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Abstract

metabolizing and energy-storing tissues.

Background: To elucidate the effects of altered dietary carbohydrate and fat balance on liver and adipose tissue
transcriptomes, 3-week-old rats were fed three kinds of diets: low-, moderate-, and high-fat diets (L, M, and H)
containing a different ratio of carbohydrate-fat (C-F) (65:15, 60:20, and 35:45 in energy percent, respectively).

Methods: The rats consumed the diets for 9 weeks and were subjected to biochemical and DNA microarray analyses.

Results: The rats in the H-group exhibited lower serum triacylglycerol (TG) levels but higher liver TG and cholesterol
content than rats in the L-group. The analysis of differentially expressed genes (DEGs) between each group (L vs M, M
vs H, and L vs H) in the liver revealed about 35% of L vs H DEGs that were regulated in the same way as M vs H DEGs,
and most of the others were L- vs H-specific. Gene ontology analysis of these L vs H DEGs indicated that those related
to fatty acid synthesis and circadian rhythm were enriched. Interestingly, about 30% of L vs M DEGs were regulated in
a reverse way compared with L vs H and M vs H DEGs. These reversed liver DEGs included M-up/H-down genes (Sds
for gluconeogenesis from amino acids) and M-down/H-up genes (Gpd2 for gluconeogenesis from glycerol, Agpat9 for
TG synthesis, and Acot1 for beta-oxidation). We also analyzed L vs H DEGs in white (WAT) and brown (BAT) adipose
tissues and found that both oxidation and synthesis of fatty acids were inhibited in these tissues.

Conclusions: These results indicate that the alteration of dietary C-F balance differentially affects the transcriptomes of
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Background

Availability of body carbohydrate (C) and fat (F) for en-
ergy production varies depending on the animal’s cir-
cumstances. Fat is mainly consumed during resting
conditions at about 90% of total energy; however, this ra-
tio can be rapidly decreased to nearly 10% through acute
bouts of exercise and substituted by the energy supply
from aerobic or anaerobic respiration of C [7, 38]. Under
fasting conditions, carbohydrate is depleted within a day,
and about four fifths of basal metabolic rate is
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maintained by fat and the rest by amino acids for several
days [4]. These metabolic switches of energy source be-
tween C and F are more interchangeable than protein
(P) or amino acids because of the metabolic linkage me-
diated by the key organic substances: glycerol-3-
phosphate both as the product of triacylglycerol (TG)
hydrolysis and as the substrate for gluconeogenesis,
NADP(H) both as the hydrogen acceptor of the pentose
phosphate pathway and as the hydrogen donor for fatty
acid (FA) synthesis, and acetyl-CoA as the activated sub-
strate of the TCA cycle and of FA synthesis. Thus, diet-
ary C to F ratio (C-F ratio) has a considerable effect on
the energy homeostasis of animals.
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Generally, experimental rodents accept diets composed
of energetic C-F ranging from 50:30 to 70:10 to provide a
constant energy ratio of 20% P [39]. In rodents, AIN93G
(C:F:P = 64:16:20) during rapid growth, pregnancy, and
lactation and AIN93M (C:E:P = 76:9:15) during mainten-
ance were often used for standard diets [28]. Keeping this
P energy ratio over 15% is critical for normal growth of
adolescent animals [13, 23, 29]. But effects of an altered
C-F on metabolic parameters differ depending on dietary
fat species such as soybean and corn oils of plant origin,
and beef tallow and lard of animal origin. It was shown
that a high-fat diet (HFD, C:F:P = 30:40:20) made of lard
was more deleterious to insulin resistance and hepatic
steatosis than an HFD made of soybean oil in comparison
with a low-fat diet (LFD, C:F:P = 14:64:22) [45, 50]. Deol
et al. reported that an HFD (C:F:P = 43:40:16) containing
soybean oil and hydrogenated coconut oil at 1:1 ratio was
more obesogenic than an HFD mainly containing hydro-
genated coconut oil [10]. These differences were consid-
ered to be caused by the lipid composition of the dietary
fat [1, 8, 12, 17, 32, 34]. Polyunsaturated FAs (PUFAs) are
the main contributors to the physiological activity of diet-
ary fat; soybean oil contains 15% saturated FAs and 55%
PUFAs, while lard contains 40% saturated FAs and 10%
PUFAs. Duivenvoorde et al. showed that an HFD with
predominantly saturated FAs increased ectopic fat storage,
liver damage, and adipocyte size as compared to an HFD
with predominantly PUFAs and reduced response flexibil-
ity to fast re-feeding and oxygen restriction [11]. Espe-
cially, eicosapentaenoic (EPA) and docosahexaenoic acid
(DHA) were reported to reduce insulin resistance and
hepatic steatosis [26, 31]. Though small in percentage, ste-
rols are critical factors for animal lipid homeostasis; the
soybean oil used in our study contained 0.0024% choles-
terol and 0.33% phytosterols, while the lard contained
0.086% cholesterol and no phytosterols. Specifically, phy-
tosterols have been shown to exert beneficial effects on
lipid homeostasis under metabolically stressed conditions
such as an HFD containing predominantly saturated FAs
[5, 6, 16, 27, 36]. However, there are few studies on the
transcriptomic effects of a gradual change in the C-F
under more moderate conditions, such as the use of diets
containing natural plant oils or restricted feeding [30, 37].
In the present study, we conducted an isoenergetic study
using a soybean oil-rich diet and found fewer deleterious
effects on tissue metabolism but a drastic change in the
tissue transcriptome.

Methods

Animals

Three-week-old male Wistar rats (Charles River Labora-
tories Japan, Kanagawa, Japan) were housed in a
temperature- and humidity-controlled room with a 12-h
light-dark cycle (light 06:30-18:30, dark 18:30—06:30).
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All animal experimental protocols were approved by the
Animal Use Committee of the Takasaki University of
Health and Welfare.

Experimental procedure

The rats were acclimated to the laboratory environment
for a week with chow diets (MF, Oriental yeast, Tokyo,
Japan). The animals were divided into three groups so that
the average body weights of each group were equal to each
other before being given diets with different C-F energy
ratios: low (L) 65:15, moderate (M) 60:20, and high (H)
35:45 fat diet groups. The rats were fed diets ad libitum
for a week. Then, the L-group was fed ad libitum and the
other groups were fed isoenergetically compared with the
L-group for 9 weeks. The diets were purchased from
Research Diets, Inc. (New Brunswick, NJ, USA). Detailed
compositions of each diet are shown in Additional file 1.
Diets were removed 17 h before dissection, and the rats
were sacrificed to collect the blood, liver, white adipose
tissue (WAT), and brown adipose tissue (BAT). Because
an obviously decreased dietary intake was observed for
two rats belonging to the M- or H-groups (M_7 and H_11
in identical number), the use of these two rats were not
included in all analyses to achieve consistency in the isoe-
nergetic study (7 = 4-5 in each group). Serum and plasma
were extracted using standard methods and separated
from whole blood. Small hepatic pieces were immersed
into RNAlater (Qiagen, Tokyo, Japan). The rest hepatic
pieces, WAT, and BAT were frozen immediately after ex-
tirpation using liquid nitrogen. All samples were stored at
-80 or —150 °C until analysis.

Measurement of blood biochemical parameters

All blood biochemical parameters, except insulin, listed
in Table 1, were analyzed by Nagahama Life Science
(Shiga, Japan). Plasma was used to measure glucose,
pyruvic acid, total lipids, phospholipids, and total ketone
bodies. Other parameters were assayed using the serum.
Serum insulin levels were measured by using the rat in-
sulin ELISA kit (Morinaga Institute of Biological Science,
Kanagawa, Japan).

Measurement of hepatic lipids

Hepatic lipids were extracted according to a previous
method [14]. Briefly, 100 mg of frozen hepatic pieces
were homogenized in 2 mL of cooled chloroform-
methanol solution (2:1) using a multibead shocker (Yasui
Kikai Corporation, Osaka, Japan). Filtered samples were
adjusted to 4 mL with chloroform-methanol solution
and were washed with 0.8 mL of purified water. Subse-
quent washes were performed by adding 3.75 mL of
chloroform-methanol-water solution (2:1:0.75), and the
resulting extracts were dried by evaporation. Extracted
lipids were resolved with 1 mL of isopropanol.
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Table 1 Blood and liver biochemical analysis
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L-group M-group H-group
Aspartate Aminotransferase (IU /L) 128+16 1265 154+22
Alanine Aminotransferase (IU / L) 25428 23+4 8 52413 b
Alkaline Phosphatase (IU / L) 232+43 194+52 247+39
Lactate Dehydrogenase (IU / L) 2136+375 2183+310 1866+228
Leucine Aminopeptidase (IU / L) 714 71£5 79+5
Choline Esterase (IU /L) 13+2 13+2 14+3
Total Bilirubin (mg / dL) 0.07+0.02 0.07+0.01 0.07+0.02
Glucose (mg / dL) 154+17 16020 160+14
Pyruvic Acid (mg / dL) 2.37+1.07 1.68+1.50 2.45+1.61
Blood  Total Lipid (mg/dL) 25945 & 193431 ab 172435
Triacylglycerol (mg / dL) 76£19 2 58421 ab 28+14b
Phospholipid (mg / dL) 120112 10127 93+8 b
Non-esterified Fatty Acid (uWEq /L) 435+104 364+121 275+40
Total Cholesterol (mg / dL) 76£102 5844 0 659 ab
LDL-Cholesterol (mg / dL) 7+1 6x1 5+1
HDL-Cholesterol (mg / dL) 20+ 2 182 b 191 b
Total Ketone Body (umol / L) 1131+249 923+398 1068+374
Total Bile Acid (umol / L) 8+4 543 7+5
Insulin (ng / mL) 0.946+0.547 1.278+0.277 0.843+0.458
Triacylglycerol (mg / g-tissue) 11.042.72 14.5+1.3 b 18.6+3.1°
Liver Total Cholesterol (mg / g-tissue) 1.97+0.18 2 2.530.22 ab 2.810.56 °
Total Bile Acid (nmol / g-tissue) 13.8+1.72 17.4+3.42 2564230

“shaded cell entries: significant difference detected by Tukey-Kramer comparison (p< 0.05)

abno significant difference compared with L-group

Hepatic TG, total cholesterol, and total bile acids were
measured using Cholestest TG, Cholestest CHO (Sekisui
Medical, Tokyo, Japan), and total bile acids assay kits
(Diazyme Laboratories, Poway, CA, USA), respectively.

DNA microarray assay

Total RNA was isolated from each immersed hepatic
piece, WAT, and BAT by TRIzol reagent (Invitrogen
Japan, Tokyo, Japan) and purified using RNeasy mini kits
(Qiagen). Anti-sense RNA was synthesized from 100 or
200 ng of purified total RNA, and biotinylated comple-
mentary RNA (cRNA) was obtained using a GeneChip
3IVT Express Kit (Affymetrix, Santa Clara, CA, USA).
The cRNA was fragmented and hybridized to a Gene-
Chip Rat Genome 230 2.0 Array (Affymetrix) for
16 h at 45 °C. The arrays were washed and stained
with phycoerythrin using the GeneChip Fluidics Sta-
tion 450 (Affymetrix) and submitted to scanning on
an Affymetrix GeneChip Scanner 3000 7G. The Affy-
metrix GeneChip Command Console Software was
used to make CEL files.

DNA microarray data analysis
The CEL files derived from the liver, WAT, and BAT were
quantified using robust multi-array average (RMA), factor

analysis for robust microarray summarization (quantile
normalization, qFARMS), and GCRMA, respectively
[19, 22, 46], using the statistical language R (2.7.1)
(http://www.r-project.org/) (R [35]), and Bioconductor
(2.2) (http://www.bioconductor.org/) [15]. Hierarchical
clustering was performed using the pvclust function in R
[41]. The rank products (RP) method was used to identify
differentially expressed gene probe sets of the quantified
data [3]. The probe sets with a false discovery rate (FDR)
<0.05 were considered to be differentially expressed be-
tween each group (L vs M, M vs H, and L vs H).

The up- and downregulated probe sets picked out at
FDR < 0.05 were functionally classified by the Biological
Process in Gene Ontology (GO) with the Functional
Annotation Tool of the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) [9, 21]
and Quick GO (http://www.ebi.ac.uk/QuickGO/) [20].
In analysis of the liver, EASE scores, which are modified
Fisher’s exact test p values were used to extract statisti-
cally overrepresented GO terms, and GO terms with p
values <0.01 were regarded as significantly enriched. In
analysis of WAT and BAT, Benjamini-Hochberg correc-
tion p values were used to extract statistically overrepre-
sented GO terms, and GO terms with p values <0.05
were regarded as significantly enriched.
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Predicted upstream regulators among liver and adi-
pose tissue transcriptomes were analyzed using Qia-
gen’s Ingenuity Pathway Analysis (IPA, Qiagen,
https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis/). Activation z-scores were calculated as a
measure of upstream regulators analysis. An absolute
z-score >2.5 was judged as significantly activated or inhib-
ited. Common upstream regulators that were predicted to
be activated or inhibited in the liver, WAT, and BAT were
picked out from a list of all upstream regulators.

Statistical analysis

The results are shown as the means+ SDs. One-way
ANOVA was used to assess the differences among three
groups, and Tukey-Kramer comparison was used for
pairwise comparisons between multiple groups. Differ-
ences at p < 0.05 were considered to be significant.

Results

Characterization of hepatic genes affected by the altered
balance of carbohydrate and fat in the diet

Rats were fed three kinds of diets containing different
ratios of C-F in constant total energy (L, M, and H,
Additional file 1). In our preliminary experiment of feed-
ing ad libitum, energy intakes (Kcal/g-BW) were almost
the same among the three groups from week 2 to week 4.
Therefore, rats were pair-fed to keep by isoenergetic
conditions, and dietary restriction derived from pair-
feeding has not been occurred. During the experimen-
tal period of 9 weeks, the rats in each group showed
no between-group differences in body weight (Add-
itional file 2a, b). Also, the liver and the WAT weights
showed no differences among groups (Additional file
2b). Biochemical analysis of the blood revealed differ-
ences in several markers among experimental groups
(Table 1). The H-group showed higher levels of alanine
aminotransferase (ALT) and lower levels of TG,
phospholipid, and HDL cholesterol (HDL-Chl). The
M-group showed lower levels of phospholipids, total
Chl, and HDL-Chl. In addition, the liver biochemical
analysis indicated increases in TG, total Chl, and total
bile acid (BA) in the H-group. Serum insulin levels did
not change among the three groups (Table 1).

The liver transcriptomes of the H-group were segre-
gated from those in the L- and M-groups in the cluster
dendrogram (Fig. 1). To dissect this overall difference in
transcriptomes at a single gene level, we analyzed the
coincidence of differentially expressed genes (DEGs)
estimated from the comparison among L-, M-, and H-
groups (Fig. 2a). The DEGs were termed according to
the experimental groups and the number of members. For
example, LM43 + 83 formed the smallest population
among MH131 + 106 and LH206 + 230, and shared about
half of the members (15 + 5 and 40 + 1) with LH206 + 230.

Page 4 of 12

0.006
1

0.005
L
M_10
L2 —|

H 12
H 15 1

0.004
L 4
M_8

L 3
H 13
H_16

0.003
L

A
- =

LFD & MFD HFD

Fig. 1 Cluster analysis of each liver transcriptome in experimental
groups. RMA-normalized expression data were subjected to hierarchical
clustering analysis and represented in a dendrogram. Each sample name
consists of a letter corresponding to the feeding condition (L, LFD; M,
MFD; H, HFD) and a number corresponding to the individual rat. The

vertical scale represents the distance between each transcriptome
.

In contrast, about one third of LH206 + 230 members
were included by MH131 + 106. This indicates that the
transcriptomic change from L to H is more similar to the
change from M to H than the change from L to M.

Then, we examined the function of the DEGs specific
to the L vs H change (LH186 + 189 probe sets, Fig. 2a
shaded area) using GO enrichment analysis [9, 21]. As a
result, 53 genes were attributed to the nine GO terms
located at the lowest position in the hierarchy (Table 2).
Among these GO terms, four terms were related to lipid
metabolism  (GO0019216, 0006633, 0008203, and
0033189). The enriched genes included 5+ 3 metabolic
enzyme genes. Fadsl, Msmol, Cyp7bl, Idil, and Sqle
were upregulated and Cyp4al, Elovl5, and Scdl were
downregulated in the H-group (Additional file 3, shaded
cell entries), suggesting down- or upregulation of PUFA
synthesis and upregulation of Chl/BA synthesis. In
addition, Apoa4, a key regulator of enteric and hepatic
TG transportation was downregulated in the H-group.
Other members of this category were mostly regulatory
protein genes such as Prkaal (protein kinase, AMP-
activated, alpha 1) and 2, Srebfl (sterol regulatory
element-binding transcription factor 1), Illa (interleu-
kin-1 alpha), glucocorticoid receptor, Lepr (leptin recep-
tor), and Duspl (MAPK phosphatase); among these,
only Srebfl was upregulated and the others were down-
regulated in the H-group. There were 6 genes that
belong to the GO term, circadian rhythm (GO0007623).
Upregulation of Arntl/Clock, Npas2/Clock paralog, and
Egfr (epidermal growth factor receptor) as day genes and
downregulation of Prfl(perforin 1), Per (period circadian
clock) 1 and 2 as night genes in the H-group was
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Fig. 2 Number of liver probe sets that were differentially expressed between experimental groups. a Coincidence of DEGs among experimental
groups. The subsets of DEGs specific to the L vs H change are indicated by shaded areas. b Oppositely regulated DEGs (shaded areas)

J

consistent with the reversed expression pattern of these
genes at the time point of tissue sampling (zeitgeber
time 3) [2]. Fourteen genes were identified as those re-
lated to RNA polymerase II-dependent transcription
(GO0045944 and 0000122); among these, only Ppargclb
(Pgc1b) was upregulated, and the others were downregu-
lated in the H-group.

Besides the significant enrichment of LH186 + 189
genes to the GO terms related to lipid metabolism,
LM43 + 83 genes were hard to analyze in this way

because of the small population. We then dissected
these genes with reference to the regulation of M vs H
or L vs H DEGs (Fig. 2b). It was revealed that 14 + 26
probe sets were reversely regulated compared with L vs
H or M vs H DEGs (Table 3). These sets included 11
metabolic enzyme genes (shaded cell entries): Sds (serine
dehydratase) for utilization of glycogenic amino acids;
Acotl (acyl-CoA thioesterase 1) for negative regulation
of beta-oxidation; Acsm2 (acyl-CoA synthetase medium-
chain family member 2) for positive regulation of FA

Table 2 Significantly enriched GO terms found in liver LH186 + 189 genes

GO-ID Term p value Gene
count
Biological process
0007623 B Circadian rhythm 1.82E-03 7
0007568 e Aging 5.77E-03 10
0009991 - Response to extracellular stimulus 5.66E-04 17
0031667 [ Response to nutrient levels 2.20E-03 15
0033189 L—Response to vitamin A 4.30E-02 9
0016525 - Negative regulation of angiogenesis 9.58E-03 4
0006882 Cellular zinc ion homeostasis 9.78E-03 3
0019216 Regulation of lipid metabolic process 4.72E-03 9
0016053 | acid biosynthetic process 3.59E-04 12
0046394 Carboxylic acid biosynthetic process 3.59E-04 12
0006633 = Fatty acid biosynthetic process 4.39E-03 7
0006631  f - Fatty acid metabolic process 1.49E-04 14
0008610 | Lipid biosynthetic process 9.86E-03 13
0008203 - Cholesterol metabolic process 7.85E-04 8
0008202 b Steroid metabolic process 7.11E-04 12
0016125 b Sterol metabolic process 2.15E-04 9
0051254 b Positive regulation of RNA metabolic process 7.84E-03 18
0045893 b Positive regulation of transcription, DNA-dependent 7.11E-03 18
0045944 — Positive regulation of transcription from RNA polymerase IT promoter 7.29E-03 16

Shaded cell entries indicate GO terms at the lowest hierarchy
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Table 3 The list of the reversely regulated liver LM43 + 83 genes
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Expression pattern Probe ID Gene symbol Description

1369268 _at Atf3 activating transcription factor 3

L>H | 1370988 at Cyp2bl cytochrome P450, family 2, subfamily b, polypeptide 1
1393510_at Golsyn Golgi-localized protein
1382451 _at Hebp2 heme binding protein 2
1382284 _at LOC685440, Nek3 similar to NIMA (never in mitosis gene a)-related expressed kinase 5, NIMA (never in mitosis gene a)-related kinase 3
1397745_at Mibl mindbomb homolog 1

14 probe sets 1369202_at Mx2 myxovirus (influenza virus) resistance 2
L<Mand M>H L>H 1389990_at RGD15637 similar to Gene model 609

1383956_at RGDI1565709 similar to ovostatin-2
1397859 _x_at RTI-A3 RTI class I, locus A3

L>H 1369864 _a_at Sds serine dehydratase
1373740_at
1382517 _at
1392860_at

L<H 1398250_at Acotl acyl-CoA thioesterase 1
1370436_at Acsm2 acyl-CoA synthetase medium-chain family member 2

L<H | 1374610_at Agpat9 I-acylglycerol-3-phosphate O-acy 9.
1368121 _at Akr7a3 aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase)
1383242_a_at Cebpa CCAAT/enhancer binding protein (C/EBP), alpha
1389625_at Chchd4 iled-coil-heli iled-coil-helix domain ining 4
1384392_at Cyp26bl cytochrome P450, family 26, subfamily b, polypeptide 1
1368607_at Cyp4a8 cytochrome P450, family 4, subfamily a, polypeptide 8
1388342 _at Etv3 Ets variant 3
1387670_at Gpd2 glycerol-’ 2, mi al

26 probe sets L<H 1371942_at Gstt3 glutathione S-transferase, theta 3
1370912_at, 1368247 _at Hspala, Hspalb heat shock 70kD protein 1A, heat shock 70kD protein 1B (mapped)
L>MandM<H 1389251 _at Nudt7 nudix (nucleoside diphosphate linked moiety X)-type motif 7

1397164 _at Pola2 polymerase (DNA directed), alpha 2
1392854 _at RGD1564560 Similar to RCK
1373777_at Rgsl6 regulator of G-protein signaling 16

L<H | 1371143 _at Serpina7 serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 7

L<H 1389142 _at Sqrdl sulfide quinone reductase-like (yeast)
1393160_at Tbx3 T-box 3
1374924 _at Upf3b 'UPF3 regulator of nonsense transcripts homolog B (yeast) (predicted)
1380306_at, 1381553 _at, 1392613 _at Zbtb16 zinc finger and BTB domain containing 16
1393192_at
1397225 _at

Shaded cell entries: metabolic enzyme genes related to lipid

synthesis; Agpat9 (1-acylglycerol-3-phosphate O-acyltrans-
ferase 9) for TG synthesis; Gpd2 (glycerol-3-phosphate de-
hydrogenase 2, mitochondrial) for gluconeogenesis from
glycerol; and Cyp2bl, Akr7a3, Cyp26bl, Cyp4a8, Gstt3,
and Sgrdl for detoxication. The other genes were involved
in more diversified functions. This result indicates that the
M-group is situated in a nutritional condition that controls
the regulatory switching of these metabolic genes.

Response of the adipose tissue transcriptomes to the
increased ratio of fat to carbohydrate

Because the hepatic transcriptome response as described
above suggested some change in energetic interaction
with other tissues such as adipose tissues, we analyzed
the transcriptomes of WAT and BAT in each experimen-
tal condition (Table 4). The L vs H DEGs of these tissues
were subjected to GO term enrichment analysis as in
the case of the liver. WAT LH235 + 336 DEGs showed
marked enrichment to the terms related to lipid metab-
olism (42 genes to GO0008610, 0006635, and 0045444)

(Table 5), and most of the metabolic enzyme genes were
downregulated in the H-group (Additional file 4). It is
possible that both lipid synthesis and beta-oxidation
were suppressed in this condition. Other characteristics
of WAT LH235 + 336 DEGs were the high frequency of
regulatory protein genes in the GO terms related to glu-
cose metabolism (GO006006) (Pik3rl, Lep, Il6st, Igf2,
Atf3, Crem, Pdkl, and Ppplrla, totally 8 genes/another
13 genes), and insulin signaling (GO0032868) (Lyn,
Foxol, Acvric, Pde3b, and Shcl, totally 5 genes/another
9 genes). Most of these genes were downregulated in the
H-group except Lep encoding satiety hormone leptin,

Table 4 Differentially expressed genes in the liver and in the
adipose tissues

Tissue L<H L>H
Liver 206 230
WAT 235 336
BAT 212 405
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Table 5 Significantly enriched GO terms found in WAT LH235 + 336 genes

GO-ID Term

pvalue  Count

Biological process

0008610 Lipid biosynthetic process 6.17E-06 25
0045444 Fat cell differentiation 1.96E-04 10
0001503 Ossification 2.57E-04 13
0060348 Bone development 4.80E-05 15
0005996  teomremromermeemeem e Monosaccharide metabolic process 4.41E-06 21
0019318 b Hexose metabolic process 8.08E-06 19
0006006 S— Glucose metabolic process 1.18E-05 17
0009991 prromemremmmsermmmmeemmeeeeneees Response to extracellular stimulus 1.43E-06 28
0031667 b Response to nutrient levels 1.20E-05 25
0007584 R Response to nutrient 2.84E-04 18
0009719 f-me Response to endogenous stimulus 1.89E-08 47
0009725 = Response to hormone 1.25E-07 42
0043434 S— Response to peptide hormone 1.59E-04 20
0032868 ; S— Response to insulin 4.31E-04 14
0010033 F-mmmme Response to organic substance 4.50E-09 65
0016042 {7 Lipid catabolic process 3.15E-04 14
0044242 B Cellular lipid catabolic process 1.33E-04 11
0009062 : Fatty acid catabolic process 2.42E-05 9
0006635 i ~ Fatty acid beta-oxidation ~ 2.70E-05 8
0046395 . Carboxylic acid catabolﬁc process 1.17E-05 14
0016054 - Organic acid catabolic process 1.17E-05 14
0006631 e Fatty acid metabolic jprocess 3.43E-08 24
0019395 3*"”"3*':1 Fatty acid oxidation 3.85E-04 8
0034440 — Lipid oxidation 3.85E-04 8
0055114t Oxidation-reduction process 1.62E-04 34

Shaded cell entries indicate GO terms at the lowest hierarchy

Il6st encoding IL-6 inflammatory signal transducer, and
Lyn encoding tyrosine kinase. There were 12 genes at-
tributed to the GO terms related to bone formation
(GO0060348 and GO0001503).

BAT LH212 + 405 DEGs exhibited a regulatory pattern
similar to that of WAT DEGs (Table 6), where all of the en-
zyme genes related to lipid metabolism were downregulated
in the H-group (24 genes in GO0006631 and 0006695,
shaded cell entries in Additional file 5). The other 23
enzyme genes were in the oxidation-reduction cat-
egory (GO0055114) of which 15 genes were downreg-
ulated in the H-group. BAT DEGs also contained
another 46 genes classified as organic substance respon-
sive components (GO0010033) that encode regulatory
proteins, transcription factors (SREBF2, glucagon recep-
tor), and transporters. The remainder was 12 genes for
muscle contraction (GO0006936) such as actin, myosin,
and troponin genes.

Search for upstream regulators common among the liver
and adipose tissues

Given the results of GO analysis that the H-diet gener-
ally induced the upregulation of FA unsaturation and
Chl synthesis in the liver (Additional file 3) and the
downregulation of FA synthesis in the adipose tissues

(Additional files 4 and 5), we assessed whether these
gene regulations were caused by some biological signals
common among these tissues using the Ingenuity Path-
way Analysis (IPA). Table 7 lists the IPA upstream regu-
lators that were predicted to be activated or repressed
(absolute z-score > 2.5) from the input of L vs H DEGs
(Table 4). Relatively high z-scores were observed with
LY294002 (PI3 kinase inhibitor) in WAT (3.07) and BAT
(2.73) [44], suggesting the inhibition of insulin signaling
in the H-group. This is consistent with the result that
two well-known components of insulin downstream sig-
naling (SREBF1 for FA synthesis and SREBF2 for Chl
synthesis) were inactivated (negative z-scores) both in
WAT (-3.68 and -4.18) and BAT (-3.52 and -4.17). It
is also notable that INSIG (insulin-induced gene protein)
1 and 2, which play roles as repressors of SREBF [48,
49], seemed to be activated in BAT (3.61 and 2.93). In
addition, pirinixic acid, a specific agonist of PPAR (per-
oxisome proliferator-activated receptor) alpha, was
detected as a WAT/BAT common upstream regulator.
The negative z-scores for pirinixic acid (-3.07 in WAT
and -2.99 in BAT) suggest the repression of this process.
The liver transcriptome showed relatively low absolute
z-scores except for peptidylprolyl isomerase F (PPIF or
cyclophilin D) (z-score = 2.83).
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Table 6 Significantly enriched GO terms found in BAT LH212 + 405 genes
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GO-ID Term p value  Count
Biological process

0055114 Oxidation-reduction process 4.18E-06 41
0010033 Response to organic substance 6.50E-06 61
0006631 Fatty acid metabolic process 4.40E-05 20
0003012 Muscle system process 1.43E-05 15
0006936 — Muscle contraction 8.02E-05 13
0008610 - Lipid biosynthetic process 2.59E-11 36
0006694 3 = Steroid biosynthetic process 6.54E-05 12
0016126 F = Sterol biosynthetic procell 4.38E-08 11
0006695 i = Cholesterol biosynthetic process  7.52E-09 11
0008203 {7 Cholesterol metabolic process 3.75E-08 16
0016125 {” Sterol metabolic process 1.O1E-07 16
0008202 - Steroid metabolic process

7.84E-06 20

Shaded cell entries indicate GO terms at the lowest hierarchy

Discussion

We have analyzed the transcriptomic responses of the
liver and adipose tissues to an increased ratio of F to C
under isoenergetic conditions. In this study, three types
of diets were adjusted with soybean oil to construct the
C-F ratios, since it is the major oil in human diets. Soy-
bean oil has some beneficial effects [45, 50], and hepatic
transcriptomes can be influenced by oil and fat profiles
[18]. Although the fatty acid profile was different among
three diets because of identical quantities of lard rich in
saturated FA, it is crucial that the main energy resource
was changed from C to F. The rats showed no between-
group differences in body weight or in relative tissue

weight (Additional file 2b); however, higher serum ALT
levels were observed in the H-group compared with the
L- and M-groups (Table 1). Because no significant fluc-
tuations were observed among the other damage
markers, the liver damage in the H-group seems to be
limited in extent. This is in accordance with the fact that
no significant enrichment of DEGs detected in GO
terms related to liver damage, such as inflammation or
fibrosis [25].

Interestingly, H-group rats exhibited a significant bio-
chemical characteristic relevant to lipid homeostasis:
lower TG and HDL-Chl levels in the sera and higher
TG, total Chl, and total BA content in the liver than in

Table 7 Comparison of IPA upstream regulators among the liver and the adipose tissue transcriptomes

Upstream Regulator

Activation z-score

Abbreviation Description Liver WAT BAT
LY294002 PI3 kinase inhibitor -0.756 3.07 2.73
SREBF1 Sterol regulatory element-binding transcription factor 1 1.27 -3.68 -4.18
SREBF2 Sterol regulatory element-binding transcription factor 2 1.12 -3.52 -4.17
INSIG1 Insulin induced gene 1 -2.15 1.61 3.61
INSIG2 insulin induced gene 2 - 2.39 293
PPARG peroxisome proliferator-activated receptor (PPAR) gamma -1.01 -2.73 -2.15
gemfibrozil =~ PPAR alpha activator -1.57 -2.21 -2.80
pirinixic acid PPAR alpha activator -1.79 -3.07 -2.99
CREB1 cAMP responsive element binding protein 1 0.751 -3.17 -2.14
IL4 interleukin 4 0.789 -2.64 -2.41
MLXIPL MLX interacting protein-like, Carbohydrate-responsive i a1 A

element-binding protein
CD38 CD38 molecule -0.269 -2.28 -3.41
paclitaxel taxol 1.19 -2.19 -2.66
PPIF peptidylprolyl isomerase F, cyclophilin D 2.83 0.200 2.00

The absolute Z-scores of larger than 2.5 are represented by the shaded cell entries. -; no significant Z-score
Upstream Regulators are classified according to their relevance to each other
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the L-group (Table 1). Our transcriptomic analysis sug-
gested the upregulation of Chl/BA synthesis in the liver
(Table 2 and Additional file 3), the downregulation of
lipid synthesis and beta-oxidation in WAT (Table 5 and
Additional file 4), and the downregulation of Chl biosyn-
thesis in BAT (Table 6 and Additional file 5). The former
liver transcriptomic response may facilitate acetyl-CoA
consumption via Chl synthesis and BA secretion (Fig. 3)
[43]. Moreover, the downregulation of Scdl and Elovi5
indicates suppression of de novo synthesis and elong-
ation of monounsaturated FAs, while the upregulation of
Fadsl implies facilitation of C20 PUFAs (precursors of
bioactive eicosanoids) synthesis from 18:2 n-6 linoleic
acid, rich in H-diet, with the help of Fads2 [24]. These
results suggest that the hepatic transcriptome was regu-
lated not only by the C-F ratios but also by the fatty acid
profiles of the diets. The downregulation of Apoa4 may
inhibit export of TG from the liver leading to the de-
crease in serum TG level and the increase in liver TG
content (Fig. 3) [42]. The latter responses of adipose
tissues may suppress FA release to the sera.

A comparison of L vs M transcriptomes in liver
showed 126 (43 + 83) genes as differentially expressed
(Fig. 2); this was less than the number of differentially
expressed genes as compared to M vs H (131 + 106
genes) and L vs H (206 + 230 genes). This means that
the transcriptome of the L-group was more closely re-
lated to that of the M-group than H-group (Fig. 1).
Then, we analyzed LM43 + 83 DEGs to clarify C-F ratio
dependency of hepatic transcriptome and we found 32
reversely regulated genes (i.e, upregulated in M-
condition and downregulated in H-condition, or vice
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versa) (listed in Table 3). These reversely regulated liver
DEGs can exert potential effects on lipid homeostasis;
the upregulation of Acotl, Acsm2, and Agpat9 in the
H-group may increase TG accumulation in the liver.
Also, the role of LM43 + 83 DEGs in macronutrient con-
version (e.g., amino acid to C and F to C) should be
emphasized because our study was conducted under the
isoenergetic conditions. In this context, the downregula-
tion of Sds in the H-group may reduce utilization of
amino acids for gluconeogenesis, and the upregulation
of Gpd2 in the H-group may increase gluconeogenesis
from glycerol produced by TG hydrolysis. Because the
expression pattern of these genes was biphasic, the regu-
lation of these metabolisms may have a balancing point
close to the M-condition. As we used outbred Wistar
rats, transcriptomic difference among the L-group and
the M-group could be influenced by genetic or epigen-
etic differences between animals. Further indirect calori-
metric studies with altered C-F ratios or animal strains
are needed to clarify this metabolic regulation switching.

A question arising is whether these transcriptomic reg-
ulations are governed by any cellular signals common
among these tissues. We computationally detected the
downregulation of both insulin-PI3K-SREBF and PPAR
alpha signals in the adipose tissues but not in the liver
(Table 7). This suggests that both the anabolic signal of
insulin (i.e., FA synthesis) and the catabolic signal of
PPAR alpha (i.e., FA oxidation) are inhibited in adipose
tissues. Because the rats in the H-group showed a
growth rate (Additional file 2b) and serum insulin levels
almost the same as in the L- and M-groups (Table 1),
the suppression of insulin signals may be intrinsic to

-
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Fig. 3 Transcriptomic and metabolic changes in H-condition compared to L-condition. Shaded molecules indicate the metabolites, and others
indicate the transcripts specific to L vs H change (liver LH186 + 189, WAT LH235 + 336, and BAT LH212 + 405). Upward arrows indicate the H-up
genes (italics) or predicted pathways compared to L-condition, and vice versa. TG triacylglycerol, Chl cholesterol, BA bile acid, FA fatty acid, PUFA
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adipose tissues [33, 40, 47]. In the case of PPAR alpha
signal, the low level of serum TG in the H-group might
affect the concentration of FA in adipose tissues.

Conclusions

To investigate the effects of altered dietary C-F ratio, we
compared with L vs M and L vs H DEGs. We found that
hepatic genes for gluconeogenesis and lipid metabolism
were reversely regulated, indicating that a turning point
for gene expression switching from C to F as energy
source may exist in the M-condition (C:F =60:20) or a
C-F ratio around M.

L vs H analyses revealed that high-fat diet upregulated
Chl/BA synthesis in the liver and downregulated lipid
synthesis in WAT and BAT. Also, our computational
search for upstream regulators in these tissues suggested
that insulin and PPAR alpha signals were downregulated
both in WAT and BAT in the H-group.

In conclusion, the liver and adipose tissues differentially
adapts to altered C-F by changing their gene expressions
and not by merely responding to endocrine signals.

Additional files

Additional file 1: Composition of diets. (DOCX 17 kb)

Additional file 2: Physical parameters of the animals. a, Energy intake
during the experimental period. The intakes of the rats in the M- and
H-groups were restricted to the average intake of the rats in the L-group.
Data for the M- and H-groups after day 0 were omitted. b, Body and
tissue weights. The inset represents the relative tissue weights (percent to
body weight) at the time of sacrifice (week 9). Values are represented as
means + SD (n =4-5). (DOCX 89 kb)

Additional file 3: The list of liver LH186 + 189 genes that belongs to the
GO terms located at the lowest level of hierarchy. (DOC 143 kb)

Additional file 4: The list of WAT LH235 + 336 genes that belong to the
GO terms located at the lowest level of hierarchy. (DOC 190 kb)

Additional file 5: The list of BAT LH212 + 405 genes that belong to the
GO terms located at the lowest level of hierarchy. (DOC 213 kb)
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