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Abstract

endocrine deregulation and disease.

Androgens, the main male sex steroids, are the critical factors responsible for the development of the male
phenotype during embryogenesis and for the achievement of sexual maturation and puberty. In adulthood,
androgens remain essential for the maintenance of male reproductive function and behavior. Androgens, acting
through the androgen receptor (AR), regulate male sexual differentiation during development, sperm production
beginning from puberty, and maintenance of prostate homeostasis. Several substances present in the environment,
now classified as endocrine disruptors (EDCs), strongly interfere with androgen actions in reproductive and non-
reproductive tissues. EDCs are a heterogeneous group of xenobiotics which include synthetic chemicals used as
industrial solvents/lubricants, plasticizers, additives, agrochemicals, pharmaceutical agents, and polyphenols of plant
origin. These compounds are even present in the food as components (polyphenols) or food/water contaminants
(pesticides, plasticizers used as food packaging) rendering the diet as the main route of exposure to EDCs for
humans. Although huge amount of literature reports the (anti)estrogenic effects of different EDCs, relatively scarce
information is available on the (anti)androgenic effects of EDCs. Here, the effects and mechanism of action of
phytochemicals and pesticides and plasticizers as possible modulators of AR activities will be reviewed taking into
account that insight derived from principles of endocrinology are required to estimate EDC consequences on

Keywords: Androgen, Androgen receptor, Endocrine disruptors, Polyphenols, Pesticides, Plasticizers

Background

The increased use of plant protection products, pharma-
ceuticals, and plastics is coupled to the continued requests
of the synthesis of new chemicals including herbicides,
insecticide, biocides, active drugs, and plasticizers. Unfortu-
nately, the increased production of new chemicals is associ-
ated with their release in the environment and, mainly
through the food chain, to their potentially harmful effects
on human and wildlife health. One of the most unpredict-
able and serious consequences of this phenomenon is the
potential interference with the endocrine system of these
man-made chemicals (or xenobiotics) defined as endocrine
disruptors (EDs) or endocrine disrupting chemicals (EDCs).
The most recent worldwide accepted definition of EDC
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came from the World Health Organization that made an
authoritative definition of an ED as “an exogenous sub-
stance or mixture that alters function(s) of the endocrine
system and consequently causes adverse health effects in
an intact organism, or its progeny, or (sub)populations [1].”
A recent statement of The Endocrine Society proposed a
simplified definition—an ED is an exogenous chemical, or
mixture of chemicals, that interferes with any aspect of
hormone action [2] devoid of the concept of adverse or
harmful effect. Such definition focus on the mode of action
(MoA) and imply that a chemical interference become a
significant risk depending on the chemical exposure levels
[2]. Indeed, potential deleterious effects of EDCs on hor-
mone synthesis, secretion, and action may impair cellular
and tissue homeostasis. The critical windows of exposure
to EDCs during the developmental ages are critical to
understand their long-term effects on the physio-
pathological status of the adults [2].

EDCs are a heterogeneous group of xenobiotics [3-5]
which include synthetic chemicals used as industrial
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solvents/lubricants and their by-products (e.g., poly-
chlorinated biphenyls/PCBs, polybrominated biphenyls,
dioxins), plasticizers (e.g., bisphenol A/BPA, phthalates),
food additives (e.g., semicarbazide), plant protection
products such as pesticides (e.g., zineb, mancozeb and
glufosinate ammonium/GA) and fungicides (e.g., vinclo-
zolin/VIN, permethrin, chlorpyrifos), cosmetics (e.g.,
parabens), and pharmaceutical agents (e.g., flutamide,
bicalutamide, oral contraceptives). Although the main
route of exposure to EDCs for both humans and animals
is diet, other different contaminated sources, such as in-
door and outdoor air, water and soil, or by use of per-
sonal care products and pharmaceutical drugs could
enhance EDC exposure. Currently, the discussion on the
endocrine MoA centers on the hormonal systems of
estrogen, androgen, thyroid, and steroidogenesis—as
these are the only areas where standardized tests exist.
More recently, a large body of evidence highlighted
the antiestrogenic or estrogen-like effects of plant bio-
actives (e.g., genistein, quercetin/QRC, naringenin,
resveratrol), belonging to the wide classes of polyphe-
nols, lignans, and coumestans, frequently defined as
phytoestrogens [4, 6-14]. Consequently, plant bio-
active molecules are now encompassed into the EDC
list of chemicals that interfere with estrogen mecha-
nisms of action. Disappointingly, very few papers ad-
dressed the effects of these substances on androgen
mechanisms of action [3, 15-18].

Here, the effects and mechanisms of action of food
components and food/water contaminants (mainly
phytochemical, pesticides, and plasticizers used in food
packaging), acting as modulators of androgen receptor
(AR) activities, are reviewed.
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Mechanisms of androgen action

Androgens are all steroids with 19 carbons (Fig. 1). The
major naturally occurring steroids with androgenic activ-
ity are, in decreasing order of relative potency, the fol-
lowing: 5a-dihydrotestosterone (DHT, 150-200%),
testosterone (T, 100%), androstanediol (65%), androst-4-
ene3,17-dione (25%), androsterone (10%), and dehydro-
epiandrosterone (DHEA, 10%) [19, 20, and refs therein].
Over 95% of T is produced and secreted by Leydig cells
in the testis, whereas the remaining 5% is produced in
the adrenal glands by conversion of precursors (ie.,
DHEA, DHEA sulfate, and androstenedione) [19]. In
men, circulating levels of T range from 10 to 30 nM and
decline to <0.3 nM after bilateral orchidectomy, whereas
much lower levels (0.6—-2.5 nM) are found in women. T
is converted to DHT and 17p-estradiol (E2), the main
active estrogen, by 5a-reductase type 1-2/SRD5A1-2
[20] and aromatase, respectively. Tissue distribution of
5a-reductase varies during the life span and the enzyme
expression is hormonally regulated; for example, 5a-
reductase mRNA expression in rat prostate is upregu-
lated by DHT. The major sites of distribution of 5a-
reductase in human tissues are the prostate, epididymis,
seminal vesicle, and liver, while it is barely expressed in
the testis, ovary, adrenal, brain, and kidney [21]. Sex
hormone-binding globulin (SHBG) regulates the
plasma levels and biological actions of the sex ste-
roids; within the hypothalamic-pituitary-gonadal axis,
adult Leydig cell T production depends upon the pul-
satile secretion of luteinizing hormone (LH) by the
pituitary gland into the peripheral circulation. LH-
regulated T production and its endogenous secretion
is pulsatile and diurnal with the highest peak
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occurring in the morning and the lowest in the even-
ing [19].

Endogenous T levels decline in aging males, but despite
the decrease in plasma T concentrations, the incidence of
androgen-related pathologies, like prostate cancer (PCa)
and benign prostate hyperplasia (BPH), increases with age.
This increased incidence could be related to the local
conversion of T to DHT being 5a-reductase upregulated
[19 and refs therein].

Androgen receptor

DHT and T bind to the same specific intracellular recep-
tor, the AR, although DHT has two to five times higher
binding affinity for AR and 10-fold higher potency of indu-
cing AR functions than T (DHT K4=2 nM, T K4 =8 nM)
[21-23]. The AR, a ligand-activated transcription factor,
belongs to the third group of the nuclear receptor (NR)
superfamily (NR3C4, NR subfamily 3, group C, member 4)
[24]. The AR is a modular protein of 919 amino acids (aa)
whose structure is similar to the other NRs (Fig. 1). Four
functional domains have been described in the AR: (i) an
N-terminal domain (NTD or A/B domain, aa 1-558), with
properties of transcriptional activation function (AF-1); (ii)
a DNA binding domain (DBD or C domain, aa 558-624);
(iii) a short hinge region (D domain, aa 624—676); and (iv)
a C-terminal domain (E region, aa 676-919), which con-
tains the ligand binding domain (LBD) and a coactivator
binding surface (AF-2) (Fig. 1) [25, 26]. The four AR func-
tional domains contribute differently to the overall tran-
scriptional modulation of the AR-target gene [27]. Shortly,
the AR NTD is a highly flexible and dynamic domain,
whose length (60% of the whole protein) is variable due to
the potential extension of the polyglutamine and polygly-
cine tracts [25-27].

The inactive AR is localized in the cytoplasm associated
with a heath shock protein (HSP)90 chaperone complex;
it undergoes to proteasome-mediated degradation in the
absence of ligand [28, 29]. Upon ligand binding at the
LBD, the AR undergoes conformational modifications that
facilitate AR translocation to the nucleus where it dimer-
izes and binds to specific sequences present in target gene
promoters (androgen responsive elements, AREs). More-
over, ligand binding facilitate AR intra- and inter-
molecular interactions. In particular, the helix 12 of the
LDB moves and together with helices 3 and 4 allow the re-
cruitment of several transcriptional co-regulators along
with the general transcription machinery complex and
RNA polymerase II. The most recent compilation of AR-
interacting proteins and AR-co-regulators reported the
existence of 168 co-activators and 89 co-repressors,
although the total number of identified AR-interacting
proteins was higher than 300 [30] and refs therein. Most
of these co-regulators are chromatin-modifying enzymes,
namely histone deacetylases, which complexes with AR

Page 3 of 16

facilitating the transcription of target genes [31]. It has
been proposed that the interaction between N and C
termini of AR could prevent inappropriate co-regulator
recruitment to the receptor until it is engaged with DNA.
Intriguingly, the natural occurring atraric acid inhibits the
transactivation of AR and androgen-mediated growth of
AR-expressing human PCa cell lines by inhibiting the AR
N/C-terminal interaction [32].

In addition to this canonical nuclear (or genomic) mech-
anism of action, AR-dependent, rapid (seconds to minutes)
extra-nuclear mechanisms occur upon androgen treat-
ment. These extra-nuclear mechanisms start at the plasma
membrane and involve extracellular signal-regulated kinase
(ERK), the phosphatidyl-inositol 3-kinase (PI3K)/Akt path-
way, G protein coupled receptors (GPCRs), intracellular
Ca®" concentration, and cyclic adenosine monophosphate
(cAMP) levels [33—37]. These data point to the existence
of a membrane-bound AR. The sequence comparison
between AR and the estrogen receptor identified a similar
sequence for palmitoylation in both receptors [38] that was
successively characterized [39]. Palmitoylation allows AR
localization at the plasma membrane and its interaction
with caveolin-1 (Cav-1). Cav-1 enhances AR transcriptional
activity upon androgen binding to the receptor since it
may increase nuclear translocation and phosphorylation of
the AR [40]. On the other hand, androgen binding to AR
further increases its affinity for Cav-1 [40].

As a whole, the pleiotropic effects elicited by andro-
gens are obtained by different signal transduction path-
ways (i.e., nuclear and extra-nuclear), whose activation
depends on the cellular context of the target cell, the AR
intracellular localization (i.e, membrane-bound, cyto-
solic, nuclear), and the ligand itself (i.e., T vs DHT) [22].

Physio-pathological effects of androgens
The male reproductive system comprises the paired
units consisting of the testis, epididymis and vas deferens,
and the penis and scrotum. The prostate, seminal vesicles,
and bulbourethral glands are the male reproductive system
accessory glands. The male testis have the dual responsi-
bilities for the production and release of the germ cells
and for the biosynthesis and secretion of T. Prostate plays
an essential role in male reproduction secreting the pros-
tatic fluid (highly responsive to androgens), an essential
component of the seminal fluid [41, 42]. The prostatic
fluid secreted by the prostate epithelium contains protein-
ases of the kallikrein family (e.g., prostate-specific antigen
or kallikrein 3, PSA/KLK3), trace elements (e.g., zinc ions),
and other molecules (e.g,, citrate), all essential for the func-
tionality of the prostate and for the subsequent activation
of sperm motility [41].

Androgens are critical for male sexual differentiation,
pubertal development, spermatogenesis, and mainten-
ance of adult secondary sexual characteristics. However,



Marcoccia et al. Genes & Nutrition (2017) 12:6

androgens are pleiotropic hormones since they exert
biological effects in many different non-reproductive tis-
sues and cell types. Androgens act on the male repro-
ductive tract inducing in utero differentiation and
growth of the epididymis, seminal vesicles, and vas def-
erens. Prostate cell growth, function, and homeostasis
are regulated by complex systemic and local mechanisms
involving either the action of androgens and growth fac-
tors produced by the pituitary or the prostatic stroma
[43]. After the development of the prostate gland, andro-
gens continue to promote survival of the secretory
epithelial cells, the primary cell type involved in the ma-
lignant transformation to prostate adenocarcinoma [44].
In male pubertal changes, androgens are involved in
voice deepening through enlargement of the larynx and
thickening of the vocal cords; moreover, they induce hair
growth and distribution. Androgens exert anabolic
actions on the bone tissue and skeletal muscle and
modulate subcutaneous fat distribution. Moreover, they
act also in the central nervous system inducing differen-
tiation of the selected regions as hypothalamus, preoptic
area, and brain cortex, and are involved in development
of libido [22].

Intriguingly, the adult human male produces approxi-
mately 45 pg per day of E2, the most active within
estrogens, mostly from the aromatization of T in the
adipose tissue, brain, bone, breast, blood vessels, liver,
and both Sertoli and Leydig cells of the testes. The T
aromatization is a critical step for the closure of epi-
physeal plate of the bone during puberty, for mineral
resorption of the bone, and for brain function including
mood and the regulatory feedback of LH production
[22]. Mechanistic evidence suggests that a proportion
of male reproductive endocrine disorders, including
cancer, are caused by androgen insufficiency and/or by
an imbalance between estrogens and androgens during
critical time windows along the life cycle (e.g., preg-
nancy, post-natal development, puberty). However, any
defects in androgen biosynthesis, metabolism, or action
during development can lead to malformations such as
cryptorchidism and hypospadias, as well as testicular
germ cell cancer and changes in ano-genital distance
[45]. These pathologies may be related components of a
single underlying condition, termed “testicular dysgene-
sis syndrome,” originating during fetal development. In
addition, cryptorchidism is a risk factor for testicular
cancer, semen quality, and fertility [46].

PCa is the most frequently diagnosed non-skin malig-
nant tumor and the third leading cause of cancer mor-
tality in men. It is estimated that, in Western countries,
about 30% of all men will develop microscopic PCa dur-
ing their lifetime. PCa consists of glandular epithelial
cells from the prostate gland. The tumor usually grows
slowly and remains confined to the gland for many
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years. During this time, the tumor produces little or no
symptoms or outward signs. As the cancer advances,
however, it can spread beyond the prostate into the sur-
rounding tissues and can metastasize throughout other
areas of the body, such as the bones, which is the prefer-
ential metastasis site of PCa. Androgens have long been
established as playing a role in the causation of PCa
[47]. Although estrogens, together with androgens, play
a role in normal prostate development, estrogen exposure
during fetal life can profoundly alter the developmental
program of the gland, sensitizing it to hyperplasia and
cancer later in life [48, 49]. Androgen ablation generally
leads to a decrease of PCa in a significant number of pa-
tients; however, eventually, many patients relapse with a
more aggressive and metastatic stage of PCa which is
androgen-insensitive, thus known as castration-resistant
prostate cancer (CRPC) [50, 51].

Although the aggressive phase of PCa is androgen-
independent, prostate cancerous cells still require AR to
survive and proliferate. It may appear as nonsense, but
many mechanisms are thought to participate to AR
aberrant signaling in PCa in the absence of circulating
androgens. Indeed, several AR truncated forms have
been discovered in PCa, even if many of them have been
also identified in non-cancerous tissues (Fig. 1). Expres-
sion of such variants, called AR-Vs, has been shown to
correlate with PCa progression and CRPC. Some AR
isoforms are naturally occurring as splicing variants
encoded by alternative AR transcripts derived from cryp-
tic exons downstream of the sequence for the DBD,
which presents premature stop codons. Most translated
AR-Vs retain the nuclear translocation domain and the
DBD, but lack the LBD being constitutively active [52—-55].
So far, at least 20 variants have been identified either at the
mRNA or protein level [53]. Overall, AR-Vs are strongly
upregulated in hormone refractory PCa and show ligand-
independent constitutive transcriptional activity, thus
suggesting their involvement in PCa progression and treat-
ment resistance. AR-Vs have the potential to act alone as
homo- or hetero-dimers with the full-length AR; indeed,
different AR-Vs showed a different pattern of target genes
that were differently modulated in the presence or absence
of the full length AR [53]. Recent data [37] indicated that
the extra-nuclear AR signaling may regulate nuclear AR
signaling and that they may work together to coordinate
gene regulation in PCa cells.

(Anti)androgenic action of food contaminants

A meta-analysis from 1992 (resulting from 14,947 men)
indicated that there had been a decline in semen quality
during a period of half a century [56]. Although the
results caused controversy [57], a new meta-analysis
with expansion of the data to 101 studies gave similar
results [58]. Although genetic factors play important
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roles in causing poor semen quality in some men [59],
most cases of poor semen quality have no known eti-
ology. Smoking and particularly in utero exposure to
maternal smoking have been associated with reduced
sperm counts [58, 60—62]. A role of EDCs has been hy-
pothesized, but to date, there are no clear data except
for some rare cases of environmental or occupational
accidents where men were exposed to toxic agents like
phthalates, which caused azoospermia in workers produ-
cing or using pesticides [63] or dioxin [64], which
reduced semen quality. More convincingly, exposures to
several antiandrogenic pesticides and/or plasticizers have
been shown to induce cryptorchidism, hypospadias, and
reduced semen quality in humans and rodents and are
often linked to shortened ano-genital distance (typical of
females) [65]. Mechanistic evidence suggests that a pro-
portion of these male reproductive endocrine disorders
are caused by androgen insufficiency and/or by an im-
balance between estrogen and androgen during critical
time windows along the life cycle (e.g., when the testes
and genitalia are differentiating in pre- and post-natal
developmental phases and/or during puberty when the
organs are maturing). Finally, the upsurge in the incidence
of PCa in many countries has been attributed partly to
changes in diagnostic methods, namely the introduction
of prostate-specific antigen (PSA) screening, but this alone
cannot explain the continuing rises. Changes in PCa inci-
dence among migrant populations and studies of twins
show that environmental factors, including diet and chem-
ical exposures, also contribute [66, 67].

Pesticides

Pesticides are defined as substances or mixtures of sub-
stances intended for controlling, preventing, destroying,
repelling, or attracting any biological organism deemed
to be a pest [68]. Insecticides, herbicides, defoliants, des-
iccants, fungicides, nematocides, avicides, rodenticides,
and hospital disinfectant (i.e., biocides) are some of
the many kinds of pesticides (Fig. 2). One traditional
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classification of pesticides places them in one of the
two groups: organic and inorganic. Organic pesticides
are based on chemicals having carbon as the basis of
their molecular structure, and usually do not dissolve
easily in water. Inorganic pesticides are simpler com-
pounds. They have a crystalline, salt-like appearance,
are environmentally stable, and usually dissolve read-
ily in water. Human exposure to pesticides may occur
through occupational exposure in the case of agricul-
tural workers in open fields and greenhouses, workers
in the pesticide industry, and exterminators of house
pests. However, exposure of the general population to
pesticides occurs mainly through diet either eating
food or drinking water contaminated with pesticides.
Non-occupational exposure originating from pesticide
residues in food, air, and drinking water generally involves
low doses and is chronic (or semi-chronic) [68].
Epidemiological studies have identified pesticide appli-
cation in agriculture and pesticide manufacture as associ-
ated with the PCa [69]. The exposure to six pesticides (i.e.,
chlorpyrifos, fonofos, coumaphos, phorate, permethrin,
and butylate) out of 45 common agricultural pesticides
has been correlated to increased PCa in men with a famil-
ial history. Importantly, there is a heightened sensitivity of
the prostate to EDCs during puberty, thus infants and
children may be considered a highly susceptible popula-
tion for EDC exposures and increased risk of PCa with
aging [70]. The precise mechanisms by which the chemi-
cals related to PCa induce the carcinogenic process
remain to be resolved. However, exposure to these com-
pounds may interfere with steroid hormone metabolism
in the liver and prostate altering the androgen/estrogen
balance and availability that, in turn, may contribute to in-
creased PCa risk [71]. In addition, several pesticides or
their metabolites have been reported to have antiandro-
genic activity via AR binding; therefore, it is not surprising
that there are no reported associations between these
compounds and PCa. However, this mechanism of action
may cause other serious diseases. In the following sub-
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Fig. 2 Schematic structure of wild type and variant forms of androgen receptor (AR). AR structure encompasses an A/B domain involved in
protein-protein interactions via AF-1, a C domain (DBD) that engage DNA, a D domain corresponding to the hinge region, an E/F domain (LDB)
containing the ligand binding domain and an AF-2 region
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paragraphs, the effects of some common pesticides on an-
drogen signaling are reported.

Vinclozolin (VIN) and its metabolites

VIN is a dicarboxymide fungicide, widely used on fruits
and vegetables, acting as an AR antagonist in vitro and/
or in vivo [72 and refs therein]. Indeed, VIN interferes
with the action of androgens in developing, pubertal,
and adult male rats [73, 74]. Moreover, exposure to VIN
during the critical period of sexual differentiation results in
sexual abnormalities expressed later in the adult male rat
[75]. The mechanism evoked to explain this phenomenon
is linked to the ability of VIN, as others environmental tox-
icants, to promote epigenetic modification [76]. Indeed,
VIN exposure during fetal gonadal sex differentiation alters
the epigenetic programming of the germline that can be
transmitted to subsequent generations even in the absence
of any exposures. This environmentally induced epigenetic
transgenerational inheritance of disease is considered a
component of the etiology of male infertility [76].

With the same molecular mechanism, and with almost
the same potency as the classical antiandrogenic drug
flutamide, the two VIN primary metabolites, M1 and
M2 (Fig. 2), competitively inhibit the binding of
androgens to the human AR and consequently the
expression of androgen-target genes [77-79]. It has
been demonstrated that VIN inhibits T-induced growth of
androgen-dependent tissues (ventral prostate, seminal ves-
icles, and levator ani plus bulbocavernosus muscles) in a
dose-dependent manner in the Hershberger assay using
castrated immature rats treated with T [80]. In aqueous
media, VIN undergoes spontaneous hydrolysis giving
three metabolites called M1, M2, and M3 [81]. VIN me-
tabolites bind to the AR [74, 82] and, acting as antiandro-
gens, competitively inhibit the binding of androgens to
AR which leads to an inhibition of androgen-dependent
gene expression in vitro and in vivo [78, 79, 83]. Recently,
in an androgen-regulated human prostate cell line
(LNCaP), it has been demonstrated that VIN decreases
DHT-induced PSA secretion [84]. Furthermore, VIN
decreased both AR nuclear accumulation and its phos-
phorylation in vitro [84], thus impairing the conform-
ational changes necessary to induce the AR-mediated
transcriptional activation modulated by the AF-1 region.
Interestingly, the same authors have shown also a VIN
effect on DHT-induced 5a-reductase (SRD5A1) gene ex-
pression in LNCaP, highlighting a further antiandrogenic
effect of VIN directly on the last step of the androgen bio-
synthetic pathway leading to DHT formation in prostate.

Linuron (LIN)

LIN is a urea-derived selective herbicide used on pre-
and/or post-emergence control of weeds in crops such
as corn, wheat, soybeans, sorghum, cotton, carrots, and
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potatoes [85]. As other toxicants, LIN antiandrogenicity
occurs via a dual mechanism of toxicity affecting both
AR activity and T synthesis. Indeed, LIN competitively
inhibits androgens binding to AR [86] and acts as a weak
AR antagonist [87]. In addition, short- or long-term in
utero administration of LIN did not increase the serum
level of luteinizing hormone [83 and refs therein]. Con-
sequently, it has been observed a LIN dose-dependent
reduction in T production from the fetal male testis but
without altered fetal Leydig cell differentiation as recog-
nized upon in utero phthalate exposure [88].

Ethylene thiourea (ETU)

ETU is a common environmental contaminant, metabol-
ite, and degradation product of the fungicide class of
ethylenebisdithiocarbamateas, such as mancozeb and
zineb [89]. They are used to prevent crop damage in the
field and to protect harvested crops from deterioration
in storage or transport [90]. Toxicological data show the
thyroid gland as the primary target of ETU through the
interference with thyroid peroxidase activity [91]. In
addition, pre- and post-natal exposures to low doses of
ETU are associated to effects on development and on
the reproductive hormone profile in rats [89]. In particu-
lar, the reproductive hormone profile showed signifi-
cantly reduced levels of serum DHT in male rats at ETU
0.3 mg/kg body weight/day, which corresponded to the
dose at which the hypothyroid status was more evident.
Severe hypothyroidism has been demonstrated to be as-
sociated with the inhibition of T conversion to DHT by
5a-reductase, with a consequent increase in serum T
concentration.

Glufosinate ammonium (GA)

GA, the ammonium salt of the amino acid phosphinotri-
cin, is a broad-spectrum herbicide [92] used to (i) control
a wide range of weeds in agriculture, public domains, and
domestic areas and (ii) to desiccate (dry off) crops before
harvest. Its increased usage in several countries is derived
from the approved introduction of genetically modified
glufosinate-tolerant crops (such as corn, cotton, soybeans,
canola, rice, sugar beets). Acute effects of GA exposure
are well documented [93]. GA is a neurotoxic substance
[94] and lead to neurological symptoms such as seizures,
convulsions, and loss of memory [95]. Conversely, effects
of long-term exposure at GA low doses remain largely un-
known. In plants, GA inhibits the activity of the enzyme
glutamine synthetase (GInS) leading to a decrease of glu-
tamine and an increase of ammonia, which entail the
death of the plant [96]. In the vertebrate central nervous
system, GInS, exclusively localized in glial cells, plays a key
role in the glutamate metabolism, the major excitatory
brain neurotransmitter [94, 97].
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Albeit GA was not reported to have any hormone-like
activity, its potential influence on AR-dependent or AR-
independent-mediated pathways was recently investi-
gated by cell-based in vitro assays [98]. Interestingly, GA
is not able to bind the full-length, wild-type AR as dem-
onstrated by different in vitro gene transactivation assays
including the androgen receptor AR-binding assay
(ARBA), the PC-3-androgen receptor-luciferase-MMTV
assay (PALM) and the AR-chemically activated luciferase
expression assay (AR-CALUX) [98-101]. On the other
side, in human prostate LNCaP cells, using the PSA se-
cretion as a cell-specific, functional assay, it has been
shown that GA acts as an androgen-like chemical being
able to induce both free and total PSA secretion [102].
The levels of PSA secretion induced by GA at 0.01 and
0.1 mg/ml were exactly overlapping with the levels of
PSA secretion induced by physiologically relevant con-
centration (from 2.9x107*° and 2.9x10~7 mg/ml) of
DHT. Therefore, it has been suggested that GA could
act through a mutated AR bearing the point mutation
T877A expressed in LNCaP cells [41].

Glyphosate (GLYP)

GLYP a glycine derivate, is the active ingredient of several
broad-spectrum herbicide formulations used on multiple
food and non-food crops. GLYP kills plants by inhibiting
5-enolpyruvylshikimate-3-phosphate synthase, a key en-
zyme in the shikimate biosynthetic pathway necessary for
the production of the aromatic amino acids, auxin, phyto-
alexins, folic acid, lignin, plastoquinones, and many other
secondary products. The carcinogenic potential of GLYP,
and its formulations, is a recent matter of debate at the
regulatory and scientific level. Indeed, although IARC
classified GLYP as a “probable human carcinogen” (IARC
category 2A), due to sufficient evidence of carcinogenicity
in animals, limited evidence of carcinogenicity in humans
and strong evidence for two carcinogenic mechanisms
have been reported and considered relevant for its toxic
mechanism of action. On the other hand, EFSA reached
opposite conclusions and stated that “classification and
labelling for carcinogenesis is not warranted” and “gly-
phosate is devoid of genotoxic potential.” Such position
of EFSA has been deeply criticized due to the fact that
they did not gave a relevant importance to data ob-
tained by rodent experimental models, particularly to
renal carcinogenicity, as IARC did [103]. However, re-
cent papers [104, 105] argued that glyphosate may be a
key contributor to the obesity epidemic and the autism,
as well as to several other diseases and conditions, such
as Alzheimer’s disease, Parkinson’s disease, infertility,
depression, and cancer. Indeed, these affirmations seem
to be confirmed by the increased mortality of rats after
2 years of subchronic exposure to GLYP [106]. Unfor-
tunately, the direct correlation between GLYP exposure
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and all these pathologies still wait for a validation. All
results were hormone- and sex-dependent, and the
pathological profiles were comparable. Females devel-
oped more frequently large mammary tumors than con-
trols. Males presented up to four times more large
palpable tumors, abnormal sperm morphology, and an
increase of aromatase mRNA and protein levels with
respect to controls [107]. This over-expression of aro-
matase was paralleled by the elevation of estrogen pro-
duction resulting in the impairment of estrogens/
androgens balance in male rats and an excess of estro-
gen in female rats [108, 109]. The in vitro exposure of
Leydig and Sertoli cell co-cultures to the glyphosate-
based formulation causes apoptosis. The exposure of
drakes to GLYP resulted in alterations in the structure
of the testis and epididymal region as well as in the
serum levels of T and E2 [110]. All together, these data
suggest that the antiandrogenicity of GLYP is mainly
linked to its effect on androgen hormones metabolism
that culminates in changes in the androgen/estrogen
balance. However, it has been reported that GLYP ex-
posure decreases AR expression in the testis, but do
not cause detectable effects on the expression of this
receptor on the efferent ductules and epididymal duct
suggesting that glyphosate alone has low toxicity on
male rats reproductive system [111].

Plasticizers

Plasticizers are additives that increase the plasticity or
viscosity of a material (Fig. 3). Plastic items containing
plasticizers exhibit improved flexibility and durability.
Plasticizers including di(2-ethylhexyl) phthalate (DEHP),
di-isononyl phthalate (DINP), di-butyl phthalate (DBP),
and bisphenol A (BPA) are commonly used in food
packaging (e.g., plastic containers) and in medical de-
vices (e.g., blood storage bags and intravenous delivery
systems). In addition, BPA is a component of epoxy
resins used as lacquers to coat metal products such as
food cans, bottle tops, and water supply pipes. Some
dental sealants and composites may also contribute to
BPA exposure.

Plasticizers are not covalently bound to the polymer
matrix, thus, the abrasion of the plastic/resin as well as
changes of temperature and pH allow plasticizers to mi-
grate in food; therefore, food may contain detectable
levels of these compounds.

Phthalates

Phthalates, or phthalate esters, such as DBP and DEHP,
are commonly used plasticizers, primarily necessary to
soften polyvinyl chloride (PVC). High exposure levels to
phthalates, in particular to DEHP, are due to their pres-
ence in medical devices [112]. Phthalate metabolites are
found in the body of more than 75% of subjects sampled
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in the USA [113] and have been detected at median
values ranging from 12.7 ug/l for benzyl butyl phthalate
(BBP) to 91.8 pg/l for DBP in adult human urine
samples and two to four times higher levels in the
urine of children [114, 115]. Furthermore, in blood
of newborn infants after transfusion, the concentra-
tions of the DEHP were found between 3.4 and
21.6 pg/ml [116].

Although the phthalate DEHP does not bind to AR, in
utero exposure to phthalates disrupts the differentiation
program of androgen-dependent tissues in male rat off-
spring [74, 117-120].

The reproductive tract malformations in the androgen-
dependent tissues are similar but not equal to the effects
of antiandrogen pesticides such as VIN (see paragraph 5).
Phthalates have been shown to reduce testicular T
levels in fetal and neonatal male rats [121]. This de-
creased T production has been associated with the
downregulation of genes involved in steroidogenesis
[122]. The MoA of phthalates in the male involves
altered Leydig cell migration and differentiation and
abnormal gonocytes development [123-125]. Finally,
in utero DEHP exposure altered post-natal liver de-
velopment in weanling mice causing the significant
and dose-dependent increase of hepatosteatosis and
decreased glycogen storage [126]. At puberty, the
significant decrease of glycogen storage was still
present in males.

BPA

Considerable amounts of BPA (ranging from 0.25 to
1.11 mg/kg) have been found in randomly selected fresh
food samples from an area of Southern Italy, probably
deriving from plastic irrigation pipes [127]. Conse-
quently, it is estimated that food contributes for more
than 90% to the overall BPA-exposure while exposure
through dust ingestion, dental surgery, and dermal

absorption remain below 5% in normal situations [128].
Overall, human exposure to BPA is frequent and wide-
spread and more than 90% of individuals have measurable
amounts of BPA in urine as reported by biomonitoring
studies conducted in the USA, Germany, and Canada
[129 and references therein].

Exposure to BPA has been associated to a reduced
proportions of male births in the populations of a num-
ber of countries, increased the risk of cryptorchidism
and hypospadias, and reduced semen quality in males
suggesting a possible BPA interference with the male re-
productive function. However, very few data are available
on BPA effects on AR transcriptional activity, while a
lack of knowledge is still present on the ability of these
compounds to interfere with androgen-dependent extra-
nuclear signals [22, 130, 131]. BPA effects on mouse
satellite cell differentiation, male rat vascular smooth
muscle cells motility, and AR levels and transcriptional
activity in human prostate cancer cells have been evalu-
ated. All cell models used expressed the AR full length
(i.e., 110 kDa), while prostate cancer cells were positive
for several AR splicing forms (e.g., ARALBD or AR
75-80 kDa). Surprisingly, BPA did not impair andro-
gen effects in normal cell lines [132, 133], but it
acted as an antiandrogen in cancer cells when the AR
splicing forms were expressed [132]. These data have
recently been confirmed in HeLa cells transiently
transfected with AR full length (110 kDa) or AR mu-
tants (i.e., AR ~80 kDa and AR ~28 kDa) (Marino
and DPellegrini, personnel communication) and have
been established by other authors with different AR
mutants [134]. Thus, androgen signaling seems to be
less prone to BPA interference when wild-type AR is
expressed, but BPA could interfere with the therapy
in patients with advanced PCa via mutant ARs [134, 135].

Experiments performed in rodent models and human
prostate cell lines showed that BPA can influence
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carcinogenesis, modulate PCa cell proliferation, and for
some tumors, stimulate progression. Early life exposure
to BPA may increase susceptibility to hormonal carcino-
genesis in the prostate gland, possibly by developmentally
reprogramming carcinogenic risk [71]. Studies using a rat
model showed that brief neonatal exposure to a low dose
of BPA (10 pg/kg BW/day) significantly increased the inci-
dence and grade of prostatic intraepithelial neoplasia fol-
lowing adult estrogen exposure. This model of sensitivity
to hormonal carcinogenesis is relevant to humans in that
relative estradiol levels increase in the aging male and may
contribute to prostate disease risk [136].

(Anti)androgenic action of food components
Phytochemicals are a ubiquitous class of plant secondary
metabolites; some are responsible for color and other for
organoleptic properties of fruits and vegetables. A “rec-
ommended” human diet should warrant a high propor-
tion of energy from fruits and vegetables, therefore
providing, among other factors, a huge intake of phyto-
chemicals in general considered “health promoting” by
virtue of their antioxidant activity and positively modu-
lating, either directly or indirectly, cellular and tissue
redox balance [137]. However, the first cue on the anti-
androgenic role of phytochemicals come from veterinary
observation about sheep feed. Indeed, the adverse effect
of red clover on sheep fertility in Western Australia,
caused by interfering in some way with sex hormone ac-
tions, placed these substances in the class of EDCs
[138]. More recently, the EDC-like role played by phyto-
chemicals have been confirmed in in vivo experiments.
Numerous effects in both male and female rats exposed
to the flavonoid genistein from gestational day 7 into
adulthood through placental transfer, lactational expos-
ure, and ingestion were observed including hyperplasia
of the mammary glands in both sexes and aberrant or
delayed spermatogenesis [9].
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Flavonoids

Flavonoids are widely present in fruits, vegetables, and
beverages (tea, wine, beer) and in many dietary supple-
ments and herbal remedies (Fig. 4). Quercetin (QRC)
represents the most abundant dietary flavonoid found in
a broad range of fruits, vegetables, and beverages, whose
antioxidant and anti-inflammatory properties have been
associated with the prevention and therapy of cardiovas-
cular diseases and cancer. One of the reasons for the
success of QRC (3, 30, 40, 5, 7-pentahydroxyflavone)
is probably due to the relatively high bioavailability of
the molecule compared to other phytochemicals. The
daily intake of QRC in the diet has been estimated as
5-40 mg/day [139]. QRC, as all flavonoids, is present
in food in different glycosylated forms, whereas the
aglycone (i.e., the chemicals without sugar groups) is
formed in phase I metabolism. Therefore, its bioavail-
ability depends on the type of glycosides present in
different food sources because it has been shown that
aglycones are promptly absorbed by cells. The flavonoid
glycosides are commonly hydrolyzed to their aglycones to
produce effects in vivo. De-glycosylation by small intes-
tinal epithelial cell B-glucosidases is a critical step in the
absorption and metabolism of flavonoid glycosides.
Flavonoid glycosides in general are absorbed as their agly-
cones after hydrolyzing along the digestive tract [9]. After
absorption, QRC is metabolized in different organs, such
as the small intestines, colon, liver, and kidney. In in vitro
test, QRC appeared as mutagenic but it was not confirmed
by in vivo tests in animal models, where the molecule
failed to induce any significant changes when mutagenic-
ity/genotoxicity endpoints in somatic cells were deter-
mined [140]. In 1999, IARC (the International Agency for
Research on Cancer) concluded that QRC is not classifi-
able as carcinogenic to humans, which is in agreement
with the daily intake of the molecule in the diet and the
absence of known cases of adverse effects for human
health [141]. QRC can be considered the prototype of a
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naturally occurring chemo-preventive agent due to its bio-
logical activities (antiatherogenic, anti-inflammatory, anti-
cancer, and antihypertensive properties leading to the
beneficial effects against cardiovascular diseases) [142].
Moreover, QRC caused downregulation of AR expression
and activity [143] in PCa cells in which mutant ARs were
expressed. AR protein expression is inhibited by QRC in a
dose-dependent manner [143]. The repression effects on
AR expression can actually reduce its function; moreover,
QRC inhibited PSA and KLK2 secretion, two proteins
known as androgen-regulated tumor markers [143, 144].
PSA and KLK2 can indirectly regulate tumor cell growth,
tumor invasion, and osteoblastic metastasis [145-147].
QRC can also downregulate the expression of other
prostate-specific genes, such as NKX3.1 whose expression
is associated with a more aggressive phenotype of PCa
[148]. In addition, the AR-dependent upregulation of orni-
thine decarboxylase (ODC) mRNA was inhibited by QRC.
The product of ODC gene is the key regulator of the
synthesis of polyamines, which are essential for cell prolif-
eration. ODC is critical in cell transformation and sug-
gested to be a proto-oncogene [149]. It was found that
ODC levels are higher in PCa compared to benign tissue
[150]. QRC has an inhibitory effect on AR-regulated genes
that can directly or indirectly affect cell growth. Finally,
QRC can inhibit the AR expression at the transcriptional
level, and thereby downregulate the androgen-inducible
genes including PSA, KLK2, NKX3.1, and ODC, which
play roles in development and progression of PCa. Overall,
QRC has the potential to become a chemo-preventive
and/or chemotherapeutic agent for PCa.

Genistein is the most abundant isoflavone in soybeans.
It exhibited diverse biological activities, among these, its
anticancer effects are most noteworthy [151]. Through
regulating critical cell cycle genes, genistein (GEN) can
inhibit cancer cell growth in vivo and in vitro. It has
been reported that GEN can inhibit activation of NF-kB
[152] and protein kinase B/AKT signaling pathways to
induce cell apoptosis [153], both pathways are well
known for their function to maintain a balance between
cell survival and apoptosis. The anticancer effects of
GEN have been attributed to its known inhibitory effects
on tyrosine kinase, topoisomerase II, SRD5A, and angio-
genesis, and its activation of several growth factor receptor
pathways [154, 155]. At low, physiological concentrations,
GEN binds to both the estrogen receptor subtypes (i.e.,
ERa and ERP), with a greater affinity for ERB, and GEN is
thought to probably exert some or most of its effects
through ER-P [156]. Moreover, GEN downregulates gene
and protein expression of both AR and PSA in androgen
responsive cells. However, whether GEN has a general
effect on androgen responsive genes is unclear. Studies
showed that there are inhibitory effects of GEN on the
accumulation of products of androgen responsive genes,
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but the effect on mRNA levels does not always overlap,
suggesting that there are different mechanisms through
which GEN affects the AR signaling pathway. For ex-
ample, whereas the PSA mRNA accumulation decreased
in response to GEN, KLK4 mRNA levels increased. This
suggests that GEN differentially affects transcriptional and
post-transcriptional mechanisms in PCa. Indeed, it has
been shown that GEN has a different role at both tran-
scriptional and post-transcriptional level affecting methy-
lation of target genes and phosphorylation of cytoplasmic
proteins [157-159]. Some studies showed that GEN-
treated LNCaP cells exhibit increased ubiquitination of
AR, suggesting that AR protein is downregulated via a
proteasome-mediated pathway. AR is normally stabilized
by the chaperone activity of the heat shock protein Hsp90.
The increased ubiquitination of AR after GEN treatment
is attributed to decreased Hsp90 chaperone, which is
more active in acetylated form. Due to the antiestrogenic
activity of GEN, the histone deacetylase 6, which is an
HSP90 deacetylase, is inhibited. Therefore, it is thought
that AR downregulation by GEN through inhibition of the
histone deacetylase 6-HSP90 co-chaperone function re-
quired stabilizing AR protein. For this, GEN could be
used as a potential chemo-preventive agent for PCa
along with known inhibitors of the histone deacetylase
6 and HSP90 [160].

Besides GEN, soy isoflavones consist of several types
of other components, such as daidzein, the less abun-
dant glycitein, and the metabolite equol. Daidzein is me-
tabolized in the intestine to equol at relatively low or high
levels dependent upon several biological, dietary, and pre-
sumably environmental factors. S-equol has been shown
to have a modest affinity for binding to ERp, and little af-
finity for ERa. Furthermore, equol (i.e., the R- and/or S-
isomer) can act as an antiandrogen. Equol’s antiandrogen
activity is unique as it has been demonstrated that equol
does not bind AR, but specifically binds DHT with high
affinity preventing the binding of AR to DHT [161]. How-
ever, there has been some controversy regarding AR regu-
lation by soy isoflavones. Indeed, it has been reported that
soy isoflavones, in particular equol, suppressed AR as well
as PSA expression at the transcription level in prostate
cancer cells [162]. More recently, it has been reported that
equol regulates AR protein expression by activating the
proteasomal pathway, thereby promoting AR degradation,
without any involvement of transcriptional or translational
mechanisms [163].

Carotenoids

Carotenoids are tetraterpenoid organic pigments that are
naturally occurring in the chloroplasts and chromoplasts
of plants and some other photosynthetic organisms like
algae, some bacteria, and some types of fungi (Fig. 4). Like
for other phytochemicals, animals obtain carotenoids by
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diets. In humans, four carotenoids (-carotene, a-carotene,
y-carotene, and [-cryptoxanthin) have vitamin A activity
and can act as antioxidants (Fig. 5) [164]. Lycopene is a
bright red carotene and carotenoid pigment found in to-
matoes and other red fruits and vegetables, such as red
carrots, red bell peppers, watermelons, and papayas [165].
Although lycopene is chemically a carotene, it has no vita-
min A activity [166]. When absorbed from the stomach,
lycopene is transported in the blood by various lipopro-
teins and accumulates in the liver, adrenal glands, and tes-
tes. In human plasma, lycopene is an isomeric mixture
containing 50% of the total lycopene as cis isomers. High
concentration of cis isomers were also observed in human
serum and prostate tissue [167], suggesting that tissue
isomerases might be involved in in vivo isomerization of
lycopene from all trans to cis form. It has been demon-
strated that serum and prostate levels of lycopene in
patients with PCa were significantly lower than their age-
matched controls suggesting that these patients lack the
ability to isomerize dietary lycopene and therefore do not
absorb it efficiently [168].

Effect of EDC mixtures
Although risk assessments have been historically con-
ducted on a chemical-by-chemical basis, regulatory
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agencies are beginning to consider cumulative risk of
chemicals. The effects of mixtures of chemicals like the
ubiquitous phthalates and plasticizers are of concern
since humans are exposed at the same time to multiple
compounds [87].

Binary mixture studies were performed in rats during
pregnancy exposed at dosage levels equivalent to approxi-
mately one half of the EDs, for hypospadias or epididymal
agenesis. The binary mixtures included chemicals with dif-
ferent mechanism of action such as AR antagonists (i.e.,
VIN plus procymidone), phthalate esters (i.e., DBP plus
BBP), a phthalate ester plus an AR antagonist (i.e., DBP
plus procymidone or BBP plus linuron), and a phthalate
ester plus a dioxin (DBP plus 2,3,7,8 TCDD). The data ob-
tained confirmed the prediction that each chemical by
itself would induce no or few malformations, but any bin-
ary mixture had led to about 50% of the males turning out
to be malformed. In the same study, it has been also con-
ducted a combinatorial mixture study exposing pregnant
rats to either seven (four pesticides plus three phthalates)
or ten (four pesticides plus six phthalates) different antian-
drogens. The complex mixture experimental data have
shown that these chemicals elicit antiandrogenic effects at
two different sites in the androgen signaling pathway (i.e.,
AR antagonism or inhibition of the androgen synthesis).
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Overall, it was demonstrated that chemicals acting via
disparate mechanisms display cumulative, dose-additive
effects when present in combination.

In another recent study [169], conducted in vitro, 30
different AR antagonists from a wide range of sources
and exposure routes (pesticides, antioxidants, parabens,
UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene,
perfluorooctane sulfonate, and pentabromodiphenyl ether)
were tested using a gene reporter assay (MDA-kb2). Che-
micals were combined at three mixture ratios, equivalent
to single components’ effect concentrations that inhibit
the action of DHT by 1, 10, or 20%. Concentration
addition and independent action were used to calculate
additive expectations. The authors have observed
complete suppression of DHT effects when chemicals
were combined at individual concentrations eliciting 1, 10,
or 20% AR antagonistic effect. Due to the large number of
mixture components, the combined AR antagonistic ef-
fects occurred at very low concentrations of individual
mixture components. Therefore, a large numbers of AR
antagonists from a wide variety of sources and exposure
routes have the ability of acting together at the receptor to
produce joint effects at very low concentrations that indi-
vidually do not induce observable AR antagonistic effects.

Conclusions

Both epidemiology studies and animal models sustain
the idea that specific EDCs may influence the develop-
ment or progression of male reproductive endocrine
disorders including PCa [170, 171]. In large part, these
effects appear to be linked to interference with estrogen
signaling, either through interacting with estrogen recep-
tors or by influencing steroid metabolism and altering
estrogens/androgens balance within the body. In male,
EDCs can exert prominent effects during vulnerable
developmental stages as in utero or during puberty
where EDCs may pose a risk of developing disease later
in life. It has been theorized that the insurgence of dif-
ferent pathologies may be due to the exposition to EDCs
during a critical window of prenatal development. Stud-
ies have confirmed that the exposure during prenatal
period could alter the sex-specific characteristics and the
developmental programming and could delay pubertal
development without the need for a second exposure. If
confirmed, these data indicate that in utero exposure to
EDCs could be more critical for males which develop-
ment is mainly dependent from T produced by testis in
the prenatal period. Data obtained from epidemiologic
evidence both in human and wildlife, in vivo studies but
also genomic, proteomic, and metabolomic studies give
us a picture of the effect of these compounds. However,
risk assessment is usually performed on individual che-
micals, but humans may be exposed to a huge number
of different chemicals and chemical products from

Page 12 of 16

various sources and via different routes. This has raised
concern about the “mixture” issue or the so-called cock-
tail effect. Nowadays, very few data addresses this worry-
ing aspect of EDCs exposure. Future studies should
focus on this aspect inserting phytochemicals in the
mixture in order to evaluate if their protective effects
against some male disease (e.g., PCa) is maintained even
in the presence of food contaminants, as demonstrated
for estrogen receptors and breast cancer [7].

As a whole, the combined effect of EDCs on androgen-
dependent gene expression and, more general, on animal
physiology is very complex because many EDCs can act
as modulator of AR or estrogen receptors leading to
the activation and the interaction of multiple signaling
pathways, and in turn, EDCs can affect reproduction
and development by more than one mechanism. More-
over, the evidence that AR mutant gain the ability to
utilize some EDCs (e.g., BPA) as an agonist enlarge the
effect of these substances. In spite of the huge number
of studies evaluating the antiandrogenic properties of
EDCs, only androgen metabolism and AR or estrogen
receptors transcriptional activity have been taken into
consideration, while a lack of knowledge is still present
on the ability of these compounds to interfere with
steroid-dependent extra-nuclear signals. Since the alter-
ation of androgen signaling can induce a variety of
endocrine disruptive responses, further studies are
required to identify the downstream targets of EDC-
modulated AR signaling, in order to elucidate their
specific impact on male health.
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