genes rapidly

affected upon initiation of CR in old mice (Dhahbi et al.
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2004). Those genes could thus be good candidate

biomarkers to rapidly assess the efficacy of, and detect

responders from non-responders to CR.

Enhanced network-based analysis: combining
networks and signatures

Besides their use as biomarkers, molecular signatures can

also be used as a selection tool to increase effectiveness of

network analysis. Network analysis and signature extrac-

tion can be combined in a single workflow in at least two

possible ways, which we term the ‘‘summary’’ and the

‘‘feature-list’’ approaches. In the summary approach, the

signature extraction operation follows the network analysis

and is performed on the results of the latter. In this case,

signatures are typically used as a succinct way to sum-

marize the complex outcome of the network analysis as a

way to facilitate, for example, the comparison of results

across treatments, time points, tissues or conditions. The

advantage of the summary approach is that it results in a

list of biomolecules that are more relevant to the question

of interest than a signature obtained directly from the -

omics data, because of the discriminating power of the

intervening network analysis (Kelder et al. 2014). A sum-

mary approach was selected to study the hepatic molecular

network underlying type 2 diabetes mellitus using tran-

scriptional data obtained from experiments with different

drug and dietary treatments (Kelder et al. 2014). After

performing a genome-wide network analysis, the authors

compared signatures of the different interventions, which

highlighted functionally related nodes that may be used as

target to future anti-diabetic treatments or as biomarkers

for determining their efficacy (Fig. 1).

In the feature-list approach, all -omics data are used as

input for the signature extraction operation, and the bio-

molecules included in the signatures are then used as input

to network analysis (e.g., as the seeds in case of the seeded

approach). The advantage of this approach is that the

ensuing network analysis inherits all the potential benefits

of the selected signature extraction algorithm, possibly

overcoming the known limitations of traditional statistical

methods for the identification of differently expressed

genes.

As a demonstration of the feature-list approach, we

apply our recently developed signature identification

method followed by network analysis, in order to study the

role of CR and resveratrol supplementation on brain aging

in mice (Fig. 2). The novelty represented by the use of a

transcriptional signature enabled a more sensitive analysis

than the one resulting from a list of differentially expressed

genes obtained with traditional methods. Other benefits

afforded by our signature identification method are

robustness to batch effects and to differences in processing

methods, and the possibility of using expression data from

multiple sources, none of which were relevant for this

particular study. We re-analyzed the microarray data pro-

duced by Barger et al. (2008) on the role of CR and

resveratrol at low doses on brain aging. Briefly, 14-month-

old male mice fed a control diet were randomly assigned to

one of the following: a CR (63 kcal weekly) diet, a

resveratrol-supplemented (50 mg resveratrol per kilogram

of body weight) control diet and a control diet. Brain tis-

sues were collected at 30 month, while brain tissues from

5-month-old mice fed the control diet were also collected

and served as young controls. Identification of the tran-

scriptional signature was done using an enhanced version

of a rank-based classification method described in the

Supplementary Material (Lauria 2013; Tarca et al. 2013;

Lauria et al. 2015).

Following a version of the seeded approach to network

analysis, a network was then build using the signature

genes as seeds with the NetWalker tool (Komurov et al.

2012) in combination with the BioGrid PPI network for

mus musculus (rel. 3.2.121). The resulting NetWalker net-

work, thus, contained a subset of highly connected signa-

ture genes (i.e., those interacting above a determined

threshold), augmented by additional genes that were con-

nected to the signature ones through above-threshold

interactions. The genes obtained from such network

enrichment analysis were then used to extract the most

representative GO biological process terms (i.e., the ones

that are over-represented, but that do not refer to most

general biological processes). Pathway analysis was per-

formed using DAVID web-based tool using hypergeomet-

ric distribution test and a FDR-adjusted p value threshold

of 0.05 (Huang da et al. 2009).

Using this method, we identified transcriptomic signa-

tures and related networks for age (5- vs 30-month-old

mice), CR (30 month control vs 30 month CR) and

resveratrol (30 month control vs 30 month resveratrol).

In the brain aging process (young vs old mice on control

diet), the analysis of the Netwalker-enriched network (see

Fig. 2) highlighted biological functions associated with

immune processes and inflammation, steroid hormone

receptor signaling, neurogenesis and histone modification

(Supplementary Table 1). Caloric restriction and resvera-

trol supplementation produced overlapping results related

to neuronal functions including regulation of synaptic

transmission and glutamate receptor signaling. In addition,

GO BP term associated with response to oxidative stress

was significantly enriched in resveratrol-treated mice and

with a trend toward significance in CR-exposed mice,

while inflammatory processes were exclusively associated

with resveratrol supplementation. Overlapping GO BP

terms between both dietary interventions demonstrate an
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effect on synaptic transmission particularly associated with

ionotropic glutamate receptors, while only resveratrol

supplementation had a significant effect on NF-kB Sig-

naling (Supplementary Table 1).

Complete lists of Materials and methods and results are

available in the supplementary material.

Although these findings largely confirm those of Barger

et al. and are in agreement with previous knowledge (Lam

Fig. 1 Illustration of the two

main approaches to network

analysis, namely the seeded

(left) and genome-wide (right)

Fig. 2 Schematic representation of the case study workflow. Tran-

scriptomic data from brain tissue of treatment groups (caloric

restriction, low-dose resveratrol supplementation and control diet)

from young and aged mice were analyzed using a novel approach

enabling the identification of transcriptional signature characterizing

each group. Network analysis was then performed using Netwalker

method and the mouse-specific BioGRID PPI database. Finally, the

functional enrichments of the genes obtained from the network

analysis were characterized by investigating over-represented gene

ontology biological processes and pathways
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et al. 2013; Marchal et al. 2013), our method was also able

to uncover the effect of both interventions on unrecognized

molecular processes such as those related to synaptic

transmission and glutamatergic signaling. In particular,

they suggest the involvement of glutamatergic ionotropic

receptors, including AMPA receptor subunits 1, 2 and 3

(GRIA1, 2 and 3), a result reported in connection with CR

in rats (Shi et al. 2007) and very recently confirmed also in

mice (Schafer et al. 2015). The involvement of these key

signaling molecules for brain functions reinforces the

notion that dietary interventions such as those studied

herein hold the ability to modulate brain health and func-

tion. This is of particular interest for resveratrol supple-

mentation as knowledge was limited on its ability to

modulate glutamatergic transmission and further supports

the investigation of resveratrol in the treatment of various

aging-related central nervous system disorders. Interest-

ingly, this resveratrol effect has been confirmed indepen-

dently in rats (Wang et al. 2015).

Moreover, our analyses confirm the effects of age on

NF-kB signaling and inflammation, particularly on Toll-

like receptor (TLR) signaling, but also interestingly high-

light impacts of aging on the regulation of neurogenesis,

known to decline with advancing age (Kuhn et al. 1996;

Villeda et al. 2011). Among the age-related plasma factors

correlated strongly with decreased neurogenesis, b2
microglobulin was found also in our age signature and in

the Netwalker-enriched network, suggesting that

immunological response could be related to age-related

impairments of neurogenesis (Villeda et al. 2011).

This re-examination of previously published data shows

that a novel transcriptional signature identification com-

bined with carefully matched network analysis can provide

new insight into the mechanisms involved in the complex

interaction of nutritional interventions and aging and guide

potential new therapeutic approaches.

Multi-omics data integration

Traditional and network-based analysis of the major plat-

forms of comprehensive -omics can be used to study the

influence of nutritional interventions (for instance CR and

polyphenol supplementation) on biological processes such

as those involved in aging. However, previously stated

investigations assessed biological processes/dysfunctions

on the basis of data representative of single-omics level.

Systems biology would benefit from a holistic system-wide

approach by integrating different -omics levels with the

following methodologies and tools.

Many approaches to perform multi-omics data integra-

tion have been developed and have different usefulness

depending on the biological question to be addressed and

the -omics data available. For example, -omics integration

can be used to understand the genetic architecture of

complex traits by integrating genomics with transcrip-

tomics, proteomics, and/or metabolomics, to evaluate the

role of genetic variations in intermediate molecular phe-

notype of a complex trait. Such studies are called expres-

sion QTL (eQTL; Schadt 2006), proteomics QTL (pQTL)

or metabolomics QTL (mQTL) analysis depending on the

data available. Multi-omics analysis can also be used to

obtain a comprehensive modeling of -omics profiles to be

used as biomarker of disease, disease state and/or treatment

efficacy, or to determine key elements, which correlate

with a specific phenotype, or for exploring host–microbiota

interactions.

There are two main strategies for integration: multistage

(stepwise or sequential) and meta-dimensional (simulta-

neous) analyses (Ritchie et al. 2015). The multistage

analyses are stepwise or hierarchical methods that rely on

the central dogma of biology in which variations at the

DNA level will hierarchically affect RNA levels, protein

expression and so on. These methods reduce the search

space through different steps of analysis but are challenged

by the accumulating evidence (e.g., notably epigenetic

modifications, microbiota–host interactions) that question

the linearity of such dogma and thus the ability of this

model to capture every inter-omics interaction.

The more computationally demanding meta-dimen-

sional analyses simultaneously combine multi-omics data

to produce complex models defined by multiple differently

scaled variables. Those approaches are of interest since

every potential relationship between different -omics levels

are considered and, thus, it captures potential inter-omics

interactions more realistically.

Multi-omics integration can be achieved simply by

separately analyzing different -omic data and then com-

bining the obtained results together in order to draw global

conclusions. By doing so, this methodology does not,

however, provide statistics on the interactions between -

omics levels since they were treated separately. Statistical

integration methods perform statistical association between

biomolecules from different -omics levels (Cavill et al.

2015; Ritchie et al. 2015). The main statistical integration

approaches can either be based on correlation, concatena-

tion, multivariate or pathway analysis, which are further

detailed in Table 1 along with suggestions of useful tools

that implement each approach.

To our knowledge, there are no examples of multi-omics

integration analysis applied in the field of CR or

polyphenol supplementation on age-related pathologies.

Although relatively sparse, there are nonetheless some

examples of studies that used those approaches to analyze

the effect of dietary interventions on other phenotypes. For

instance, Montastier and collaborators have recently
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performed a multistage analysis using both single and

multi-omics networks to show metabolic alterations

occurring during weight change in response to CR (Mon-

tastier et al. 2015). To do so, they first inferred a partial

correlation network for each -omics level and then con-

structed multi-omics networks linking each pairs of data

type using regularized canonical correlation analysis,

which successfully infers a gene/phenotype network

(Rengel et al. 2012). They then merged single and multi-

omics networks together and performed module detection

analyses. Temporal analysis of the modules successfully

revealed both shared and time-specific biological signa-

tures in response to metabolic variations occurring during

weight changes.

Finally, multi-omics integration that would take into

account cell or tissue types, as proposed by Tegner and col-

laborators,would be desirable to investigate the cell- or tissue-

specific effects of pleiotropic interventions such as nutri-

tional—and lifestyle—modification modulating progression

of complex, multi-system diseases (Tegner et al. 2007).

Conclusion

There is a pressing need for new methods to tackle the

complexity of the interplay between nutritional interven-

tions and aging and to make sense of a growing amount of -

omics data being produced for this purpose. In this review,

we detailed systems biology-inspired methods of analysis

that could fulfill this need and be applied to the burgeoning

field of nutrition. This review has illustrated the potential

of network analysis, molecular signature identification and

multi-omics data integration to generate candidate

biomarkers and novel molecular mechanisms in an unbi-

ased fashion. We foresee that the real potential for nutri-

tional systems biology applications will lie in multi-

knowledge integration strategies that will, by including

information at different levels, shed light on gene–nutrient

interactions with a degree of accuracy and completeness

not yet achievable today.
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(2011)

Pathway-based

integration

Integrates different -omics levels by relying on existing

biological knowledge gathered from metabolic pathways

such as Kegg and wikipathways (Kutmon et al. 2015)

InCroMAP and IMPALA for integrated

pathway-based analysis

Eichner et al.

(2014),

Kamburov et al.

(2011)

SAMNetWeb to generate biological

networks with transcriptomics and

proteomics data

Gosline et al.

(2015)

MetScape cytoscape plugin to produce

metabolic networks from transcriptomics

and metabolite data

Karnovsky et al.

(2012)

58 Page 8 of 10 Genes Nutr (2015) 10:58

123

http://dx.doi.org/10.1073/pnas.1506264112


Casadesus G, Shukitt-Hale B et al (2004) Modulation of hippocampal

plasticity and cognitive behavior by short-term blueberry

supplementation in aged rats. Nutr Neurosci 7:309–316

Castellani GC, Menichetti G et al (2015) Systems medicine of

inflammaging. Brief Bioinform 1–14. doi:10.1093/bib/bbv062

Cavill R, Jennen D et al (2015) Transcriptomic and metabolomic data

integration. Brief Bioinform 1–11. doi:10.1093/bib/bbv090

Ceriello A, Motz E (2004) Is oxidative stress the pathogenic

mechanism underlying insulin resistance, diabetes, and cardio-

vascular disease? The common soil hypothesis revisited. Arte-

rioscler Thromb Vasc Biol 24:816–823

Cevenini E, Monti D et al (2013) Inflamm-ageing. Curr Opin Clin

Nutr Metab Care 16:14–20

Chen CN, Lin SY et al (2015) Late-onset caloric restriction alters

skeletal muscle metabolism by modulating pyruvate metabolism.

Am J Physiol Endocrinol Metab 308:E942–E949

Corthesy-Theulaz I, den Dunnen JT et al (2005) Nutrigenomics: the

impact of biomics technology on nutrition research. Ann Nutr

Metab 49:355–365

da Huang W, Sherman BT et al (2009) Bioinformatics enrichment

tools: paths toward the comprehensive functional analysis of

large gene lists. Nucleic Acids Res 37:1–13

Dai DF, Karunadharma PP et al (2014) Altered proteome turnover

and remodeling by short-term caloric restriction or rapamycin

rejuvenate the aging heart. Aging Cell 13:529–539

Dal-Pan A, Pifferi F et al (2011) Cognitive performances are

selectively enhanced during chronic caloric restriction or

resveratrol supplementation in a primate. PLoS ONE 6:e16581

Dhahbi JM, Kim HJ et al (2004) Temporal linkage between the

phenotypic and genomic responses to caloric restriction. Proc

Natl Acad Sci USA 101:5524–5529

Eichner J, Rosenbaum L et al (2014) Integrated enrichment analysis

and pathway-centered visualization of metabolomics, pro-

teomics, transcriptomics, and genomics data by using the

InCroMAP software. J Chromatogr B Analyt Technol Biomed

Life Sci 966:77–82

Fabian E, Bogner M et al (2012) Vitamin status in elderly people in

relation to the use of nutritional supplements. J Nutr Health

Aging 16:206–212
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