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Abstract

Background: The Nile rat (NR, Arvicanthis niloticus) is a model of carbohydrate-induced type 2 diabetes mellitus
(T2DM) and the metabolic syndrome. A previous study found that palm fruit juice (PFJ) delayed or prevented
diabetes and in some cases even reversed its early stages in young NRs. However, the molecular mechanisms by
which PFJ exerts these anti-diabetic effects are unknown. In this study, the transcriptomic effects of PFJ were
studied in young male NRs, using microarray gene expression analysis.

Methods: Three-week-old weanling NRs were fed either a high-carbohydrate diet (%En from carbohydrate/fat/
protein = 70:10:20, 16.7 kl/g; n=8) or the same high-carbohydrate diet supplemented with PFJ (415 ml of
13,000-ppm gallic acid equivalent (GAE) for a final concentration of 54 g GAE per kg diet or 2.7 g per 2000 kcal;
n=28). Livers were obtained from these NRs for microarray gene expression analysis using lllumina MouseRef-8

Version 2 Expression BeadChips. Microarray data were analysed along with the physiological parameters of diabetes.

Results: Compared to the control group, 71 genes were up-regulated while 108 were down-regulated in the group
supplemented with PFJ. Among hepatic genes up-regulated were apolipoproteins related to high-density
lipoproteins (HDL) and genes involved in hepatic detoxification, while those down-regulated were related to insulin

signalling and fibrosis.

than an increase in insulin secretion.

Conclusion: The results obtained suggest that the anti-diabetic effects of PFJ may be due to mechanisms other

Keywords: Palm fruit juice, Oil palm phenolics, Antioxidants, Diabetes, Metabolic syndrome, Gene expression, Nile rat

Background

Nutritional overload and sedentary lifestyle give rise to
the prevalence of type 2 diabetes mellitus (T2DM) in
modern societies, and this chronic disease is estimated
to reach 439 million cases by 2030 [87]. Although
T2DM is a disease of adults, it is an increasingly com-
mon diagnosis among adolescents in high-risk countries
such as Asia, the Middle East, and the USA [46]. T2DM
is characterised by insulin resistance, declining insulin
production and eventual pancreatic p cell failure [71].
This leads to a decrease in glucose transport into liver,
muscle and fat cells and an increase in circulating
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glucose. T2DM is often associated with increasing obes-
ity, via a combination of clinical abnormalities known as
the metabolic syndrome, which comprises insulin
resistance, visceral adiposity, hypertension, atherogenic
dyslipaemia and endothelial dysfunction [32]. These con-
ditions are interrelated and share common mediators,
pathways and pathophysiological mechanisms [50]. The
metabolic syndrome is a state of chronic low-grade in-
flammation linked to aberrant energy metabolism as a
consequence of complex interplay between genetic and
environmental factors [57].

Due to the growing concern over T2DM and the
metabolic syndrome, animal models that mimic these
human diseases are needed to assess possible anti-
diabetic preventative or therapeutic measures [128]. The
Nile rat (NR), also known as the African grass rat
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(Arvicanthis niloticus), has been described as a relevant
model of T2DM and the metabolic syndrome, as it al-
lows for detailed nutritional modelling of diet-induced
T2DM similar to that in humans. The NR spontaneously
develops hyperinsulinaemia, hyperglycaemia with dysli-
paemia and hypertension in the early phase of the dis-
ease [14, 16, 21, 85]. Further characterisation revealed
that NRs develop liver steatosis, abdominal fat accumu-
lation, nephropathy, atrophy of pancreatic islets of Lang-
erhans and fatty streaks in the aorta, as well as
hypertension [14, 16, 21, 85]. Males are more prone than
females, with rapid progression to T2DM depending on
the glycaemic load of the challenge diet and cumulative
glycaemic load [15]. Although diet challenge appears as the
primary factor and dietary intervention can modulate the
development of T2DM and metabolic syndrome in NRs,
genetic susceptibility also plays a pivotal role, similar to
humans. This rodent model thus represents a novel system
of gene-diet interactions affecting energy utilisation that
can provide insights into the prevention and treatment of
diabetes, as well as the metabolic syndrome [14, 21]. As in
humans, the NR is sensitive to the daily glycaemic load and
as such reliably mirrors the course of T2DM and the meta-
bolic syndrome observed in humans [14].

At present, no cure has been found for T2DM and the
metabolic syndrome. Treatment methods normally sug-
gested include lifestyle modifications, treatment of obesity
that induces weight reduction, oral anti-diabetic medica-
tion that reduces intestinal glucose absorption, increases
insulin sensitivity or exerts insulin-sensitising effects or
lastly insulin injections [87]. All the above measures have
been shown to prevent T2DM in the NR. However,
current research strongly supports the concept that the
consumption of certain fruits and plant-derived foods is
inversely correlated with prevalence of T2DM and the
metabolic syndrome [8, 35, 80]. A great array of phenolic
compounds may exert anti-diabetic effects either directly
or indirectly [1]. Phenolic compounds may influence glu-
cose metabolism by several mechanisms, such as inhib-
ition of carbohydrate digestion and glucose absorption in
the small intestine, stimulation of insulin secretion from
pancreatic [ cells, modulation of hepatic gluconeogenesis,
activation of insulin receptors and glucose uptake in
insulin-sensitive tissues (thus enhancing insulin sensitiv-
ity) and modulation of gut flora activity, as well as modu-
lation of intracellular signalling pathways and gene
expression influencing glucose utilisation [26, 47, 79].
Some examples of plant phenolic compounds which were
found to display anti-diabetic effects in humans include
resveratrol [82, 110], olive leaf extracts [28, 125], pom-
egranate juice [88] and green tea extracts [61, 69].

The oil palm (Elaeis guineensis) fruit contains phenolic
compounds [99], which are extracted from the aqueous
vegetation liquor produced during oil palm milling. Palm
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fruit juice (PFJ) consists mainly of phenolic acids, in-
cluding three caffeoylshikimic acid isomers and p-hydro-
xybenzoic acid [99]. PF] has been shown to display
antioxidant properties and confer positive outcomes on
degenerative diseases in various animal models without
evidence of toxicity [16, 22, 65-68, 99, 100, 103]. In rela-
tion to T2DM, we have previously shown that PFJ blocked
T2DM progression in 12-week-old male NRs, with a sub-
stantial decrease in blood glucose after 17 weeks of treat-
ment [100]. In addition, PF] delayed T2DM onset or
completely prevented it during the intervention period
and even reversed advancing T2DM in young NRs [16].
PF] has also been shown to deter T2DM complications,
including retinopathy and nephropathy in NRs [14, 21,
85], not unlike other plant polyphenols [5]. PFJ thus has
demonstrated anti-diabetic effects. However, the detailed
molecular mechanisms by which PFJ effects these changes
in NRs have yet to be explored, prompting the microarray
gene expression analysis in the present study.

Methods

Animal feeding and sample collection

Three-week-old male NRs (# = 16) were divided into two
groups, controls without PFJ (n =8) and PFJ (n=38). We
chose to study 3-week-old Nile rats for 4 weeks in this
study as this window of development is the most sensitive
to the development of nutritionally induced T2DM in the
NR and thus provides the highest chances of altering this
development through the application of PFJ. This would
help pinpoint the gene expression changes caused by PFJ
in deterring the occurrence of diabetes more efficiently
[16, 21]. Early diabetes (7 weeks of age) in Nile rats is de-
tected by random blood glucose levels, whereas diabetic
fasting blood glucose does not always manifest until
12 weeks of age [85]. In addition, only males were used in
this experiment as they develop T2DM more readily than
females, presumably based on sex hormone differences
[21]. NRs in the control group were fed a semi-purified
high-carbohydrate diet ad libitum (% En from carbohy-
drate/fat/protein = 70:10:20, 16.7 kJ/g), while those in the
PFJ group were given liquid PFJ incorporated directly into
the same diet (415 ml of 13,000 ppm gallic acid equivalent
(GAE) for a final concentration of 5.4 g GAE per kg diet
or 2.7 g per 2000 kcal (daily human equivalent)) (Table 1).
The composition of PF] was as described previously [99],
with major phenolic components being three caffeoylshi-
kimic acid isomers and p-hydroxybenzoic acid. Body
weight was assessed throughout the feeding period, as
were food (in g/d and kJ/d) and fluid intakes. After
4 weeks, random and fasting blood glucose levels were
assessed, along with terminal organ weights, plasma lipids
and insulin. All experiments and procedures were ap-
proved by the Brandeis University Institutional Animal
Care and Use Committee.
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Food efficiency

Food efficiency was calculated by dividing body weight
gain (in g/d) by caloric intake (in kJ/d) and multiplying
the result by 1000. Results represent the body weight
gained (g) per 1000 k] consumed.

Random and fasting blood glucose

Blood glucose was measured in O,/CO,-anaesthetised NRs
from a drop of tail blood, obtained by lancet puncture of
the lateral tail vein using an Elite XL glucometer (Bayer
Co., Elhart, IN). Random blood glucose (RBG) was assessed
in non-fasted NRs between 9 and 10 am on non-feeding
days (semi-purified diets were replenished three times per
week). Fasting blood glucose (FBG) was measured at about
9 to 10 am after 16 h of overnight food deprivation.

Terminal organ weights

Organs (livers, kidneys, caecum and adipose) were
weighed after excision, and their weights (in g) were di-
vided by the terminal body weight (in g) to obtain a per-
centage. The livers were snap-frozen in liquid nitrogen
and stored at -80 °C until the total RNA extraction
process for gene expression analysis. The relative carcass
weight (as percentage body mass) was determined by
weighing lean body mass (after exsanguination and exci-
sion of all organs) and dividing it by the terminal body
weight (in g). Carcass weight was included as an indica-
tor of muscle growth. Body length (nose to base of tail,
in cm) was also included as a parameter of growth.

Plasma biochemical measurements

Plasma triacylglycerol (TG) and total cholesterol (TC)
were determined spectrophotometrically using Infinity™
kits (Thermo Fisher Scientific Inc., Middletown, VA, TG
ref # TR22421, TC ref # TR13421). Plasma insulin was
determined with an ELISA kit for rat/mouse insulin
(Linco Research, EMD Millipore, Billerica, MA, ref #
EZRMI-13K), according to the manufacturer’s protocol.

Statistical analyses

Statistical analyses on physiological and biochemical pa-
rameters were performed using the Super ANOVA stat-
istical software (Abacus Concepts, Inc., Berkeley, CA).
Two-tailed unpaired Student’s ¢ test was performed, and
differences with p values of less than 0.05 were consid-
ered statistically significant.

Microarray gene expression analysis

Total RNA isolation from frozen NR livers was conducted
using the RNeasy Plus Mini Kit (Qiagen, Inc., Valencia, CA)
and QIAshredder homogenisers (Qiagen, Inc., Valencia,
CA), preceded by grinding in liquid nitrogen using mortars
and pestles. The total RNA samples obtained were subjected
to NanoDrop 1000A Spectrophotometer (Thermo Fisher
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Table 1 Composition of high-carbohydrate diet

Component Amount (g/kg)
% En
Carbohydrate 70
Fat 10
Protein 20
En (kJ/g) 16.7
Ingredients (g/kg)
Casein 100
Lactalbumin 100
Dextrose 350
Corn starch 288 (+60 with gel)®
Fat 44
Butter (g of fat) 8
Tallow 15
Soybean oil 23
Mineral mix® 44
Vitamin mix* 1
Choline chloride 3
Cholesterol 06

260 g corn starch was added to 800 ml water to form a gel or added to

375 ml water + 415 ml PFJ (13,000 ppm GAE for a final concentration of 5.4 g
GAE per kg diet or 2.7 g per 2000 kcal)

PAusman-Hayes salt mix. Mineral mix contained the following (g/kg mix):
magnesium oxide, 320; calcium carbonate, 290.5; potassium phosphate
dibasic, 312.2; calcium phosphate dibasic, 72.6; magnesium sulphate, 98.7;
sodium chloride, 162.4; ferric citrate, 26.6; potassium iodide, 0.77; manganese
sulphate, 3.66; zinc chloride, 0.24; cupric sulphate, 0.29; chromium acetate,
0.044; sodium selenite, 0.004

“Hayes-Cathcart vitamin mix. Vitamin mix contained the following (g/kg mix):
D-o-tocopheryl acetate (500 1U/g), 15; inositol, 5; niacin, 3; calcium
pantothenate, 1.6; retinyl palmitate (500,000 1U/g), 1.5; cholecalciferol
(400,000 1U/g), 0.1; menadione, 0.2; biotin, 0.02; folic acid, 0.2; riboflavin, 0.7;
thiamin, 0.6; pyridoxine HCl, 0.7; cyanocobalamin, 0.001; dextrin, 972

Scientific, Waltham, MA) measurement for yield and purity
assessment. Integrity of the total RNA samples was then
assessed using the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA) and Agilent RNA 6000 Nano
Chip Assay Kit (Agilent Technologies, Santa Clara, CA).
Amplification of total RNA samples which were of
high yield, purity and integrity was performed using the
Ilumina TotalPrep RNA Amplification Kit (Ambion,
Inc., Austin, TX). The complementary ribonucleic acid
(cCRNA) produced was then hybridised to the Illumina
MouseRef-8 Version 2 Expression BeadChip (Illumina,
Inc., San Diego, CA), using the Direct Hybridization Kit
(lumina, Inc., San Diego, CA). As each MouseRef-8
BeadChip enables the interrogation of eight samples in
parallel, a total of eight cRNA samples were used in the
microarray experiment, by selecting four total RNA sam-
ples with the highest RNA integrity numbers and 28S/
18S ribosomal RNA (rRNA) ratios within each condi-
tion. Microarray hybridisation, washing and scanning
were conducted according to the manufacturer’s
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instructions. The raw gene expression data obtained are
available at Gene Expression Omnibus [33] (accession
number: GSE64901).

Quality control of the hybridisation, microarray raw
data extraction and initial analysis were performed using
the Illumina BeadStudio software (Illumina, San Diego,
CA). Outlier samples were also removed via hierarchical
clustering analysis provided by the Illumina GenomeStu-
dio software, via different distance metrics including cor-
relation, absolute correlation, Manhattan and Euclidean
distance metrics. Gene expression values were normal-
ised using the rank invariant method, and genes which
had a detection level of more than 0.99 in either the
control or treatment samples were considered signifi-
cantly detected.

To filter the data for genes which changed significantly
in terms of statistics, the Illumina Custom error model
was used and genes were considered significantly chan-
ged at a differential score of more than 13, which was
equivalent to a p value <0.05. Two-way (gene and sam-
ple) hierarchical clustering of the significant genes was
then performed using the TIGR MeV software to ensure
that the replicates of each condition were clustered to
each other. The Euclidean distance metric and average
linkage method were used to carry out the hierarchical
clustering analysis. The genes and their corresponding
data were then exported into the Microsoft Excel soft-
ware for further analysis. To calculate fold changes, an
arbitrary value of 10 was given to expression values
which were less than 10. Fold changes were then calcu-
lated by dividing the mean values of signal Y (treatment)
with those of signal X (control) if the genes were up-
regulated and vice versa if the genes were down-
regulated.

Changes in biological pathways and gene ontologies
(biological processes) were then assessed via functional
enrichment analysis, using the GO-Elite software. The
GO-Elite software ranks WikiPathways [58, 92] and gene
ontologies based on the hypergeometric distribution.
WikiPathways and gene ontologies which had permuted
p values of less than 0.05, numbers of genes changed of
more than or equal to 2 and Z scores of more than 2
were considered significantly changed. In this study, up-
regulated and down-regulated genes were analysed sep-
arately in the functional enrichment analysis but were
viewed together in each WikiPathway, using the PathVi-
sio software [122]. For each of these WikiPathways,
boxes coloured yellow indicate genes which were up-
regulated while those coloured blue indicate genes which
were down-regulated. The fold changes of the genes
were indicated next to their boxes.

Changes in regulatory networks were also analysed
through the use of the Ingenuity Pathways Analysis soft-
ware (Ingenuity® Systems, Redwood City, CA). A
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network is a graphical representation of the molecular
relationships between genes or gene products. Genes or
gene products were represented as nodes, and the bio-
logical relationship between two nodes was represented
as an edge (line). The intensity of the node colour indi-
cates the degree of up-regulation (red) or down-
regulation (green). Nodes were displayed using various
shapes that represented the functional class of the gene
product. Edges were displayed with various labels that
described the nature of the relationship between the
nodes.

Real-time gRT-PCR validation

Two-step real-time quantitative reverse transcription-
polymerase chain reaction (qQRT-PCR) was conducted
using TagMan Gene Expression Assays (Applied Biosys-
tems, Foster City, CA) to validate the microarray data
obtained. This was performed on six differentially
expressed target genes of interest (Table 2), which were
selected based on the microarray data analysis per-
formed. The same aliquots of total RNA samples used in
the microarray experiments were utilised for this ana-
lysis. Primer and probe sets for the selected genes were
obtained from the ABI Inventoried Assays-On-Demand
(Applied Biosystems, Foster City, CA).

Briefly, reverse transcription to generate first-strand
complementary deoxyribonucleic acid (cDNA) from
total RNA was conducted using the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA). Real-time PCR was then performed on
the first-strand cDNA generated using a 25 pL reaction
volume in an Applied Biosystems 7000 Real-Time PCR
System (Applied Biosystems, Foster City, CA) using the
following conditions: 50 °C, 2 min, 1 cycle; 95 °C,
10 min, 1 cycle; 95 °C, 15 s and 60 °C, 1 min, 40 cycles.
For gene expression measurements, reactions for each
biological replicate and non-template control (NTC)
were performed in duplicates. For amplification effi-
ciency determination, reactions were performed in
triplicates.

Quality control of the replicates used, real-time qRT-
PCR data extraction and initial analysis were conducted
using the 7000 Sequence Detection System software
(Applied Biosystems, Foster City, CA). A manual thresh-
old of 0.6000 and an auto baseline were applied in order
to obtain the threshold cycle (Ct) for each measurement
taken. The threshold was chosen as it intersected the ex-
ponential phase of the amplification plots [19]. The cri-
teria for quality control of the data obtained include ACt
less than 0.5 between technical replicates and ACt more
than 5.0 between samples and NTCs [86].

Relative quantification of the target genes of interest
was performed using the gBase 1.3.5 software (Center
for Medical Genetics, Ghent University Hospital, Ghent,
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Table 2 Genes selected for the real-time gRT-PCR validation experiment

Symbol Definition Accession Assay ID

Target genes
Apocl Apolipoprotein C-I NM_007469 MmO00431816_m1
Apoc3 Apolipoprotein C-lll NM_023114 Mm00445670_m1
Map3ki1 Mitogen-activated protein kinase kinase kinase 11 NM_022012 Mm00491529_m1
Map3k2 Mitogen-activated protein kinase kinase kinase 2 NM_011946 Mm00442451_m1
Pik3r3 Phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 3 (p55) NM_181585 Mm00725026_m1
Stxbp2 Syntaxin binding protein 2 NM_011503 MmO00441589_m1

Reference genes
Cctéa Chaperonin containing Tcp1, subunit 6a (zeta) NM_009838 MmO00486818_m1
Hpd 4-hydroxyphenylpyruvic acid dioxygenase NM_008277 MmO00801734_m1
Nipbl Nipped-B homologue (Drosophila) NM_027707 MmO01297452_m1
Trim39 Tripartite motif-containing 39 NM_178281 MmO01273530_m1

The six target genes were selected based on their functional significance, their statistical significance, their presence as single splice transcripts in microarrays and
their availability as Tagman assays designed across splice junctions. From the microarray data obtained, four candidate reference genes were also chosen to be
tested for expression stability across the groups, with the three most stable ones being finally selected for relative quantification of the target genes

Belgium) [48], which takes into account the calculations
of amplification efficiencies and multiple housekeeping
genes. Expression levels of target genes were normalised
to the geometric mean of the three most stable reference
genes, selected out of the four tested (Table 2). Stability
of these reference genes was assessed using the geNorm
3.5 software (Center for Medical Genetics, Ghent Uni-
versity Hospital, Ghent, Belgium) [123].

Results

Physiological and biochemical parameters

NRs fed the PFJ-supplemented diet consumed about
15 % fewer calories (p < 0.05) than control rats and were
associated with significantly lower body weights (p <
0.05) (Table 3). Fluid intake did not significantly differ
between the two groups. NRs in the PF] group had less
adipose tissue (p<0.05) and a tendency for greater
carcass weight (an indicator of lean body mass) and food
efficiency. Their caeca were heavier too (p <0.05) com-
pared to the control group. NRs in the PFJ group had
significantly lower levels of RBG (p <0.05) and plasma
TG (p<0.05) compared to the control group, whereas
no significant differences in overnight FBG were ob-
served. Although TC in the PFJ group was slightly
greater than that in the control group, it was not signifi-
cant (p > 0.05). Insulin levels also did not differ between
the two groups. Liver and kidney weights as percentages
of body weights were similar between groups.

Microarray gene expression

Analysis of microarray gene expression of the NR livers
revealed that 71 genes were up-regulated, while 108
genes were down-regulated in the PFJ group compared
to the control group (Table 4). A few apolipoprotein

genes, including Apoal, Apoa2, Apocl and Apoc3, were
up-regulated in the PFJ group. Several cytochrome P450
genes involved in phase I detoxification, such as Cypla2,
Cyp2c67, Cyp2el and Cyp4fi4, were also up-regulated.
Three phase II detoxification genes, i.e. Ugt2b36, Cat
and Gsto2, were up-regulated as well. On the other
hand, genes down-regulated in the PF] group include
those involved in the insulin-signalling pathway, such as
phosphatidylinositol kinases, Pik3r3 and Pi4ka, as well
as mitogen-activated protein triple kinases, Map3k2 and
Map3kli. Two genes related to fibrosis induction, Pcolce
and Plod2, were also down-regulated in the PFJ group.

Functional enrichment analysis showed that various
biological pathways (Table 5) and gene ontologies (bio-
logical processes) (Table 6) were differentially regulated
in NRs given PF] compared to controls. Among Wiki-
Pathways up-regulated by PFJ were those of tryptophan
metabolism, methylation, fatty acid omega oxidation, nu-
clear receptors in lipid metabolism and toxicity, comple-
ment and coagulation cascades, urea cycle and
metabolism of amino groups, retinol metabolism, meta-
pathway biotransformation, one-carbon metabolism and
nuclear receptors, as well as cytochrome P450s. Down-
regulated WikiPathways include regulation of actin cyto-
skeleton, insulin signalling and TNF-alpha NF-kf signal-
ling. In relation to T2DM, a significant observation was
that the insulin-signalling pathway was down-regulated
in the PFJ group (Fig. 1).

Up-regulated gene ontologies (biological processes) of
interest include negative feedback of very-low-density
lipoprotein particle remodelling, negative feedback of
receptor-mediated endocytosis, negative feedback of
very-low-density lipoprotein particle clearance, negative
feedback of lipid catabolic process, macromolecular
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Table 3 Diabetes assessment parameters of 3-week-old male
NRs fed either a high-carbohydrate diet only or a high-
carbohydrate diet supplemented with PFJ for 4 weeks

Group Control PFJ
(n=8) (n=8)
Mean SD Mean SD
Body weight (g)
Initial (3 weeks old) 37 7 35 8
After 4 weeks 7748 70° 10
Food intake
g/d 8° 1 7° 1
kJ/d 134 25 1177 13
kcal/d 32° 6 28° 3
Food efficiency (g body weight gained/ 107 13 111 09
1000 kJ)
Fluid intake (ml/d) 18 7 21 7
Random blood glucose (RBG) (mg/dl)
After four weeks 241% 133 128° 121
Fasting blood glucose (FBG) (mg/dl)
After four weeks 77 38 70 22
Terminal organ weight (% body weight)
Liver 36 06 36 0.5
Kidneys 0.8 02 09 0.2
Caecum 14° 04 19 06
Adipose
Epididymal 29° 05 24° 08
Perirenal 14° 04 1% 04
Brown fat 17402 15 03
Total fat 60 08 517 11
Carcass 73 2 75 5
Body length (cm) 129° 04 124° 07
Plasma lipids (mmol/l)
Total cholesterol (TC) 39 13 47 28
Triacylglycerol (TG) 28 13 19 05
Insulin (pmol/1) 06 03 06 04

Values sharing a common superscript are significantly different from each
other (p < 0.05) by two-tailed unpaired Student’s t test

complex remodelling, positive feedback of cholesterol
esterification, negative feedback of lipid biosynthetic
process, cellular response to lipid, cellular response to
steroid hormone stimulus, negative feedback of cellular
catabolic process, oxidation-reduction process, cellular
response to peptide hormone stimulus and cellular
carbohydrate metabolic process, as well as positive feed-
back of signal transduction. On the other hand, down-
regulated gene ontologies (biological processes) of inter-
est include mammalian target of rapamycin (mTOR) sig-
nalling cascade, microtubule polymerisation, cell-cell
junction organisation, cell activation involved in immune
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response, methylation, cell adhesion and catalytic activ-
ity, as well as negative feedback of protein
phosphorylation.

Network analysis using the Ingenuity Pathways Ana-
lysis software showed that several apolipoproteins in-
cluding apolipoproteins Al, A2 and C3 were up-
regulated by PFJ (Fig. 2). In addition, apolipoprotein C1
was up-regulated as well (Table 4).

Real-time gRT-PCR validation

To confirm the microarray results, the expression levels
of six selected target genes were measured using real-
time quantitative reverse transcription-polymerase chain
reaction (qQRT-PCR). From the four selected candidate
reference genes tested, analysis using the geNorm 3.5
software [123] showed that Hpd, Nipbl and Trim39 were
more stable than Cct6a. Hence, the former three were
selected as the reference genes to normalise the expres-
sion values of the target genes. The directions of fold
changes of the target genes obtained from the real-time
qRT-PCR technique as quantified by the qBase software
[48] were comparable to those obtained from the micro-
array technique (Fig. 3). However, the magnitudes of fold
changes obtained using real-time qRT-PCR were consist-
ently lower than those obtained using microarrays.

Discussion

Rapid economic progress has resulted in lifestyle
changes, especially in diet and physical activity. In com-
bination with aging populations, this has resulted in a
worldwide epidemic of obesity, T2DM and metabolic
syndrome [105]. In the USA, the prevalence of obesity
which leads to T2DM and the metabolic syndrome has
risen, even as the intake of fat is reduced. This has been
referred to as the American Paradox [17], and high-
carbohydrate intake has been suggested to be the cause
of the problem [9].

Many phenolic-rich extracts have been suggested to be
beneficial in preventing or treating T2DM and its related
complications. In line with this, we have previously
shown that providing PFJ at 1800 mg/L GAE ad libitum
as the sole drinking fluid for 17 weeks blocked T2DM
and metabolic syndrome progression in 12-week-old
male NRs, as evidenced by normalisation of initially ele-
vated blood glucose and plasma lipids [15, 16, 100]. The
anti-diabetic effects of PF] appeared relatively independ-
ent of starting age, and no impairment of energy intake
or body weight dynamics have been observed in mature
NRs, nor were any other toxic effects attributed to it
[16]. In addition, PF] protection against blood glucose
elevation has also previously been shown to occur inde-
pendently of diet (chow or semi-purified, moderate or
high carbohydrate), study duration, initial blood glucose
or application method [16]. PF] may thus represent a
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Table 4 List of genes significantly regulated by PFJ
Symbol Definition Differential score Fold change
Up-regulated genes
Sds Serine dehydratase 51.92 4.95
Plekhb1 Pleckstrin homology domain containing, 4501 3.66
family B (evectins) member 1
Npclli Niemann-Pick C1-like 1 30.36 741
EG240549 Predicted gene, EG240549 25.98 3.13
F7 Coagulation factor VII 2344 3.08
Ecmi Extracellular matrix protein 1 23.18 232
Enpp2 Ectonucleotide pyrophosphatase/phosphodiesterase 2 21.76 2.50
Ugt2b36 UDP glucuronosyltransferase 2 family, polypeptide B36 21.09 298
Hdac3 Histone deacetylase 3 2037 293
Cspg5 Chondroitin sulphate proteoglycan 5 20.27 2.05
Cyp2c67 Cytochrome P450, family 2, subfamily ¢, polypeptide 67 20.06 14.08
Speccll SPECC1-like 20.05 1.83
Cpsi Carbamoyl-phosphate synthetase 1, nuclear 1942 2.78
gene encoding mitochondrial protein XM_993466
Hbb-b1 Haemoglobin, beta adult major chain 19.19 2.14
Tnrc6a Trinucleotide repeat containing 6a 19.03 1.58
Rps7 Ribosomal protein S7 18.21 1.76
Apocl Apolipoprotein C-I 1747 1349
Cyp2el Cytochrome P450, family 2, subfamily e, polypeptide 1 16.93 233
Ifrd1 Interferon-related developmental regulator 1 16.84 1.94
Mup2 Major urinary protein 2, transcript variant 1 16.51 197.62
Rpn2 Ribophorin I 1641 207
Asl Argininosuccinate lyase 16.33 1.85
Ptprt Protein tyrosine phosphatase, receptor type, T 16.06 2.78
Bcdo2 Beta-carotene 9', 10'-dioxygenase 2 16.00 243
Zfthx2 Zinc finger homeobox 2 15.95 1.77
Mthfd1 Methylenetetrahydrofolate dehydrogenase 15.95 1.54
(NADP+ dependent),
methenyltetrahydrofolate cyclohydrolase,
formyltetrahydrofolate synthase
Rnf215 Ring finger protein 215 1591 163
Gne Glucosamine 15.82 254
Cyp4f14 Cytochrome P450, family 4, subfamily f, polypeptide 14 15.60 255
Zxda Zinc finger, X-linked, duplicated A 15.35 1.51
Nat1 N-acetyltransferase 1 (arylamine N-acetyltransferase) 15.26 2.05
Cat Catalase 15.23 284
Tyms-ps Thymidylate synthase, pseudogene 15.16 1.69
F5 Coagulation factor V 1512 238
Fbxo7 F-box only protein 7 14.96 1.71
Apoa? Apolipoprotein A-ll 14.91 267
Hagh Hydroxyacyl glutathione hydrolase 14.87 164
Alas1 Aminolevulinic acid synthase 1 14.80 10.33
Inmt Indolethylamine N-methyltransferase 14.79 262
620807.00 Predicted gene, 620807 1478 106.29
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Hsd17b10

Nrli3

Nit2
Tocid15
Apoc3
ORF61
Ephx1
Serpinald

Stabl
lfitm2
Hmgcs2

Serpinalb

Tmem132e

Syvnl

Cypla2

Reln

Fzd7

F13b

Rpi36al

Kikb1

Sdf2

3110049J23Rik

2810004N20Rik

Rxrg

Ces3

Secl6b

Gsto2

5830404H04Rik

Creld1

Matla

Apoal
Down-regulated genes

St3gale

Btbd3

Wop2

LOCT100045542

Shmt2
Clptm1!

Cox10

Gprio7

Hydroxysteroid (17-beta) dehydrogenase
10, nuclear gene encoding mitochondrial protein

Nuclear receptor subfamily 1, group I, member 3
Nitrilase family, member 2

TBC1 domain family, member 15

Apolipoprotein C-ll

Open reading frame 61

Epoxide hydrolase 1, microsomal

Serine (or cysteine) peptidase inhibitor,
clade A, member 1d

Stabilin 1
Interferon induced transmembrane protein 2

3-hydroxy-3-methylglutaryl-Coenzyme A

synthase 2, nuclear gene encoding mitochondrial protein

Serine (or cysteine) preptidase inhibitor, clade A, member 1b

Transmembrane protein 132E

Synovial apoptosis inhibitor 1, synoviolin

Cytochrome P450, family 1, subfamily a, polypeptide 2

Reelin

Frizzled homologue 7 (Drosophila)
Coagulation factor Xlll, beta subunit
Ribosomal protein I136a-like

Kallikrein B, plasma 1

Stromal cell derived factor 2

RIKEN cDNA 3110049 J23 gene

RIKEN cDNA 2810004 N20 gene
Retinoid X receptor gamma
Carboxylesterase 3

SEC16 homologue B (Saccharomyces cerevisiae)
Glutathione S-transferase omega 2
RIKEN cDNA 5830404H04 gene
Cysteine-rich with EGF-like domains 1
Methionine adenosyltransferase |, alpha

Apolipoprotein A-l

ST3 beta-galactoside alpha-2,3-sialyltransferase 6
BTB (POZ) domain containing 3
WW domain binding protein 2

Predicted: similar to FERMRhoGEF (Arhgef)
and pleckstrin domain protein 1

Serine hydroxymethyltransferase 2 (mitochondrial),
nuclear gene encoding mitochondrial protein

CLPTM1-like

COX10 homologue, cytochrome ¢ oxidase assembly
protein, heme A: farnesyltransferase (yeast), nuclear
gene encoding mitochondrial protein

G protein-coupled receptor 107

14.75

14.63
14.58
14.57
14.56
14.51
14.36
14.26

14.19
14.05
14.03

14.03
13.98
13.97
13.92
13.90
13.87
13.83
13.73
13.72
13.53
1344
1340
13.36
13.20
13.20
13.17
13.14
13.13
13.04
13.02

-13.09
-13.12
-13.12
-13.14

-13.19

—13.24

-13.26

-13.27

2.30

202
1.99
1.71
2.77
1.54
298
1347

2.00
1.55
541

1348
1.99
1.78
2.38
244
1.96
2.30
1.79
2.29
144
1.70
1.74
2.29
4.77
231
233
1.90
146
14.39
25.82

=21.14
=251
-147
-3.04

-1.69

-148

-1.54

-1.82
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Dnajc10
Plod2
Mageel
Ppplriéa
Prkcbp1
Map3k11
Marcks
Tex9
Cogl
Sle39ai3
Fam110b
Cox6bl1
Stxbp2
Ino80b
Nap1l4
Flii
Ahdc1
Nol5a
2400001E08Rik
Prmt5
Tinagl
Parl
Zmats
Calm3
Ak3I1

2700087H15Rik
Grit

X99384

Ddx27

Zfp313
D15Wsul69e

Zerl

Snapc2

Dock1

Pak4

Arl2

Pcolce
1110018G07Rik
2610528J11Rik
Akp2

Maprel
Tmem?138
Pacs2
LOC100047173

Dnaj (Hsp40) homologue, subfamily C, member 10
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
Melanoma antigen, family E, 1

Protein phosphatase 1, regulatory (inhibitor) subunit 16A
Protein kinase C binding protein 1

Mitogen-activated protein kinase kinase kinase 11
Myristoylated alanine rich protein kinase C substrate
Testis expressed gene 9

Component of oligomeric golgi complex 1

Solute carrier family 39 (metal ion transporter), member 13

Family with sequence similarity 110, member B
Cytochrome c oxidase, subunit VIb polypeptide 1
Syntaxin binding protein 2

INO80 complex subunit B

Nucleosome assembly protein 1-like 4
Flightless I homologue (Drosophila)

AT hook, DNA binding motif, containing 1
Nucleolar protein 5A

RIKEN cDNA 2400001E08 gene

Protein arginine N-methyltransferase 5
Tubulointerstitial nephritis antigen-like
Presenilin associated, rhomboid-like

Zinc finger, matrin type 5

Calmodulin 3

Adenylate kinase 3-like 1, nuclear gene
encoding mitochondrial protein

RIKEN cDNA 2700087H15 gene
RHOGTPase-activating protein

cDNA sequence X99384

DEAD (Asp-Glu-Ala-Asp) box polypeptide 27
Zinc finger protein 313

DNA segment, Chr 15, Wayne State
University 169, expressed

Zer-1 homologue (Caenorhabditis elegans)

Small nuclear RNA activating complex, polypeptide 2
Dedicator of cytokinesis 1

P21 (CDKNTA)-activated kinase 4

ADP-ribosylation factor-like 2

Procollagen C-endopeptidase enhancer protein
RIKEN ¢cDNA 1110018G07 gene

RIKEN cDNA 2610528J11 gene

Alkaline phosphatase 2, liver

Microtubule-associated protein, RP/EB family, member 1
Transmembrane protein 138

Phosphofurin acidic cluster sorting protein 2

PREDICTED: similar to synaptotagmin-like 1

-13.29
-13.29
—13.31
-13.35
-13.36
-1337
-13.38
-13.39
—1340
-1340
—1343
—1344
—1345
—1345
—1345
—1347
-13.55
—-13.69
=13.75
-13.77
—13.78
—13.84
-13.85
—-13.86
-13.86

-13.93
—13.95
-13.96
-13.97
—-13.98
-14.02

-14.03
—14.05
-14.19
—14.21
—14.22
—14.24
—14.28
-14.29
—14.31
—14.35
-14.36
—1441
—1441

-1.55
—2.74
-4.06
=219
—2.04
—148
=147
—246
-1.51
—2.66
-3.23
—145
-1.68
-2.52
=155
-1.63
-1.63
—-1.52
=177
-1.79
-3.14
-1.51
-1.86
-2.15
=149

-1.54
-2.23
-1.77
-2.09
-1.53
—4.17

=201
—2.04
=191
-1.51
-6.24
=215
-1.61
—-2.35
=272
-1.56
=251
-1.70
—334
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Anol0
Vasn
Cml4
Clcn3
Pik3r3

Timp1
FoxI15
Npc2
Mrps33

Pgam5
2310005N01Rik
Ctdspl

LOCT100046039
Gnptab

Tocldi4
Cyr61
Gdpd1

2310022B05Rik

Asnal

Tct4

Vips26b

N2
LOC192758
Drg2

lggap1

Nrp1

Tocldi13
2310003P10Rik
Trim28

Tir2
0910001L09Rik
B930041F 14Rik
Nup93

Lphni

Odz4

Gnai2

Cyp4f13

Aacs

Smarca4

Anoctamin 10

Vasorin

Camello-like 4

Chloride channel 3, transcript variant a

Phosphatidylinositol 3-kinase, regulatory
subunit, polypeptide 3 (p55)

TIMP metallopeptidase inhibitor 1
F-box and leucine-rich repeat protein 15
Niemann-Pick disease, type C2

Mitochondrial ribosomal protein $33, nuclear
gene encoding mitochondrial protein,
transcript variant 2

Phosphoglycerate mutase family member 5
RIKEN cDNA 2310005N01 gene

CTD (carboxy-terminal domain, RNA polymerase I,
polypeptide A) small phosphatase-like

PREDICTED: similar to histone deacetylase HD1

N-acetylglucosamine-1-phosphate transferase,
alpha and beta subunits

TBC1 domain family, member 14
Cysteine-rich protein 61

Glycerophosphodiester phosphodiesterase
domain containing 1

RIKEN cDNA 2310022B05 gene

Arsa arsenite transporter, ATP-binding,
homologue 1 (bacterial)

Transcription factor 4, transcript variant 1

Vacuolar protein sorting 26 homologue B (yeast)
Neurofibromatosis 2

Similar to hypothetical protein MGC39650
Developmentally regulated GTP binding protein 2

IQ motif containing GTPase activating protein 1
Neuropilin 1

TBC1 domain family, member 13

RIKEN cDNA 2310003P10 gene

Tripartite motif protein 28

Toll-like receptor 2

RIKEN ¢cDNA 0910001L09 gene

RIKEN cDNA B930041F14 gene

Nucleoporin 93 kDa

Latrophilin 1

Odd Oz/ten-m homologue 4 (Drosophila)

Guanine nucleotide binding protein, alpha inhibiting 2
Cytochrome P450, family 4, subfamily f, polypeptide 13
Acetoacetyl-coa synthetase

SWI/SNF related, matrix associated, actin
dependent regulator of chromatin,
subfamily a, member 4

—14.47
—1448
—14.50
-14.50
—14.54

—14.61
—14.65
—14.68
—14.73

—14.73
-14.79
—14.83

—14.85
—14.93

—-15.03
-15.07
=15.11

-15.16
—-15.16

=15.17
-1543
—1554
—-15.63
—15.66
—-15.89
-16.05
-16.13
—-16.15
-16.18
-1641
-16.42
-16.74
-16.93
—17.11
=17.13
-17.14
-17.16
=17.26
—17.42

-5.94
-1.65
-3.02
-1.73
—4.60

-1.60
-1.59
-1.60
-1.65

-1.84
—2.67
—249

=229
-1.90

—2.88
—4.37
-1.58

-1.53
-1.66

-2.10
-1.57
—264
-3.10
-1.74
-1.73
-2.33
—3.24
—3.82
-1.79
-2.26
=215
—244
=222
-2.08
-4.10
-2.08
—4.76
-1.62
-1.89
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Gatad?b GATA zinc finger domain containing 2B —1746 -231
Actr1b ARP1 actin-related protein 1 homologue -17.87 -1.74
B, centractin beta (yeast)
Neol Neogenin 1 -17.93 -2.00
Meis2 Meis homeobox 2, transcript variant 2 —-18.31 -1.91
Serpinh1 Serine (or cysteine) peptidase inhibitor, clade H, member 1 -1844 -9.72
Cc2d2a Coiled-coil and C2 domain containing 2A -1844 -2.28
Vdacl Voltage-dependent anion channel 1 —-18.88 —-1.65
Picalm Phosphatidylinositol binding clathrin assembly protein -19.13 -1.73
Ankrd24 Ankyrin repeat domain 24 -19.20 —641
Pidka Phosphatidylinositol 4-kinase, catalytic, alpha polypeptide -19.52 -2.19
Map3k2 Mitogen-activated protein kinase kinase kinase 2 —-19.53 —3.51
1700029G01Rik RIKEN ¢cDNA 1700029G01 gene -19.78 —2.21
Atnl Atrophin 1 —2142 -1.86
Itprip Inositol 1,4,5-triphosphate receptor interacting protein —22.26 —6.38
Gadd45g Growth arrest and DNA-damage-inducible 45 gamma —23.65 —244
Ly6e Lymphocyte antigen 6 complex, locus E -2391 -2.53
Ctcfl CCCTC-binding factor (zinc finger protein)-like —27.64 -2.21

source for food supplementation or as a nutraceutical
having possible anti-diabetic properties.

PFJ reduced weight gain, adipose tissue, plasma TG and
plasma RBG but increased caecum weight

Following the 4-week high-carbohydrate diet challenge
in weanling male NRs, the group supplemented with PF]
weighed less and their food intake was significantly
lower. However, the carcass (lean mass) and food effi-
ciency tended to be greater for the PFJ group, and they
had less adipose tissue. Thus, control rats gained more
weight than those in the PFJ group, mostly due to the
accumulation of adipose tissue, while PF] seemed to in-
hibit appetite and reduce body fat percentage without
reducing food efficiency or leading to a decrease in lean
body mass. The latter effect is a characteristic of dietary
fibres that are fermented by large bowel microbiota
[107], and it is noteworthy that the enlarged caeca in
rats fed PFJ] would be consistent with enhanced fermen-
tation of PF] components by their large bowel flora. Fas-
ter weight gain in male NRs has also been found to
enhance T2DM induction in growing rats [15, 21]. As
visceral adiposity and hyperlipaemia are two of the risk
factors for cardiovascular insults in metabolic syndrome,
the reduced body fat percentage and TG levels observed
in the PFJ group indicate a beneficial metabolic effect
beyond improved blood glucose levels.

The PFJ group also had a significantly lower level of
RBG compared to the controls, although no differences
were observed in terms of FBG. RBG is an early and
more reliable parameter of T2DM than FBG in NRs

[14-16, 21, 85]. This is because the correlations between
circulating glucose and different markers of T2DM, such
as elevations in HbAlc and hypertension, are stronger
for RBG than FBG in NRs. In addition, acute cell and
organ damage is best reflected by the degree and dur-
ation of postprandial hyperglycaemia, thus rendering
RBG the best indicator of such damage [15, 16]. The ob-
servation that insulin levels were not significantly differ-
ent between the two groups (p > 0.05) indicates that the
improved glucose control was due to mechanisms other
than increased insulin secretion, such as reduced intes-
tinal glucose absorption or improved insulin sensitivity.
As hyperinsulinaemia is one of the first indicators of in-
sulin resistance and a risk factor for the eventual deple-
tion of pancreatic beta cells, this is a crucial observation
for the prevention of T2DM, potentially reducing the
need for or delaying the onset of insulin therapy or en-
abling a reduced dose. PFJ thus exerted beneficial meta-
bolic effects, preventing NRs from overconsumption of
calories and achieving improved control of plasma glu-
cose and lipids.

As NRs in the present study were fed ad libitum, at
least part of the effects ascribed to PFJ] could be due to
mild caloric restriction caused by reduced food intake.
Nevertheless, caloric restriction in the classical sense
typically entails a 20-40 % reduction in food consump-
tion relative to normal intake [64], which was not the
case here at 15-20 %. Furthermore, we previously found
no reduction in food intake or any difference in PF] pro-
tection in older NRs when given artificially sweetened
PFJ, suggesting that PF] protection against diabetes
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WikiPathway name No. changed % changed Z score Permuted p

Up-regulated WikiPathways
Tryptophan metabolism:WP79 6 15.3846 94735 0.0000
Aflatoxin B1 metabolism:WP1262 2 40.0000 9.1192 0.0005
Methylation:WP1247 2 285714 76363 0.0000
Fatty acid omega oxidation:WP33 2 285714 7.6363 0.0015
Statin pathway (PharmGKB):WP1 3 16.6667 6.9838 0.0000
Blood clotting cascade:WP460 3 15.7895 6.7763 0.0000
Nuclear receptors in lipid metabolism and toxicity:WP431 3 10.0000 5.2068 0.0005
Complement and coagulation cascades:WP449 4 6.8966 4.7841 0.0000
Urea cycle and metabolism of amino groups:WP426 2 IRRARN 45187 0.0020
Retinol metabolism:WP1259 3 76923 44328 0.0005
Metapathway biotransformation:WP1251 5 44248 3.9468 0.0000
One-carbon metabolism:WP435 2 83333 3.7980 0.0040
Nuclear receptors:WP509 2 5.5556 29123 0.0075
Cytochrome P450:WP1274 2 52632 2.8039 0.0105

Down-Regulated WikiPathways
Regulation of actin cytoskeleton:WP523 4 3.0534 3.6287 0.0080
Insulin signalling:WP65 4 28169 34170 0.0110
Endochondral ossification:WP1270 2 3.3898 2.7401 0.0460
TNF-alpha NF-k3 signalling pathway:WP246 3 22222 24278 0.0430

development does not depend on reductions in food
consumption [16].

In addition, NRs in the PFJ group had heavier caeca
(p<0.05) than the controls. This may be attributed to
the presence of fermentable dietary fibres in the PFJ ex-
tract that resisted upper gut digestion and reached the
caecum (the main site of bacterial fermentation in ro-
dents) where they were fermented by the microbiota.
However, the bioactive components in PFJ] and/or their
derived metabolites may have also played a part in the
observed caecum enlargement. In the colon, where mi-
crobial glucosidases and glucuronidases are active, phen-
olic glycosides are intensively metabolised and their
metabolites also modify colon parameters, such as short-
chain fatty acids, amino acids and vitamins [30]. This is
in agreement with the results of others, where increased
caecal weight was observed in rats fed diets containing
polyphenols [2, 37, 53]. Romo-Vaquero et al. [95] also
reported that rosemary extract enriched in the bioactive
compound carnosic acid caused caecum enlargement in
female Zucker rats. The presence of non-digested mate-
rials fermented by large bowel microbiota might have
caused the enlarged caeca. The same study also reported
that the rosemary extract lowered body weights, serum
lipids and insulin levels in the rats and partially attrib-
uted this to the inhibition of a pre-duodenal butyrate es-
terase activity [95]. Thus, the lower adipose tissue

content and body weights of the NRs on PFJ may also
have been a consequence of the inhibition of specific en-
zymes in the gut. A pomegranate extract, rich in punica-
lagin and ellagic acid, also increased caecum size and
Bifidobacterium in mice [84]. The gut microbiota can
modulate host energy metabolism and is thus a signifi-
cant contributor to the development of obesity and
metabolic disorders [130].

Microarray gene expression analysis revealed down-
regulation of the insulin-signalling pathway linked to al-
tered insulin availability
Research on the health effects of plant-based foods will
benefit from taking a holistic approach to understand
the plethora of effects mediated by a range of bioactive
metabolites derived from plant consumption. Thus, the
combination of different ‘omics’ profiling techniques in
the concept of systems biology, or nutrigenomics as
termed in the context of nutrition-related sciences,
would be important for this purpose [47]. In the present
study, microarrays delineated hepatic gene expression
differences between young NRs supplemented with PFJ
or not and further confirmed several target genes of
interest using real-time qRT-PCR.

In relation to T2DM, the most significant observation
from the functional enrichment analysis of the micro-
array gene expression data was that the insulin-
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GO ID GO name No. changed % changed Z score Permuted p
Up-regulated gene ontologies (biological processes)

GO:0010903 Negative regulation of very-low-density lipoprotein 3 100.0000 26.2353 0.0000

particle remodelling

GO:0060192 Negative regulation of lipase activity 4 40.0000 19.0387 0.0000
GO:0033700 Phospholipid efflux 4 33.3333 17.3429 0.0000
GO:0060416 Response to growth hormone stimulus 4 30.7692 16.6448 0.0000
G0:0032488 Cdc42 protein signal transduction 2 50.0000 15.0814 0.0000
GO:0046461 Neutral lipid catabolic process 3 333333 150179 0.0000
GO:0042157 Lipoprotein metabolic process 5 20.0000 14.8938 0.0000
GO:0007494 Midgut development 3 30.0000 14.2268 0.0000
GO:0048261 Negative regulation of receptor-mediated endocytosis 2 40.0000 134602 0.0000
GO:0010915 Regulation of very-low-density lipoprotein particle clearance 2 40.0000 134602 0.0000
GO:0071825 Protein-lipid complex subunit organisation 4 19.0476 12.9842 0.0000
GO:0015918 Sterol transport 5 14.2857 124800 0.0000
GO:0050995 Negative regulation of lipid catabolic process 3 23.0769 124241 0.0005
GO:0030300 Regulation of intestinal cholesterol absorption 2 333333 12.2609 0.0000
GO:0034381 Plasma lipoprotein particle clearance 3 214286 11.9549 0.0000
G0:0008203 Cholesterol metabolic process 7 9.5890 11.9276 0.0000
GO:0034367 Macromolecular complex remodelling 3 20.0000 11.5328 0.0000
GO:0010873 Positive regulation of cholesterol esterification 2 285714 11.3268 0.0000
GO:0018904 Organic ether metabolic process 7 86420 11.2675 0.0000
GO:0071941 Nitrogen cycle metabolic process 2 222222 9.9459 0.0000
GO:0051055 Negative regulation of lipid biosynthetic process 3 13.6364 94265 0.0000
GO:0071320 Cellular response to cyclic adenosine monophosphate 2 20.0000 94149 0.0005
GO:0042632 Cholesterol homeostasis 4 10.0000 92153 0.0000
G0O:0071396 Cellular response to lipid 3 13.0435 9.2059 0.0005
GO:0071383 Cellular response to steroid hormone stimulus 5 6.4935 8.1091 0.0000
GO:0006720 Isoprenoid metabolic process 4 70175 75752 0.0000
GO:0050817 Coagulation 4 5.8824 6.8498 0.0000
GO:0001101 Response to acid 4 57971 6.7922 0.0005
GO:0010243 Response to organic nitrogen 5 47170 6.7315 0.0000
GO:0044272 Sulphur compound biosynthetic process 3 73171 6.7133 0.0015
GO:0017144 Drug metabolic process 2 10.5263 6.6960 0.0045
G0O:0033762 Response to glucagon stimulus 3 6.9767 6.5356 0.0005
GO:0044106 Cellular amine metabolic process 9 2.7692 6.4744 0.0000
GO:0043436 Oxoacid metabolic process 12 2.1053 6.1883 0.0000
GO:0033574 Response to testosterone stimulus 2 9.0909 6.1811 0.0030
GO:0009636 Response to toxin 4 47619 6.0507 0.0010
GO:0031100 Organ regeneration 3 5.8824 59287 0.0010
GO:0042743 Hydrogen peroxide metabolic process 2 83333 58913 0.0045
GO:0031667 Response to nutrient levels 7 2.7237 56322 0.0000
GO:0051262 Protein tetramerisation 3 53571 56146 0.0020
GO:0031330 Negative regulation of cellular catabolic process 2 7.1429 54051 0.0060
GO:0030193 Regulation of blood coagulation 2 6.8966 5.2990 0.0060
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Table 6 List of gene ontologies (biological processes) significantly regulated by PFJ (Continued)

G0:0010043 Response to zinc ion 2 6.8966 5.2990 0.0050
GO:.0031647 Regulation of protein stability 3 4.8387 5.2867 0.0020
GO:0051384 Response to glucocorticoid stimulus 4 3.3898 49035 0.0010
GO:0007623 Circadian rhythm 3 42254 48711 0.0040
GO:0055114 Oxidation-reduction process 11 16129 4.7935 0.0000
GO:.0071375 Cellular response to peptide hormone stimulus 4 3.1008 46273 0.0035
GO:0006725 Cellular aromatic compound metabolic process 4 29851 45123 0.0015
GO:0033013 Tetrapyrrole metabolic process 2 5.1282 44651 0.0070
GO:0051186 Cofactor metabolic process 5 24510 44123 0.0005
GO:0033555 Multicellular organismal response to stress 2 4.3478 40441 00110
GO:0044262 Cellular carbohydrate metabolic process 6 18127 3.8583 0.0045
GO:0061061 Muscle structure development 2 3.8462 3.7493 0.0190
GO:0042445 Hormone metabolic process 3 2.7027 36494 0.0100
GO:0042493 Response to drug 5 18116 35138 0.0045
GO:0006730 One-carbon metabolic process 4 1.9802 33655 0.0125
GO:0007626 Locomotory behaviour 3 2.3810 33384 0.0125
GO:0014070 Response to organic cyclic compound 4 1.9417 33146 0.0065
GO:0048513 Organ development 9 1.1704 3.1890 0.0050
GO:0009607 Response to biotic stimulus 6 14458 3.1796 0.0090
GO:0009611 Response to wounding 5 16026 3.1729 0.0120
GO:0009791 Post-embryonic development 2 27778 3.0325 0.0375
GO:0006414 Translational elongation 2 26316 29216 0.0485
GO:0010466 Negative regulation of peptidase activity 3 1.9868 29171 0.0325
GO:0050679 Positive regulation of epithelial cell proliferation 2 24096 2.7455 0.0480
GO:0035335 Peptidyl-tyrosine dephosphorylation 2 23529 2.6988 0.0380
GO:0034284 Response to monosaccharide stimulus 2 2.3529 2.6988 0.0490
G0:0032989 Cellular component morphogenesis 4 14652 26156 0.0285
GO:0009967 Positive regulation of signal transduction 5 1.1876 2.3859 0.0305
Down-regulated gene ontologies (biological processes)

GO0:0032006 Regulation of mTORsignalling cascade 2 12.5000 6.1613 0.0040
GO:0031113 Regulation of microtubule polymerisation 2 1. 57727 0.0070
GO:0001702 Gastrulation with mouth forming second 2 9.0909 5.1559 0.0075
GO:0045216 Cell-cell junction organisation 2 52632 37231 0.0245
GO:0042632 Cholesterol homeostasis 2 5.0000 3.6045 0.0235
GO:0006793 Phosphorus metabolic process 14 14433 3.5098 0.0015
GO:0031214 Biomineral tissue development 2 4.5455 3.3902 0.0280
GO:0002263 Cell activation involved in immune response 2 4.5455 3.3902 0.0320
GO:0042475 Odontogenesis of dentine-containing tooth 2 44444 3.3408 0.0315
GO:0032259 Methylation 4 2.5157 3.1405 0.0145
GO:0030155 Regulation of cell adhesion 4 24096 30318 0.0160
GO:0050790 Regulation of catalytic activity 15 1.2490 3.0295 0.0080
GO:0010243 Response to organic nitrogen 3 2.8302 2.9800 0.0270
GO:0001933 Negative regulation of protein phosphorylation 2 3.6364 29179 0.0460

GO:0071841 Cellular component organisation or biogenesis at cellular level 18 1.0508 2.5596 0.0140
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Table 6 List of gene ontologies (biological processes) significantly regulated by PFJ (Continued)

GO:0019219 Regulation of nucleobase, nucleoside, nucleotide and nucleic 21 0.9620 23612 0.0210
acid metabolic process
G0:0008219 Cell death 7 13514 22489 0.0340

signalling pathway was down-regulated in NRs given
PFJ, including genes for mitogen-activated protein triple
kinases, Map3k2 and Map3k11, phosphatidylinositol ki-
nases, Pik3r3 and Pi4ka, as well as syntaxin binding pro-
tein 2 (Stxbp2).

Insulin is essential for appropriate tissue development,
growth and maintenance of whole body glucose homeo-
stasis. This hormone is secreted by the [ cells of the pan-
creatic islets of Langerhans in response to increased
circulating levels of glucose after a meal. Insulin regulates
glucose homeostasis by reducing hepatic glucose output
and increasing the rate of glucose uptake primarily into
striated muscle and adipose tissues. In these tissues, the
clearance of circulating glucose depends on the insulin-
stimulated translocation of the facilitative glucose trans-
porter 4 (GLUT4) to the cell surface. Insulin also pro-
foundly affects lipid metabolism by increasing lipid
synthesis in liver and adipose tissues, as well as attenuat-
ing fatty acid release from TG in fat and muscle cells. In-
sulin resistance occurs when normal circulating
concentrations of the hormone are insufficient to dispose
of circulating glucose imposed by glucose-rich diets. In
fact, insulin rises dramatically in concert with insulin re-
sistance in the early diabetes of NRs fed high-glycaemic
load diets, then falls as diabetes progresses [15].

To assure insulin sensitivity, the circulating hormone
must bind to an enzyme that activates its functions, in
this case the a-subunit of the insulin receptor embedded
in the cell membrane. This binding triggers the tyrosine
kinase activity in the B-subunit of the insulin receptor,
which further causes phosphorylation of two types of en-
zymes, mitogen-activated protein kinases (MAPKs) and
phosphatidylinositol 3-kinases (PI3Ks), which are re-
sponsible for expressing the mitogenic and metabolic ac-
tions of insulin, respectively [111]. The activation of
MAPKs leads to the completion of mitogenic functions
such as cell growth and gene expression, while the acti-
vation of PI3Ks leads to important metabolic functions
such as synthesis of lipids, proteins and glycogen, as well
as cell survival and cell proliferation. Most importantly,
the PI3K pathway is responsible for the distribution of
glucose for essential cell functions.

MAPKs

In our present study, two enzymes involved in the
MAPK pathway of insulin signalling, ie. Map3k2 and
Map3kil, were down-regulated in PFJ-supplemented
rats. Many studies have causally implicated MAPKs in

the development of insulin resistance [96]. Systemic in-
sulin resistance triggers chronic hyperglycaemia, which
causes pancreatic p cells to secrete more insulin. In the
long term, this adaptation is associated with stress-
induced B cell death and leads to insulin deficiency and
T2DM. As such, stress mechanisms that trigger insulin
resistance are also known to contribute to  cell failure.
The majority of studies indicate that prolonged enhanced
MAPK signalling is detrimental to insulin sensitivity and
cell function. A growing body of evidence also indicates
that MAPKs are involved in physiological metabolic adap-
tation, the disturbance of which might contribute to meta-
bolic diseases. Thus, although MAPK-dependent signal
transduction is required for physiological metabolic adap-
tation, inappropriate MAPK signalling contributes to the
development of T2DM and the metabolic syndrome [41].

GLUT4

By definition, insulin resistance is a defect in signal
transduction associated with accumulation of diacylglyc-
erol and ceramides [91, 101]. At present, only one class
of downstream signalling molecules is confirmed to be
essential for insulin-stimulated glucose uptake and
GLUT4 translocation, i.e. the class IA PI3Ks [27]. The
GLUT4 vesicle, which is responsible for passive diffusion
of glucose, binds to PI3Ks after bringing glucose into the
cell. PI3Ks isolate the GLUT4 vesicle from the glucose
and send the vesicle back to the cell membrane. The
glucose that is isolated is then sent to the mitochondria
to produce energy as ATP, and excess glucose is stored
in the cell as glycogen, which is increased in NRs with
T2DM [21]. The binding of insulin to its receptor on the
surface of adipose and muscle cells initiates a signalling
cascade that alters the trafficking itinerary of GLUT4 thus
releasing it from intracellular stores and delivering it to the
cell surface [18, 109]. In the absence of insulin, about 95 %
of GLUT4 is confined to intracellular compartments. Insu-
lin stimulation results in GLUT4 redistribution from these
intracellular stores to the plasma membrane via alterations
in membrane trafficking [18, 109]. This insulin-stimulated
translocation of GLUT4 from intracellular sites to the
plasma membrane is defective in individuals with insulin
resistance and T2DM thus providing an impetus to com-
prehend how this trafficking pathway is controlled [12, 44].

PI3Ks
Emerging data indicate that the products of class IA
PI3Ks act as both membrane anchors and allosteric
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regulators, serving to localise and activate downstream
enzymes and their protein substrates [106]. Several stud-
ies have suggested that the interaction of insulin recep-
tor substrate (IRS) proteins with PI3Ks is necessary for
the appropriate activation and/or targeting of the en-
zyme to a critical intracellular site, including its associ-
ation with GLUT4 vesicles [91]. Class IA PI3Ks play an
essential role in insulin stimulation of glucose transport
and metabolism and protein and lipid synthesis, as well
as cell growth and differentiation [98].

In terms of molecular structure, class IA PI3Ks are
heterodimers consisting of one regulatory and one cata-
lytic subunit, each of which occurs in multiple isoforms
[118, 119]. Three mammalian genes, Pik3rI, Pik3r2 and
Pik3r3 encode for the p85ua (p85a, p50a and p55a iso-
forms), p85p and p55y regulatory subunits, respectively.
The family of the catalytic subunits includes pl10aq,
p110B, and p1105 [106]. These are the products of three
respective genes, Pik3ca, Pik3cb and Pik3cd. The regula-
tory subunits of class IA PI3Ks appear to play three im-
portant functional roles. They confer stability on the
catalytic subunits, induce lipid kinase activity upon insu-
lin stimulation [131] and, in the basal state, inhibit the
catalytic activity of the p110 subunits to various degrees
[116].

The unique structural domains of the PI3K regulatory
subunits and their differential abundances in tissues sug-
gest that they are not entirely redundant and may serve
unique purposes. Complete disruption of hepatic Pik3rl
and Pik3r2 markedly reduces insulin-stimulated PI3K
activity, at least in part by destabilising the catalytic sub-
units [112]. On the other hand, partial loss of the regula-
tory subunits of PI3Ks increases insulin sensitivity, and
this appears to be related to diminished negative feed-
back to the IRS proteins [40]. For example, mice with a
knockout of the full-length p85a exhibit an up-
regulation of the splice variants p50a and p55a in
muscle and fat tissues and have increased insulin sensi-
tivity [114]. In addition, p50a/p55a knockout mice ex-
hibit improved insulin sensitivity, lower fat masses and
protection against obesity-induced insulin resistance
[23]. However, mice with complete deletion of p85a and
its short splice variants p50a and p55a die perinatally
with liver necrosis and enlarged muscle fibres [38].
Thus, identifying the precise pathways uniquely medi-
ated by these regulatory subunit isoforms remains an
important area for further study.

In the present study, the Pik3r3 gene encoding for the
p55y regulatory subunit of PI3Ks was down-regulated in
NRs given PFJ. p55y is similar in structure to p55a but
is expressed at low levels in most tissues [111]. However,
the effect of inhibiting or knocking out p55y, encoded by
the Pik3r3 gene, on insulin sensitivity has not been con-
clusively determined. Nevertheless, since rats given PF]
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had lower levels of RBG (p <0.05) but similar insulin
levels compared to NRs in the control group, the down-
regulation of the Pik3r3 gene and the related hepatic
insulin-signalling pathway in general suggests that re-
duced glucose absorption by PF] lowered the diabeto-
genic effects of the high-carbohydrate diet and/or
enhanced insulin sensitivity, rather than PFJ acting by
increasing insulin secretion. This is in accordance with
the physiological parameters, as outlined above. The
down-regulation of the insulin-signalling pathway could
prove beneficial in the long run, as this would protect
the pancreas from overproducing insulin and preserve
insulin sensitivity in the related target organs, thereby
preventing hyperinsulinaemia and hyperglycaemia.

Down-regulation of hepatic genes involved in fibrotic
processes was observed in NRs given PFJ

T2DM and hepatic diseases

T2DM and obesity are risk factors for non-alcoholic
fatty liver diseases, which include hepatic steatosis (non-
alcoholic fatty liver disease or NAFLD), non-alcoholic
steatohepatitis (NASH), fibrosis and cirrhosis. Increased
insulin resistance and adiposity contribute to the pro-
gression from non-alcoholic steatohepatitis to fibrosis
through the development of a pro-fibrotic condition in
the liver, including increased hepatocellular death, in-
creased generation of reactive oxygen species and an al-
tered cytokine balance [24]. Liver disease is an
important cause of death in T2DM, as T2DM is cur-
rently the most common cause of liver disease in the
USA, including the hepatocellular carcinoma that results
from chronic T2DM [115]. The prevalence of T2DM in
cirrhosis is 12.3 to 57 % [117].

Incidentally, hepatic steatosis is the most prevalent early
lesions in diabetic NRs and is correlated with advancing
T2DM, with hepatomegaly and liver discolouration also
present macroscopically [70]. A large proportion of male
NRs that reach 1 year of age with T2DM also reveal hepa-
tocellular carcinoma in various stages (Kenneth C. Hayes,
Brandeis University, MA, personal communication).

Collagen accumulation and fibrosis

Organ fibrosis including liver fibrosis is characterised by
an excessive accumulation of collagen. Mature collagen
cross-links in a variety of connective tissues such as
bones, tendons, ligaments and cartilages are formed via the
hydroxyallysine route. In contrast, collagen in the skin is
mainly cross-linked via the allysine route. In organ fibrosis,
an increase in cross-links derived from the hydroxyallysine
route is found. This change in cross-linking is related to ir-
reversible accumulation of collagen in fibrotic tissues. Colla-
gen containing hydroxyallysine-derived cross-links is more
difficult to degrade than collagen containing allysine-derived
cross-links. Inhibition of the formation of hydroxyallysine-
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Fig. 1 Insulin-signalling pathway related genes down-regulated by PFJ in the liver of NRs

derived cross-links in fibrosis is therefore likely to result in
the formation of collagen that is easier to degrade, thereby
preventing unwanted collagen accumulation.

In the present study, two genes involved in fibrotic
processes, i.e. Pcolce and Plod2, were found down-
regulated in the PFJ group. The procollagen C-
endopeptidase enhancer 1 (Pcolce) gene encodes a glyco-
protein which binds and drives the enzymatic cleavage
of type I procollagen and heightens C-proteinase activity,
hence increasing fibrotic processes [108]. The increase
in hydroxyallysine-derived cross-links in fibrosis is the
result of an overhydroxylation of lysine residues within
the collagen telopeptides, a function carried out by the

enzyme encoded by procollagen-lysine, 2-oxoglutarate 5-
dioxygenase 2 (Plod2). Plod2 is thus involved in fibrotic
processes as well [120].

PFJ up-regulated hepatic apolipoprotein genes, especially
apolipoprotein A1

Metabolic pathways for the utilisation of carbohydrates
and fats are intricately intertwined. In addition to having
profound effects on carbohydrate metabolism, insulin also
has important effects on lipid metabolism. One of these is
to promote the synthesis of fatty acids in the liver when
the organ is saturated with glycogen, and these fatty acids
are then exported from the liver as lipoproteins, which are
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further catabolised in the circulation, eventually yielding
free fatty acids for use by other tissues. Insulin resistance
and T2DM are associated with plasma lipid and lipopro-
tein abnormalities, which include reduced high-density
lipoproteins (HDL), a predominance of low-density lipo-
proteins (LDL) and elevated TG levels, also previously de-
scribed in NRs with T2DM [14]. Increased hepatic
secretion of very-low-density lipoproteins (VLDL) and
their impaired clearance also appear to be of central im-
portance in the pathophysiology of this diabetic dyslipae-
mia [62]. In T2DM, increased efflux of free fatty acids
from adipose tissues and impaired insulin-mediated skel-
etal muscle uptake of free fatty acids also increase fatty
acid flux to the liver [11, 59]. Epidemiologic studies have

demonstrated a relationship between insulin resistance
and plasma free fatty acid levels [93]. In line with this,
agents that lower elevated free fatty acids, such as thiazoli-
dinediones, have been shown to improve insulin sensitivity
in muscle, liver and adipose tissues [76, 78].

In the present study, genes up-regulated in the livers
of NRs given PF] include those encoding for apolipopro-
teins. The up-regulation of apolipoprotein genes, includ-
ing Apoal, Apoa2, Apocl and Apoc3, suggests an
increase in HDL synthesis relative to controls, as all apo-
lipoproteins Al, A2, C1 and C3 are components of
HDL. The first step in HDL synthesis involves the secre-
tion of apolipoprotein A1 mainly by the liver and the in-
testine [132, 133]. Apolipoproteins Al and A2 are the
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main scaffold proteins that determine HDL particle
structure [13]. Apolipoprotein Al levels are reported to
be inversely associated with diabetic retinopathy [51].
Apolipoproteins C are constituents of chylomicrons,
VLDL and HDL [55]. However, in the fasting state, apo-
lipoproteins C are mainly associated with HDL, whereas
in the fed state, they preferentially redistribute to the
surface of chylomicrons and VLDL [73]. Apolipoprotein
C1 overexpression in transgenic mice has been associ-
ated with protection from obesity and insulin resistance
[56]. On the contrary, apolipoprotein C3 deficiency has
been reported to result in diet-induced obesity and ag-
gravated insulin resistance in mice [31].

Virtually, every lipid and lipoprotein is affected by
insulin resistance and T2DM, but the control of hypergly-
caemia is unlikely to correct existing dyslipaemia. Al-
though plasma glucose control is important in reducing
microvascular complications due to T2DM, lipid manage-
ment is also essential in these patients to decrease the in-
cidence of cardiovascular events. In the present study, the
up-regulation of apolipoproteins important in HDL syn-
thesis appeared beneficial, as evidenced by the significantly
lower amounts of plasma TG (p <0.05) and adipose tis-
sues (p <0.05) in NRs given PFJ] compared to the control
group. Although we did not measure the levels of HDL in
the present study, we have previously shown that PFJ
increased plasma HDL levels of golden Syrian hamsters
fed an atherogenic diet [6]. In line with this, green tea
extract rich in phenolic compounds was also previously
found to significantly reduce fasting TG and increase
HDL in within-group analysis of people with T2DM, in
addition to causing a decreasing trend of fasting TG in
between-group analysis [69]. The increase in apolipopro-
tein Al in these T2DM patients is also comparable with
that in HDL after green tea extract supplementation [69].

Phase | and phase Il detoxification genes were up-
regulated in the livers of NRs given PFJ

Phase I and phase II detoxification enzyme systems are
involved in the degradation of xenobiotics. To some ex-
tent, phenolic compounds in general may be regarded as
xenobiotics by animal cells and are treated as such
through interactions with these enzymes [81]. Phase I
detoxification in the liver involves the activation of a
series of enzymes called the cytochrome P450 mixed-
function oxidases. These biotransformation enzymes
function by oxidising, reducing or hydrolysing xenobi-
otics thus creating biotransformed intermediates [90].
Several cytochrome P450 genes involved in phase I
detoxification, such as Cypla2, Cyp2c67, Cyp2el and
Cyp4f14, were up-regulated in NRs given PFJ. This is
consistent with our previous observations, whereby cyto-
chrome P450 genes were also up-regulated in mice given
PFJ [65]. Conversely, hepatic Cypla2 was found down-
regulated in diabetic and insulin resistant New Zealand
obese mice [89], while a decrease in hepatic Cyp2el ac-
tivity was reported in ob/ob mice and fa/fa Zucker rats
[34]. Cyp4f14 plays a role in the inactivation of eicosa-
noids [60], which could be beneficial in reducing
inflammation.

Phase II detoxification enzymes perform conjugation
reactions such as acylation, acetylation, glucuronidation,
methylation, sulfation and glutathione conjugation,
which help to convert biotransformed intermediates into
less toxic, water-soluble substances that are easily ex-
creted or eliminated from the body [90]. Incidentally,
three antioxidant genes involved in phase II detoxifica-
tion, i.e. Ugt2b36, Cat and Gsto2, were up-regulated in
the livers of NRs given PF]. Ugt2b36 (uridine diphos-
phate glucuronosyltransferase 2 family, polypeptide B36)
is a glycosyltransferase enzyme that catalyses the transfer
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of the glucuronic acid component of uridine diphos-
phate glucuronic acid to xenobiotics. Ugt2b36 messenger
ribonucleic acid (mRNA) levels were found to decrease
in aging mice [39]. Cat (catalase) is a very important en-
zyme which protects cells from oxidative damage, as it
catalyses the decomposition of hydrogen peroxide to
water and oxygen. Blood catalase activity in T2DM sub-
jects was found decreased when compared to that in
non-diabetic controls, and this consequently increased
hydrogen peroxide in muscle cells [43]. Gsto2 (glutathi-
one S-transferase omega-2) is an enzyme involved in
glutathione conjugation. Patients with uncontrolled
T2DM have severely deficient synthesis of glutathione
attributed to limited precursor availability [104]. In
addition, insulin administration is known to increase
glutathione S-transferase gene expression through the
PI3K/AKT/mTOR pathway and decrease intracellular
oxidative stress [36].

Real-time qRT-PCR validated the microarray data

obtained

In the present study, the directions of fold changes of the
target genes obtained from the real-time qRT-PCR tech-
nique as quantified by the qBase software [48] were com-
parable to those obtained from the microarray technique
(Fig. 3). However, the magnitudes of fold changes obtained
using real-time qRT-PCR were consistently lower than
those obtained using microarrays. This has been described
as the fold change compression phenomenon, which is
caused by various technical microarray limitations, includ-
ing limited dynamic range, signal saturations and cross
hybridisations [127].

Anti-diabetic effects of polyphenols and glucose
homeostasis: does PFJ affect glucose absorption, insulin
secretion or insulin sensitivity?

In addition to improving insulin production and function,
another approach to overcome T2DM is to reduce glucose
absorption by inhibiting the activities of digestive enzymes
for glucose release/production or those of enterocyte
membrane transporters responsible for glucose transport.
Phenolic compounds have been reported to influence the
apparent glycaemic indices of foods and limit postprandial
glucose increases through these mechanisms [129]. For in-
stance, phenolic compounds from certain fruits have been
shown to inhibit activities of a-amylase and a-glucosidase
[77], and some even have the potential to replace or
reduce the dose of acarbose required during clinical trials
to improve postprandial glycaemic control in T2DM [10].
Enterocyte membrane transporters responsible for glucose
absorption in the small intestine include sodium-
dependent glucose transporter 1 (SGLT1) and glucose
transporter 2 (GLUT2). SGLT1 is responsible for glucose
entrance from the apical side of the intestinal lumen into
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enterocytes via active transport, while GLUT2 assists glu-
cose exit from the basolateral side of the intestinal lumen
into the hepatic portal vein via facilitated diffusion [102].
Phenolic compounds have also been shown to inhibit
these two types of transporters in human intestinal Caco-
2 cell lines [54, 74].

We previously suggested that PF] may slow the rate of
glucose absorption, enhance insulin secretion and/or
increase insulin sensitivity [16]. The results obtained in
the present study indicate that the anti-diabetic effects
of PFJ are likely due to mechanisms other than an
increase in insulin secretion. This is because plasma
insulin was not increased after PFJ] supplementation in
NRs, and another previous study also revealed that the
early problem in NRs was insulin resistance with hyper-
insulinaemia, not insulin insufficiency [15]. Nonetheless,
it would be useful to conduct an insulin tolerance test
on these NRs to further differentiate these two possible
mechanisms.

Insulin signalling in relation to longevity and chronic
diseases: could the positive health effects of PFJ be
attributed to modulation of insulin signalling?

The insulin-signalling pathway is an evolutionarily con-
served mechanism of longevity from yeast to humans
[7]. Therefore, modulation of this pathway has been sug-
gested as an avenue in extending longevity and battling
chronic diseases. Ample genetic evidence demonstrates
that mild inhibition of insulin-signalling components
(including the insulin receptor, IRS proteins and PI3Ks)
or overactivation of forkhead box protein O (FoxO)
transcription factors contributes to lifespan extension
with improved metabolic profiles [49, 113]. Interestingly,
Ayyadevara et al. [3] reported that genetic disruption of
insulin-like signalling extended lifespan in the nematode
Caenorhabditis elegans and to a lesser degree in other
taxa including fruit flies and mice. They found remark-
able longevity and stress resistance of nematode PI3K-
null mutants that lacked the PI3K catalytic subunit [3].
Interestingly, the PI3K pathway has paradoxically two
opposite functions, i.e. impairment of its signalling acti-
vates FoxO factors and extends lifespan, whereas its
overactivity triggers nuclear factor-kappa beta (NF-kf)
signalling and accelerates the aging process. FoxO acti-
vation also causes concomitant enhancement of cellular
stress resistance and protection, suppression of low-
grade inflammation and enhanced mitochondrial bio-
genesis [121]. NF-kp signalling has been recognised as
one of the targets of PI3K pathway. The NF-«p system is
a pleiotropic factor regulating developmental processes,
host defence systems and cellular survival functions [97].
Since the suppression of PI3K signalling can extend life-
span, this implies that excessive and sustained activation
of PI3K signalling triggers the aging process.
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In addition, there is increasing evidence for an associ-
ation between obesity, T2DM and cancer. Epidemiologic
data suggest that insulin resistance with hyperinsulinae-
mia, as well as increased insulin and insulin-like growth
factor-1 (IGF-1) signalling account for the relationship
between these conditions. Besides influencing T2DM,
the PI3K pathway itself is also implicated in cancer.
PI3K signalling is activated in human cancers via several
different mechanisms, including direct mutational acti-
vation or amplification of genes encoding key compo-
nents of the PI3K pathway. Activation of the PI3K
pathway results in the activation of protein kinase B or
AKT. AKT inhibits apoptosis and stimulates protein
synthesis and cell proliferation. The fact that insulin
receptor signalling can stimulate protein synthesis and
inhibit apoptosis and the fact that IGF-1 receptor signal-
ling enhances cell proliferation explain how hyperinsuli-
naemia and increased IGF-1 may result in tumour
growth. These pathways thus represent an intricate
balance, and disruption of this equilibrium may lead to
obesity, T2DM and cancer. Uncontrolled signalling
through the PI3K pathway also contributes to metastatic
cancers [72]. Thus, understanding the intricacies of the
PI3K pathway may provide new avenues in terms of ex-
tending longevity and overcoming chronic diseases [20].

It is thus exciting to find that PF] down-regulated in-
sulin signalling in the present study, as this pathway is a
potential target for modulation of longevity and chronic
diseases. It is also important to note that the Pik3r3
gene, down-regulated in the livers of NRs given PFJ in
the present study, is considered an oncogene important
for cell proliferation and tumour growth, as it is overex-
pressed in certain cancers [126]. It is also interesting,
but not surprising, that the gene expression patterns
with regards to insulin signalling observed in the present
study were not found in previous hepatic transcriptomic
analyses of BALB/c mice tested on a low-fat diet [65]
(with the exception of up-regulated cytochrome P450
genes), given a high-fat atherogenic diet [67] or injected
with myeloma cells [66], as mice are not predisposed to
T2DM since they are HDL animals in general and do
not easily develop the metabolic syndrome. Nevertheless,
we have previously shown that PFJ displayed many bene-
ficial effects on degenerative diseases in various animal
models [65-68, 99, 100, 103]. Therefore, from the results
obtained in the present study, it would be noteworthy in
future studies to investigate whether PF] confers its posi-
tive effects on these diseases by modulating components
of the insulin-signalling pathway, especially PI3Ks.

Limitations of study

We acknowledge that a limitation in the present study
was that mouse (Mus musculus) microarrays and real-
time qRT-PCR assays were used to assess the gene
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expression changes of the NR (Arvicanthis niloticus).
However, the application of the NR as a laboratory diur-
nal rodent for biomedical research applicable to humans
is relatively new [94]. Therefore, detailed knowledge of
its physiology is still lacking, and its genome has not
been sequenced. Accordingly, no commercial whole gen-
ome microarrays are currently available for this species.
Nevertheless, cross hybridisation studies using microar-
rays have been conducted previously, such as studies
involving hybridising monkey samples to human micro-
arrays [25, 29, 42, 52, 63, 75]. NRs belong to the Muri-
dae family, as do mice and rats [124]. As with the
standard laboratory rat, the NR is relatively insensitive
to variations in photoperiod and does not hibernate.
Compared to the standard laboratory rat however, the
NR reaches asymptotic body mass early in life and does
not show marked sexual dimorphism [94]. We have
previously tried hybridising NR samples to rat (Rattus
norvegicus) microarrays, but quality control of the
hybridisation indicated that the hybridisation was not
satisfactory (Vassilis Zannis, Boston University School of
Medicine, MA, personal communication). On the other
hand, the hybridisation of NR samples to mouse (Mus
musculus) microarrays carried out in the present study
was of high quality, enabling interpretation of the data
obtained. Nevertheless, future studies to delve further
into the transcriptomic effects of PF] on NRs would
benefit from the various next-generation sequencing
technologies and platforms currently available. It would
also be interesting to compare the effects of PFJ in dif-
ferent animal models, especially to identify whether
species-specific genes are involved.

Another limitation in the present study was that
microarray gene expression profiling was not carried out
on pancreatic islet B cells, the site for insulin production.
Obtaining high-quality and intact RNA from the pancre-
atic B cells is difficult, however, as the primary function
of the pancreas is as an exocrine aid in digestion. The
pancreas thus expresses large quantities of proteases,
DNases and RNases that initiate an autolytic process al-
most immediately upon harvest [83]. In addition, some
techniques also involve tedious pancreatic cannulation
procedures and cause tissue artefacts. However, newer
and simpler techniques are emerging, such as the perfu-
sion method using RNase inhibitors [45] and modifica-
tions of standard phenol/guanidine thiocyanate lysis
reagent protocols [4]. These emerging protocols could
be used in future experiments to study the gene expres-
sion changes caused by PFJ in the pancreas.

Conclusions

Transcriptomic gene expression analysis using microar-
rays from the livers of young male NRs supplemented
with PFJ to prevent T2DM induction showed that genes
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related to HDL apolipoproteins and hepatic detoxifica-
tion were up-regulated, while genes related to insulin
signalling and fibrosis were down-regulated. Based on
the results obtained, it is more likely that the anti-
diabetic effects of PF] may be due to mechanisms other
than an increase in insulin secretion, as the levels of in-
sulin were not increased after PF] supplementation in
NRs, and young NRs have high concentrations of insulin
during diabetes induction that suggest insulin resistance
is the primary defect [15]. Further studies to investigate
whether PF] confers its positive effects on degenerative
diseases by modulating components of the insulin-
signalling pathway are also warranted.
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